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Abstract
We consider the Markoff–Rosenberger equation

ax2 + by2 + cz2 = dxyz

with (x, y, z) = (Ui ,Uj ,Uk), where Ui denotes the i-th generalized Lucas number of
first/second kind. We provide an upper bound for the minimum of the indices and we apply
the result to completely resolve concrete equations, e.g. we determine solutions containing
only balancing numbers and Jacobsthal numbers, respectively.
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1 Introduction

Markoff [7] showed that the equation

x2 + y2 + z2 = 3xyz

has infinitelymany integral solutions. The equation defined above is calledMarkoff equation,
and it has been generalized in many directions by several authors. In this article, we deal with
the generalization

ax2 + by2 + cz2 = dxyz (1.1)
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Markoff–Rosenberger triples and generalized Lucas sequences 189

considered by Rosenberger [8]. Rosenberger proved that if a, b, c, d ∈ N are integers such
that gcd(a, b) = gcd(a, c) = gcd(b, c) = 1 and a, b, c | d , then non-trivial solutions exist
only if (a, b, c, d) ∈ A, where

A = {
(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)

}
.

Luca and Srinivasan [6] proved that the only solution of Markoff equation with x ≤ y ≤ z
such that (x, y, z) = (Fi , Fj , Fk) is given by the well-known identity related to the Fibonacci
numbers

1 + F2
2n−1 + F2

2n+1 = 3F2n−1F2n+1.

Kafle, Srinivasan and Togbé [5] determined all triples of Pell numbers (x, y, z) =
(Pi , Pj , Pk) satisfying the Markoff equation x2 + y2 + z2 = 3xyz. Here, there is an other
identity given by

22 + P2
2m−1 + P2

2m+1 = 3 · 2 · P2m−1P2m+1.

Markoff–Rosenberger triples containing only Fibonacci numbers were determined by
Tengely [9]. Altassan and Luca [1] considered Markoff–Rosenberger equations with integer
solutions (x, y, z) which are all members of a Lucas sequence whose characteristic equation
has roots which are quadratic units. In this article, we consider generalized Lucas number
solutions of the Markoff–Rosenberger equation. We define the sequences {Un}n≥0,{Vn}n≥0

as follows:

U0(P, Q) = 0, U1(P, Q) = 1, Un(P, Q) = PUn−1(P, Q) − QUn−2(P, Q),

V0(P, Q) = 2, V1(P, Q) = P, Vn(P, Q) = PVn−1(P, Q) − QVn−2(P, Q),

where neither P nor Q is zero.

Remark 1.1 Assume that P� = −P and define

U �
0 = 0, U �

1 = 1, U �
n = P�U �

n−1 − QU �
n−2,

V �
0 = 2, V �

1 = P�, V �
n = P�V �

n−1 − QV �
n−2.

Then we have

U �
n = (−1)n+1Un, V �

n = (−1)nVn .

Based on the above identities in this paper we only deal with sequences satisfying P > 0.

In this paper we assume that 0 < D = P2 − 4Q, P ≥ 2 and −P − 1 ≤ Q ≤ P − 1.
We excluded the cases with P = 1 to make the presentation simpler. However, if P = 1,
then −2 ≤ Q ≤ 0. Therefore, there are only two sequences to be considered. Namely,
the Fibonacci sequence with (P, Q) = (1,−1) and the Jacobsthal sequence with (P, Q) =
(1,−2). The former onewas completely solved in [9], the latter onewill be handled separately
in this paper. The characteristic polynomial associated to the above sequences is given by
x2 − Px + Q. The roots of the characteristic polynomial can be written in the form

α = P + √
D

2
, β = P − √

D

2

and we have α − β = √
D, α + β = P and αβ = Q. We note that the conditions P ≥ 2,

D > 0 and −P − 1 ≤ Q ≤ P − 1 imply that α ≥ 2 and |β| ≤ 1. First we justify the second
statement, and then the first one. Since P ≥ 2 and −P − 1 ≤ Q ≤ P − 1, we have

(P − 2)2 ≤ P2 − 4Q ≤ (P + 2)2.

123



190 H. R. Hashim et al.

Therefore, P − 2 ≤ √
D ≤ P + 2. We have that β = P−√

D
2 . Hence,

−1 ≤ β ≤ 1.

This implies that α ≥ 2. Indeed, if P ≥ 3, then α = P −β ≥ P − 1 ≥ 2. On the other hand,
if P = 2, then Q ∈ {−3,−2,−1, 1}. The case Q = 1 is not convenient since it leads to the
characteristic equation x2 − 2x + 1 = (x − 1)2 which has a double root so D = 0. Thus,
Q ≤ −1, so α = (2 + √

4 − 4Q)/2 ≥ (2 + √
8)/2 = 1 + √

2 > 2. Also, α > |β|. All this
has relevance later.

By Binet’s formulas we have that

Un = αn − βn

α − β
, Vn = αn + βn .

We assume that

αk−2 ≤ Uk ≤ 2αk, (1.2)

2αk−1 ≤ Vk ≤ 2αk for k ≥ 1, (1.3)

and these will be fulfilled in case of D > 0, P ≥ 2 and −P − 1 ≤ Q ≤ P − 1, Q �= 0. The
bounds on inequalities (1.2) and (1.3) are obtained as follows. The upper bounds are clear
since α − β = √

D ≥ 1, so

Uk = αk − βk

α − β
≤ αk − βk ≤ 2αk for k ≥ 1.

Similarly, we get that Vk = αk +βk ≤ 2αk . For the lower bounds, first we note that if β > 0,
or β < 0 and k is even, then

Vk = αk + βk > αk ≥ 2αk−1.

If β < 0 and k is odd, then

Vk = αk − |β|k = (α − |β|)(αk−1 + · · · + |β|k−1) ≥ 2αk−1,

since α − |β| = α + β = P ≥ 2. For Uk , we use a similar argument. If β > 0, then

Uk = αk − βk

α − β
= αk−1 + αk−2β + · · · + βk−1 > αk−1 > αk−2.

If β < 0, then

Uk ≥ αk − |β|k
α + |β| >

α − |β|
2α

(αk−1 + · · · + |β|k−1) ≥ αk−2,

where we used again the fact that α − |β| = α + β = P ≥ 2. In general, we assume that
if {Rn}n≥0 is a nondegenerate Lucas sequence of the first or second kind, then there exist
constants s1, s2, i1, i2 such that

s1α
n−i1 ≤ Rn ≤ s2α

n+i2 for n ≥ 1,

and this will be fulfilled in the cases that we investigate in this paper.

Remark 1.2 Let {Rn}n≥0 be a binary linear recurrence sequence represented by {Un}n≥0 or
{Vn}n≥0. In order to determine all triples (Ri , R j , Rk) satisfying equation (1.1) at a given tuple
(a, b, c, d) ∈ A, we first compute an upper bound for i (such that 1 ≤ i ≤ j ≤ k), denote
it by ubRn (a, b, c, d). Hence, to resolve the equation completely with e.g. (a, b, c, d) =
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Markoff–Rosenberger triples and generalized Lucas sequences 191

(1, 2, 3, 6) one needs to handle the cases with i ≤ ubRn (1, 2, 3, 6), i ≤ ubRn (1, 3, 2, 6),
i ≤ ubRn (2, 1, 3, 6), i ≤ ubRn (2, 3, 1, 6), i ≤ ubRn (3, 1, 2, 6) and i ≤ ubRn (3, 2, 1, 6).
Then after obtaining the solutions of (1.1) with these cases, we permute the components of
these solutions in which they satisfy equation (1.1) at the tuple (a, b, c, d) = (1, 2, 3, 6)
to determine the complete list of its solutions. Although, Theorem 2.1 gives the least upper
bound for all such cases of the tuples of A. For that we let S be the set of all distinct tuples
(a, b, c, d) derived from permuting the first three components of elements in A.

2 Main results

Theorem 2.1 Let (a, b, c, d) ∈ S, P ≥ 2, −P − 1 ≤ Q ≤ P − 1 such that Q �= 0, D > 0
and

B0 = min
I∈Z

∣∣∣∣α
I − d

c
√
D

∣∣∣∣ , B1 = min
I∈Z

∣∣∣∣α
I − d

c

∣∣∣∣ .

If B0 �= 0, then B0 ≥ α−4 and if B1 �= 0, then B1 ≥ 0.17. Furthermore, if x = Ui , y = Uj

and z = Uk with 1 ≤ i ≤ j ≤ k is a solution of (1.1) and B0 �= 0, then i ≤ 12. If x = Vi ,
y = Vj and z = Vk with 1 ≤ i ≤ j ≤ k is a solution of (1.1) and B1 �= 0, then i ≤ 7.

Proof Let us start proving the first part of the theorem in which we show that B0 ≥ α−4

and B1 ≥ 0.26 as B0 �= 0 and B1 �= 0, respectively. We start with the case of B1. From
S we have the rational number d/c is in the set {1, 2, 3, 4, 5, 6}. If I = 0 and B1 �= 0,
then d/c ∈ {2, 3, 4, 5, 6}. So B1 ≥ 1. However, if d/c = 1, then B1 = 0 is achieved at
I = 0 independently on P and Q. If I < 0, then α I ≤ α−1 ≤ 1/2, which implies that
B1 ≥ 1/2. Next, assume that I = 1. If d/c = 1, then B1 ≥ 1 since α ≥ 2. But, B1 = 0 in
case of α = d/c ∈ {2, 3, 4, 5, 6}. Now, we indicate the values of P and Q in each of these
cases giving that B1 = 0. Since α and P are positive integers such that α ∈ {2, 3, 4, 5, 6}
and P ≥ 2. Then β = P − α must be an integer. Thus, we obtain that β ∈ {−1, 1} since
−1 ≤ β ≤ 1. Furthermore, we get that D = (α −β)2 ≥ 1 as α ≥ 2 and β = ±1. Therefore,
the appropriate values of P and Q can be determined by

P = α + β, Q = αβ,

where α ∈ {2, 3, 4, 5, 6} and β ∈ {−1, 1}. In the following table, we summarize the details of
computations for the values of P and Q (such that P ≥ 2 and−P−1 ≤ Q ≤ P−1, Q �= 0)
in which we have B1 = 0.

α (P, Q)

2 (3, 2)
3 (4, 3), (2, −3)
4 (5, 4), (3, −4)
5 (6, 5), (4, −5)
6 (7, 6), (5, −6)

Assuming that that I ≥ 2. If P ≥ 4, then α I ≥ α2 ≥ (P − 1)2 ≥ 9. So B1 ≥ 3.
Thus, it remains to deal with the cases P ∈ {2, 3} and −P − 1 ≤ Q ≤ P − 1 such that
Q �= 0. We start with P = 2 and −3 ≤ Q ≤ 1. As mentioned earlier the case with Q = 1
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192 H. R. Hashim et al.

is not convenient since D = 0. So Q ∈ {−3,−2,−1}. If P = 2 and Q = −3, then
α = (P +√

P2 − 4Q)/2 = (2+√
16)/2 = 3. This gives us α I ≥ 9. Thus, B1 ≥ 3. Next, if

P = 2 and Q = −2, then α = 1+√
3 and α I ≥ 2(2+√

3), which give B1 > 1.46. Similarly,
in case of P = 2 and Q = −1 we get α I ≥ 3 + 2

√
2. Therefore, B1 ≥ 3 − 2

√
2 � 0.17. In

the following table, we provide details of computations for the remaining cases in which we
have B1 is nonzero for all I ≥ 2.

(P, Q) α Lower bound on B1

(3, −4) 4 B1 ≥ 10
(3, −3) (3 + √

21)/2 B1 > 8.37
(3, −2) (3 + √

17)/2 B1 > 6.68
(3, −1) (3 + √

13)/2 B1 > 4.90
(3, 1) (3 + √

5)/2 B1 > 0.85

Indeed, the only special case in which we have B1 = 0 is with (P, Q) = (3, 2). Here,
B1 = 0 is achieved at I = 2 and d/c = 4 since α = 2. However, if I ≥ 3, then α I ≥ 9. So
B1 ≥ 3. The computations above show that B1 ≥ 0.17.

We now turn to B0. We have
√
D = α − β ∈ [α − 1, α + 1]. If I ≤ −2, then

B0 ≥ (d/c)√
D

− 1

α2 ≥ 1

α + 1
− 1

α2 = α2 − α − 1

α2(α + 1)
>

1

α4 ,

since α ≥ 2, so α2 − α − 1 ≥ 1. If I = −1, then either d/c ≥ 2, so

B0 ≥ 2

α − β
− 1

α
≥ 2

α + 1
− 1

α
= α − 1

α(α + 1)
≥ 1

α3 >
1

α4 ,

or d/c = 1 so

B0 =
∣∣∣∣
1

α
− 1

α − β

∣∣∣∣ = |β|
α(α − β)

≥ 1

α2(α + 1)
≥ 1

α4 ,

where we used the fact that |β| = |Q| /α ≥ 1/α. In particular, the expression under the
minimum to compute B0 is not zero when I is negative.

Assume next that I ≥ 0. If β ∈ {−1, 1}, then √
D = α − β is an integer. Thus, in this

case when B0 �= 0, the number B0 is a positive rational number of denominator c(α − β) ≤
5(α + 1). Therefore,

B0 ≥ 1

5(α + 1)
≥ 1

α4 ,

where the last inequality holds since α ≥ 2. Finally, if β ∈ (−1, 1), then
∣∣c

√
Dα I − d

∣∣ is
a quadratic real algebraic integer multiple of c. Its conjugate is

∣∣−c
√
Dβ I − d

∣∣ = |c(α −
β)β I + d| ≤ cα + (c + d). Hence, since the norm of a quadratic nonzero algebraic integer
divisible by c is greater than or equal to c2, we get

B0 =
∣∣c

√
Dα I − d

∣∣

c
√
D

≥ 1

c
√
D

(
c2

(cα + c + d)

)

= 1

(α − β)(α + 1 + d/c)
≥ 1

(α + 1)(α + 7)
≥ 1

α4 .
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Markoff–Rosenberger triples and generalized Lucas sequences 193

We finish the proof by justifying the last inequality. If P = 2, then α ≥ 1 + √
2 and the last

inequality holds. If P ≥ 4, then α = P − β > 3, so the last inequality holds. It also holds
if P = 3 and Q < 0, since then again α > 3. Finally, if P = 3 and Q > 0, then Q = 1, 2.
The case Q = 2 gives β = 1, a case already treated, and if Q = 1, then α is the square of
the golden section so it is greater than 1 + √

2 and the desired inequality holds anyway.
Now, we prove the second part of the theorem. In fact, we look for solutions satisfying

x = Ui , y = Uj and z = Uk with 1 ≤ i ≤ j ≤ k. We have that

cαk

√
D

− d

D
αi+ j = −aU 2

i + bU 2
j

Uk
+ cβk

√
D

− d

D
(αiβ j + α jβ i − β i+ j ).

We apply (1.2) to get an upper bound for
aU2

i +bU2
j

Uk
such that aU 2

i + bU 2
j ≤ (a + b)U 2

j holds
since the Lucas sequence {Un}n≥0 is monotone increasing. We obtain that

aU 2
i + bU 2

j

Uk
≤ (a + b)U 2

j

Uk
≤ 4(a + b)α2α j .

Since |β| ≤ 1, we get that
∣∣∣∣
cβk

√
D

∣∣∣∣ ≤
∣∣∣∣

c√
D

∣∣∣∣ ≤
∣∣∣∣
cα j

√
D

∣∣∣∣ .

The last expression to bound is d
D (αiβ j + α jβ i − β i+ j ). In this case we obtain that

∣∣∣∣
d

D
(αiβ j + α jβ i − β i+ j )

∣∣∣∣ ≤ d

D
(2α j + 1).

Hence, we have that
∣∣∣∣
d

D
(αiβ j + α jβ i − β i+ j )

∣∣∣∣ ≤ 3d

D
α j .

From the above inequalities we get
∣∣∣∣
cαk

√
D

− d

D
αi+ j

∣∣∣∣ ≤
(
4(a + b)α2 + c√

D
+ 3d

D

)
α j .

It follows that
∣∣∣∣α

k−i− j − d

c
√
D

∣∣∣∣ ≤
(

4(a + b)α2

√
D

c
+ 3d

c
√
D

+ 1

)

α−i . (2.1)

Let

B0 = min
I∈Z

∣∣∣∣α
I − d

c
√
D

∣∣∣∣ .

If B0 �= 0 (then B0 ≥ α−4), then we get an upper bound for i from the inequality

αi ≤ 1

B0

(

4(a + b)α2

√
D

c
+ 3d

c
√
D

+ 1

)

. (2.2)

Since B0 ≥ α−4, a + b ≤ 6, 1 ≤ √
D ≤ α + 1, c ≥ 1 and d/c ≤ 6, then (2.2) becomes

αi ≤ α4(4 · 6 · α2(α + 1) + 19) < α13,

123



194 H. R. Hashim et al.

where the last inequality holds since α ≥ 2. Thus, i ≤ 12. In a similar way, one can prove
the second part of the statement. Hence, we note that we get the inequalities (assuming that
B1 �= 0, then B1 ≥ 0.17)

∣∣∣∣α
k−i− j − d

c

∣∣∣∣ ≤
(
2(a + b)α

1

c
+ 3d

c
+ 1

)
α−i , (2.3)

αi ≤ 1

B1

(
2(a + b)α

1

c
+ 3d

c
+ 1

)
. (2.4)

Again, since B1 ≥ 0.17, a + b ≤ 6, c ≥ 1 and d/c ≤ 6, so (2.4) is

αi ≤ (0.17)−1(2 · 6 · α + 19) < α8,

where the last inequality holds since α ≥ 2. So i ≤ 7. Hence, Theorem 2.1 is completely
proved. �	

It is important to remark that these lower bounds on B0 or B1 (namely, B0 ≥ α−4 or
B1 ≥ 0.17) are the greatest lower bounds in case of any Lucas sequence of the first or second
kind with all the tuples (a, b, c, d) ∈ S, respectively. Indeed, they may be greater due to
particular sequences with certain tuples (a, b, c, d) ∈ S. A similar idea goes for the upper
bounds on i ′s (i.e. i ≤ 12 or i ≤ 7), they are only least upper bounds in case of any Lucas
sequence of the first or second kind with all the tuples (a, b, c, d) ∈ S, respectively. Indeed,
they could be smaller due to particular sequences and tuples.

Note that in the proof of Theorem 2.1, the cases where we have B1 = 0 were completely
studied. Thus, it remains to classify the cases satisfying B0 = 0, the result is as follows.

Theorem 2.2 If P ≥ 2, −P − 1 ≤ Q ≤ P − 1, Q �= 0 and D > 0, then B0 �= 0 fulfills
unless

• e = 1, P = 3, Q = 2, α = 2,
√
D = 1, I = 0,

• e = 2, P = 3, Q = 2, α = 2,
√
D = 1, I = 1,

• e = 2, P = 4, Q = 3, α = 3,
√
D = 2, I = 0,

• e = 3, P = 5, Q = 4, α = 4,
√
D = 3, I = 0,

• e = 4, P = 3, Q = 2, α = 2,
√
D = 1, I = 2,

• e = 4, P = 6, Q = 5, α = 5,
√
D = 4, I = 0,

• e = 4, P = 2, Q = −3, α = 3,
√
D = 4, I = 0,

• e = 5, P = 7, Q = 6, α = 6,
√
D = 5, I = 0,

• e = 5, P = 3, Q = −4, α = 4,
√
D = 5, I = 0,

• e = 6, P = 4, Q = 3, α = 3,
√
D = 2, I = 1,

• e = 6, P = 8, Q = 7, α = 7,
√
D = 6, I = 0,

• e = 6, P = 4, Q = −5, α = 5,
√
D = 6, I = 0,

where e = d/c such that (a, b, c, d) ∈ S.

Proof From the proof of Theorem 2.1 (particularly, if B0 = 0, then B0 ≥ α−4), it follows
that B0 cannot be zero if I is negative. Therefore, I ≥ 0. If β ∈ (−1, 1), then B0 cannot
be zero if I = 0 (since

√
D is not rational). So I �= 0 and α I = e/

√
D, where e = d/c.

Conjugating and taking ratios we get (α/β)I = −1, which is false. Thus, β = ±1 and√
D = α − β = P − 2β = P ± 2. Since I ≥ 0, then P ± 2 divides e ∈ {1, 2, 3, 4, 5, 6}. So

P ≤ 8 (indeed, 2 ≤ P ≤ 8). Since
√
D = P − 2β > 0, then 3 ≤ P ≤ 8 in case of β = 1.

Hence, it remains to study the cases in which we have

B0 = min
I≥0

∣∣∣∣α
I − e√

D

∣∣∣∣ = min
I≥0

∣∣∣∣(P − β)I − e

(P − 2β)

∣∣∣∣ = 0.
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Markoff–Rosenberger triples and generalized Lucas sequences 195

Since (P − β)I is a positive integer as β ∈ {−1, 1}, I ≥ 0 and 2 ≤ P ≤ 8 (avoiding that
P = 2 in case of β = 1), so e/(P − 2β) must be also a positive integer. In fact, the latter
condition (i.e. e/(P − 2β) ∈ Z

+) is achieved only at the following cases:

� e = 1, and P − 2β = 1, i.e. (P, β) = (3, 1).
� e = 2, and P − 2β = 1, 2, i.e. (P, β) = (3, 1), (4, 1), respectively.
� e = 3, and P − 2β = 1, 3, i.e. (P, β) = (3, 1), (5, 1), respectively.
� e = 4, and P − 2β = 1, 2, 4, i.e. (P, β) = (3, 1), (4, 1), (6, 1) or (2,−1), respectively.
� e = 5, and P − 2β = 1, 5, i.e. (P, β) = (3, 1), (7, 1) or (3,−1), respectively.
� e = 6, and P − 2β = 1, 2, 3, 6, i.e. (P, β) = (3, 1), (4, 1), (5, 1), (8, 1) or (4,−1),

respectively.

Finally, by examining which of the above cases leads to B0 = 0 we get the results as
follows. From the first case we get that B0 = 0 at P = 3, β = 1, I = 0, e = 1, and
these give that

√
D = P − 2β = 1, α = P − β = 2 and Q = αβ = 2. Hence, the first

statement of the theorem is achieved. Similarly, from the second case we obtain that B0 = 0
at (P, β, I , e) = (3, 1, 1, 2) and (4, 1, 0, 2). The former tuple implies that

√
D = 1, α = 2

and Q = 2. So the second statement of the theorem is also fulfilled. However, the third
statement is accomplished similarly by the latter tuple. We also get B0 = 0 only in case of
P = 5, β = 1, I = 0, e = 3, that give

√
D = 3, α = 4 and Q = 4. Hence, the fourth

statement of the theorem is obtained. In a very similar way, the remaining statements of
the theorem will be fulfilled from the last three cases above. This completes the proof of
Theorem 2.2. �	

3 Applications

Let (a, b, c, d) ∈ A and {Rn}n≥0 be either {Un}n≥0 or {Vn}n≥0. In order to apply the procedure
described in Theorem 2.1 to resolve equation (1.1) in x = Ri , y = R j , z = Rk , we firstly
do the following steps (since in Theorem 2.1, 1 ≤ i ≤ j ≤ k is assumed). The first step is
permuting the first three components in (a, b, c, d). Then for each of the resulting tuples, we
provide an upper bound for i as explained in Theorem 2.1. In fact, Theorem 2.1 gives the
least upper bound for all such cases of the tuples of A. After that we adopt the arguments
described in [9] (in case of the Fibonacci sequence) to determine the list of solutions. Finally,
when the solutions of (1.1) with these cases are obtained we permute the components of
these solutions in which they satisfy equation (1.1) at the tuple (a, b, c, d) ∈ A in order to
determine all of its solutions (x, y, z) = (Ri , R j , Rk).

If we fix (a, b, c, d), i and m = k − j , then we need to study the equation

aR2
i + bR2

j + cR2
j+m − dRi R j R j+m = 0,

where Rn = Un or Vn . We note that the equation above only depends on j . Now, we adopt
the arguments given in [9].

(I) We eliminate as many values of i as possible by checking the solvability of quadratic
equations

aR2
i + by2 + cz2 − dRi yz = 0.

(II) For fixed m we eliminate equations aR2
i + bR2

j + cR2
j+m − dRi R j R j+m = 0 modulo

p, where p is a prime.
(III) We can also eliminate equations aR2

i + bR2
j + cR2

j+m − dRi R j R j+m = 0 using related
identities of second order linear recurrence sequences.
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(IV) We consider the equation aR2
i + bR2

j + cR2
j+m = dRi R j R j+m as a quadratic in R j .

Its discriminant d2R2
i R

2
j+m − 4b(aR2

i + cR2
j+m) must be a square. The terms of the

sequences {Un}n≥0 and {Vn}n≥0 satisfy the fundamental identity

V 2
n − DU 2

n = 4Qn .

Therefore, in case of Q = ±1 we have the systems of equations

Y 2
1 = DX2 ± 4,

Y 2
2 = d2R2

i X
2 − 4b(aR2

i + cX2),

where X = R j+m = Uj+m , Y1 = Vj+m , Y2 = 2bR j − dRiU j+m ; and

Y 2
1 = DX2 ∓ 4D,

Y 2
2 = d2R2

i X
2 − 4b(aR2

i + cX2),

where X = R j+m = Vj+m , Y1 = DUj+m , Y2 = 2bR j − dRi Vj+m . Mul-
tiplying these equations together, in general, yields quartic genus 1 curves. One
may determine the integral points on these curves using the Magma [3] function
SIntegralLjunggrenPoints (based on results obtained by Tzanakis [10]).
Indeed, it may happen that we get genus 0 curves.

Let us apply the procedure described in Theorem 2.1 with these arguments to determine the
solutions of equation (1.1) in some second order linear recurrence sequences.

3.1 Balancing numbers andMarkoff–Rosenberger equations

The first definition of balancing numbers is essentially due to Finkelstein [4], although he
called them numerical centers. In 1999, Behera and Panda [2] defined balancing numbers as
follows. A positive integer n is called a balancing number if

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + k)

for some k ∈ N. The sequence of balancing numbers is denoted by {Bn}n≥0. This sequence
can be defined in a recursive way as well, we have that B0 = 0, B1 = 1 and

Bn = 6Bn−1 − Bn−2, n ≥ 2.

As we see this is the sequence {Un(6, 1)}n≥0. So P = 6, Q = 1 and D = 32. We also have
that

α = 3 + 2
√
2, β = 3 − 2

√
2.

We have the bounds

αn−1 ≤ Bn ≤ αn for n ≥ 1, (3.1)

which are specific to the sequence of balancing numbers. Since Q = 1 the numbers X = Bn

satisfy the Pellian equation Y 2 = 8X2 + 1. We prove the following result.

Theorem 3.1 If (x, y, z) = (Bi , Bj , Bk) is a solution of the equation

ax2 + by2 + cz2 = dxyz

and (a, b, c, d) ∈ {
(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)

}
,

then there is at most one solution given by x = y = z = B1 = 1.
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Proof Note that here we can directly use the results given in Theorem 2.1 (i.e. B0 ≥ α−4

and i ≤ 12), argument (I) and any of the arguments described in (II), (III) or (IV) to prove
the theorem completely. But in practice, having a smaller upper bound on i and eliminating
as many i ′s as possible are very useful for determining the complete set of solutions, and,
as pointed earlier, the upper bound “12” on i is only the least upper bound that could be
even smaller due to particular sequences. Therefore, we follow the general strategy given in
Theorem 2.1 to compute the best possible values for the lower bounds on B ′

0s (i.e. greater
values) and the upper bounds on i ′s (i.e. smaller values) specific to the sequence of balancing
numbers with the use of the inequalities given in (3.1). It turns out that in all the cases we
have that i ≤ 5. Moreover, by applying argument (I), many values of i ′s can be eliminated
by checking integral solutions of binary quadratic forms. Therefore, we skip the congruence
arguments given by (II) and (III). We directly consider the genus 1 curves obtained from the
system of equations

Y 2
1 = 8X2 + 1,

Y 2
2 = d2B2

i X
2 − 4b(aB2

i + cX2).

In the following table, we provide details of the computations.

[a, b, c, d] B0 C0 [i]
[
i, A′X4 + B′X2 + C ′, [X , Y ]

]

[1, 1, 1, 1] 0.0052038 5 [2]
[
2, 256X4 − 1120X2 − 144, []

]

[1, 1, 1, 3] 0.3587572 2 [1]
[
1, 40X4 − 27X2 − 4, [[1, −3] , [−1, −3]]

]

[1, 1, 2, 2] 0.0052038 4 [2]
[
2, 1088X4 − 1016X2 − 144, []

]

[1, 2, 1, 2] 0.1819805 3 [2]
[
2, 1088X4 − 2168X2 − 288, []

]

[2, 1, 1, 2] 0.1819805 3 [] []

[1, 1, 2, 4] 0.1819805 2 [1]
[
1, 64X4 − 24X2 − 4, [[1, 6] , [−1, 6]]

]

[1, 2, 1, 4] 0.2928932 3 [1]
[
1, 64X4 − 56X2 − 8, [[1, 0] , [−1, 0]]

]

[2, 1, 1, 4] 0.2928932 3 [1]
[
1, 96X4 − 52X2 − 8, [[1,−6] , [−1,−6]]

]

[1, 1, 5, 5] 0.0052038 4 [1]
[
1, 40X4 − 27X2 − 4, [[1, −3] , [−1, −3]]

]

[1, 5, 1, 5] 0.1161165 4 [1]
[
1, 40X4 − 155X2 − 20, [[2, 0] , [−2, 0]]

]

[5, 1, 1, 5] 0.1161165 4 [1]
[
1, 168X4 − 139X2 − 20, [[1,−3] , [−1,−3]]

]

[1, 2, 3, 6] 0.1819805 2 [1]
[
1, 96X4 − 52X2 − 8, [[1,−6] , [−1,−6]]

]

[1, 3, 2, 6] 0.3587572 2 [1]
[
1, 96X4 − 84X2 − 12, [[1, 0] , [−1, 0]]

]

[2, 1, 3, 6] 0.1819805 2 [1]
[
1, 192X4 − 40X2 − 8, [[1, 12] , [−1, 12]]

]

[2, 3, 1, 6] 0.0606601 4 [1]
[
1, 192X4 − 168X2 − 24, [[1, 0] , [−1, 0]]

]

[3, 1, 2, 6] 0.3587572 2 [1]
[
1, 224X4 − 68X2 − 12, [[1,−12] , [−1,−12]]

]

[3, 2, 1, 6] 0.0606601 4 [1]
[
1, 224X4 − 164X2 − 24, [[1, 6] , [−1, 6]]

]

The first column gives the tuples (a, b, c, d) ∈ S, the second column represents approx-
imated lower bounds on B ′

0s, the third column has upper bounds on i ′s represented by C0,
in the fourth column we provide lists containing the remaining values of i ′s not eliminated
by argument (I), and in the last column we have lists containing i , the right hand side of
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the quartic polynomial Y 2 = A′X4 + B ′X2 + C ′ defining genus 1 curve and the integral
solutions (the second coordinate is only up to sign, for us, only the first coordinate is inter-
esting since that gives Bj+m). For example, in case of (a, b, c, d) = (1, 2, 3, 6) we have that
B0 ≈ 0.1819805 and C0 = 2. That is i ≤ 2. Applying argument (I) we can eliminate i = 2.
Hence, it remains to study the case with i = 1. Here, we get that the only integral solutions
are the ones with X = ±1. Since X = Bj+m , the only possibility is Bj+m = 1. The last step
is the solution of the quadratic equation

12 + 2 · B2
j + 3 · 12 = 6 · 1 · Bj · 1.

It follows that Bj is either 1 or 2, but 2 is not a balancing number. Therefore, the only solution
in this case is

(Bi , Bj , Bk) = (B1, B1, B1) = (1, 1, 1).

�	

3.2 Jacobsthal numbers andMarkoff–Rosenberger equations

If (P, Q) = (1,−2), then we deal with a special sequence in which we have that P < 2;
that is the sequence of Jacobsthal numbers {Jn}n≥0 = {Un(1,−2)}n≥0. Here, we have J0 =
0, J1 = 1 and

Jn = Jn−1 + 2Jn−2 if n ≥ 2.

It is also known that the next Jacobsthal number is also given by the recursion formula

Jn+1 = 2Jn + (−1)n .

We obtain that

D = 9, α = 2, β = −1.

Therefore, the closed-form of Jn is given by

2n − (−1)n

3
.

Based on the above closed-form equation wemay provide bounds for Jn , these are as follows

2n−1

3
≤ Jn ≤ 2n−1, n ≥ 1. (3.2)

Similarly, these bounds are only specific to the general term Jn . Here, we prove the following
statement.

Theorem 3.2 If (x, y, z) = (Ji , J j , Jk) is a solution of equation

a J 2i + bJ 2j + cJ 2k = d Ji J j Jk (3.3)

and (a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 5, 5), (1, 2, 3, 6)},
then the complete list of solutions is given by
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(a, b, c, d) Solutions

(1, 1, 1, 1) {(3, 3, 3)}
(1, 1, 1, 3) {(1, 1, 1)}
(1, 1, 2, 2) {}
(1, 1, 2, 4) {(1, 1, 1), (1, 3, 1), (1, 3, 5), (3, 1, 1), (3, 1, 5), (3, 11, 1), (11, 3, 1)}
(1, 1, 5, 5) {(1, 3, 1), (3, 1, 1)}
(1, 2, 3, 6) {(1, 1, 1), (5, 1, 1)}

Proof Since P < 2, we cannot directly use the results given in Theorem 2.1. But, since
β = −1, α = 2 and

√
D = 3, we may follow the steps of the proof of Theorem 2.1 with the

use of the inequalities given in (3.2). Hence, we obtain that

B0 = min
I∈Z

∣∣∣∣2
I − d

3c

∣∣∣∣

and
∣∣∣∣2

k−i− j − d

3c

∣∣∣∣ ≤
(
9(a + b)

2c
+ d

c
+ 1

)
2−i . (3.4)

In fact, in some cases we obtain that B0 = 0.
The case (a, b, c, d) = (1, 1, 1, 1). Here, we obtain that B0 ≈ 0.0833333 and the bound

for i is 7. Applying the argument given at (I) it turns out that all values can be eliminated
except i = 3. If i = 3, then we compute the possible values of k − j from inequality (3.4).
We have that k − j ∈ {0, 1, 2, 3}. If k − j ∈ {1, 2}, then applying (II) with p = 3 works and
in case of k − j = 3 we use p = 11 to show that there is no solution. The remaining case is
related to k − j = 0. We obtain the equation

32 + J 2j + J 2j = 3J j J j .

It follows that J j = Jk = 3, so the solution is given by (Ji , J j , Jk) = (3, 3, 3).
The case (a, b, c, d) = (1, 1, 1, 3). In this case in (3.4) we have |2k−i− j − 1| and this

expression is 0 if k − i − j = 0. Therefore, we need to study the equation

(2i − (−1)i )2 + (2 j − (−1) j )2 + (2i+ j − (−1)i+ j )2

= (2i − (−1)i ) · (2 j − (−1) j ) · (2i+ j − (−1)i+ j ).

By symmetry we may assume that i ≤ j . The small solutions with 0 ≤ i ≤ j ≤ 2 can be
enumerated easily. Since we consider solutions with i, j > 0, we omit (i, j) = (0, 0). The
other solution is given by (i, j) = (1, 1). Hence, we get that (Ji , J j , Jk) = (1, 1, 1). If i = 2,
then it follows that with modulo 7 there is no solution. If i > 2, then we work modulo 8 to
show that no solution exists. If k−i− j �= 0, thenwe obtain that B0 = 1.As a consequencewe
have that i ∈ {1, 2}. We may exclude the cases i = 1, 2 and k − j = 2 modulo 5. In a similar
way, working modulo 7 we eliminate the cases i = 1, k − j = 3 and i = 2, k − j = 3, 4.
The remaining cases are given by i ∈ {1, 2}, k − j ∈ {0, 1}. If i = 1, 2, k − j = 0, then it
easily follows that (1, 1, 1) is the only solution. If i = 1, 2, k − j = 1, then the equation is

1 + J 2j + J 2j+1 = 3J j J j+1.

Since J j+1 = 2J j + (−1) j , the above equation can be written as

J 2j − (−1) j J j − 2 = 0.
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Thus, the only possibilities are given by J j ∈ {±1,±2}. Again, the only solution we get is
(1, 1, 1).

The case (a, b, c, d) = (1, 1, 2, 2). Here, we compute the bounds for i in the cases
(a, b, c, d) = (1, 1, 2, 2), (1, 2, 1, 2), (2, 1, 1, 2). Simply argument (I) is enough to show
that there exists no solution.

The case (a, b, c, d) = (1, 1, 2, 4). The bound for i is 4 and by (I) we can eliminate the
case i = 4 when the order of the coefficients is (1, 1, 2, 4). Congruence arguments (modulo
3 or 7) work if (i, k − j) ∈ {(1, 2), (1, 3), (2, 2), (2, 3)}. The remaining cases are

(i, k − j) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (3, 3)}.
From (i, k − j) = (1, 0), (2, 0), (3, 0) we obtain the solutions (by solving quadratic equa-
tions) (1, 1, 1) and (3, 1, 1). If (i, k− j) = (1, 1), (2, 1), then we get J 2j +4(−1) j J j +3 = 0.
Hence, J j = 1 or 3. So we obtain the solutions (1, 1, 1), (1, 3, 1), (1, 3, 5). In case of
(i, k − j) = (3, 1) we obtain 15J 2j + 4(−1) j J j − 11 = 0. Thus, we have the solution
(3, 1, 1). By applying the rule Jn+1 = 2Jn + (−1)n two or three times we can reduce the
problems (i, k − j) = (3, 2), (3, 3) to quadratic equations. The formulas are getting more
involved, for example if (i, k − j) = (3, 2) we have

9 + J 2j + 2(4J j + 2(−1) j + (−1) j+1)2 = 12J j (4J j + 2(−1) j + (−1) j+1).

In this case we get that J j = 1. In a very similar way, we handle the cases with the tuples
(1, 2, 1, 4) and (2, 1, 1, 4).

The case (a, b, c, d) = (1, 1, 5, 5).Here, we need to deal with the tuples (1, 1, 5, 5), (1, 5,
1, 5) and (5, 1, 1, 5). The bounds for i are given by 3, 6 and 6, respectively. Since the steps
are similar as we have applied in the previous cases, we omit the details.

The case (a, b, c, d) = (1, 2, 3, 6).We only provide some data related to the computation.
Let us start with the bounds:

Tuple Bound for i Special case

(1, 2, 3, 6) 4 –
(1, 3, 2, 6) 2 k − i − j = 0
(2, 1, 3, 6) 4 -
(2, 3, 1, 6) 2 k − i − j = 1
(3, 1, 2, 6) 2 k − i − j = 0
(3, 2, 1, 6) 2 k − i − j = 1

As beforewe apply the arguments given by (I) and (II) and the identity Jn+1 = 2Jn+(−1)n

to resolve all the possible cases. The only new case that has not appeared yet is k− i − j = 1.
If we take the tuple (2, 3, 1, 6), then we obtain

2J 2i + 3J 2j + J 2i+ j+1 − 6Ji J j Ji+ j+1 = 0, (3.5)

or

2(2i − (−1)i )2 + 3(2 j − (−1) j )2 + (2i+ j+1 − (−1)i+ j+1)2

= 2(2i − (−1)i ) · (2 j − (−1) j ) · (2i+ j+1 − (−1)i+ j+1). (3.6)

With respect to the values of i and j we consider the following cases (assuming that 1 ≤ i ≤
j ≤ k):
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• If i and j are both even, i.e. i = 2t and j = 2r for all positive integers t, r ≥ 1, then
equation (3.6) becomes

E1=2(4t−1)2+3(4r −1)2+(2 · 4t+r +1)2−2(4t−1) · (4r − 1) · (2 · 4t+r + 1) = 0.

But E1 ≡ 4 (mod 8) for all t, r ≥ 1, which leads to a contradiction. Moreover, since i
and j are both even with i ≥ 2 and j ≥ 2, then all the even values of i and j are excluded.

• If i and j are both odd, i.e. i = 2t + 1 and j = 2r + 1 for all positive integers t, r ≥ 1,
then equation (3.6) implies that

E2 = 2(2 · 4t + 1)2 + 3(2 · 4r + 1)2 + (2 · 4t+r+1 + 1)2

−2(2 · 4t + 1) · (2 · 4r + 1) · (2 · 4t+r+1 + 1) = 0.

Similarly, E2 ≡ 4 (mod 8) for all t, r ≥ 1, and again we get a contradiction. Indeed, all
the odd values of i ≥ 3 and j ≥ 3 are excluded, and it remains only to check whether
equation (3.5) has solutions or not at the following cases: i = 1, j = 1; i = 1, j ≥ 3;
j = 1, i ≥ 3. In fact, since we assumed that 1 ≤ i ≤ j ≤ k, then the latter case can be
covered by checking the solvability of equation (3.5) at i = j = 1.

• If i is even and j is odd, i.e. i = 2t and j = 2r + 1 for all positive integers t, r ≥ 1, then
equation (3.6) leads to

E3 = 2(4t − 1)2 + 3(2 · 4r + 1)2 + (4t+r+1 − 1)2

−2(4t − 1) · (2 · 4r + 1) · (4t+r+1 − 1) = 0.

Again, we get a contradiction since E3 ≡ 4 (mod 8) for all t, r ≥ 1. Here, we excluded
all the even values of i ≥ 2 and odd values of j ≥ 3, and it remains to check whether
equation (3.5) has solutions or not only at j = 1, i ≥ 2. Similarly, this can be covered
by studying the solutions of equation (3.5) only at i = j = 1.

• Finally, if i is odd and j is even, i.e. i = 2t + 1 and j = 2r for all positive integers
t, r ≥ 1, then similarly we have

E4 = 2(2 · 4t + 1)2 + 3(4r − 1)2 + (4t+r+1 − 1)2

−2(2 · 4t + 1) · (4r − 1) · (4t+r+1 − 1) = 0,

and E4 ≡ 4 (mod 8) for all t, r ≥ 1, which gives a contradiction. It is clear that all
the odd values of i ≥ 3 and even values of j ≥ 2 are excluded, and we need to check
whether equation (3.5) has solutions or not only at i = 1, j ≥ 2.

From these cases we conclude that it only remains to study the solutions of equation (3.5) at
i = 1 and all the integers of j with j ≥ 1. This can be done by direct substitution and using
argument (III) as follows. It is clear that we have k = i + j + 1 = j + 2 and

2 + 3J 2j + J 2j+2 − 6J j J j+2 = 0 for j ≥ 1. (3.7)

• If j = 1, then we have that −4 = 2 + 3J 21 + J 23 − 6J1 J3 = 0, which is impossible.
• If j = 2, then we get the solution (i, j, k) = (1, 2, 4). Hence, equation (3.5) has the

solution (Ji , J j , Ji+ j+1) = (Ji , J j , Jk) = (J1, J2, J4) = (1, 1, 5).
• If j ≥ 3, we can show that equation (3.5) has no more solutions by showing that

2 + 3J 2j + J 2j+2 − 6J j J j+2 < 0 for j ≥ 3.

Indeed, after substituting the Jacobsthal numbers formula J j = J j−1 + 2J j−2 in the left
hand side of equation (3.7) a few times we get that

2 + 3J 2j + J 2j+2 − 6J j J j+2 = 2 − 2J 2j−1 − 24J j−1 J j−2 − 24J 2j−2 < 0,
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for j ≥ 3, and this contradicts equation (3.7).

Therefore, by permuting the components of the solution (1, 1, 5) to be a solution of equation
(3.3) at the tuple (1, 2, 3, 6) we get the solution (5, 1, 1). �	
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