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Sequences related to square and cube zig-zag shapes

László Németh1 , László Szalay2

Inst. of Informatics and Mathematics, University of Sopron, Hungary

The full version of this work partly can be found in [8] and partly will be published elsewhere.

Abstract

Considering a so-called square k-zig-zag shape as a part of the regular square grid as a
k-zig-zag digraph, we give values to its vertices according to the number of the shortest paths
from a base vertex. It provides several integer sequences, whose higher-order homogeneous
recurrences are determined by the help of a special matrix recurrence. We also define a
special zig-zag shape based on the spatial cube grid, and we give recurrence relation for one
of their digraph walk.

1 Introduction

The present extended abstract summarizes the studies of diagonal and zig-zag paths on a particular
k+ 1 wide, infinite part of the usual square lattice, and along these paths we determine linear recurrence
sequences that are mostly defined in the On-Line Encyclopedia of Integer Sequences (OEIS, [9]) without
combinatorial interpretations. In this manner our investigation, among others, gives them geometrical
and combinatorial background. The consideration of zig-zag shapes is not an isolated challenge. For
example, Baryshnikov and Romik [2] examined the so-called Young diagrams, which are similar to our
construction, and defined a kind of ‘zig-zag’ numbers by the help of the alternating permutations. Stanley
[10] published a survey in which he dealt with the ‘zig-zag’ shapes and the alternating permutations.
Recently, Ahmad et al. [1] studied some graph-theoretic properties of special zig-zag polyomino chains.

The authors proved in [3, 6] that all the integer linear homogeneous recurrence sequences {fi}i≥0
defined by

fi = αfi−1 ± fi−2, (i ≥ 2),

where α ∈ N, α ≥ 2, and f0 < f1 are positive integers with gcd(f0, f1) = 1, appear along corresponding
zig-zag paths in the hyperbolic Pascal triangle {4, 5}. Moreover, in a special case the Fibonacci sequence
appears, as well. This interesting result also inspired us to examine zig-zag paths on certain parts of
the Euclidean square mosaic.

Consider the Euclidean square lattice and take k consecutive pieces of squares. This is the 0th layer
of the k–zig-zag shape. The upper corners are the 1st, 2nd, . . ., kth and (k + 1)st vertices according to
Figure 1. Extend this by an extra 0th vertex, which is the base vertex. We color it by yellow in the
figures, and we join it to the 1st vertex by an extra edge. We denote the vertices of the 0th line by
small boxes in Figure 1. Now move the 0the layer to reach the right-down position in the square lattice
to obtain the 1st layer, and repeat this procedure with the latest layer infinitely many times. Thus, we
define the square k–zig-zag shape or graph, where k ≥ 1 is the size of the array. Finally, we label the
vertices such that a label gives the number of different shortest paths from the base vertex. Figure 2
illustrates the first few layers of the square 4–zig-zag digraph, the vertices are denoted by shaded boxes
with their label values and the directed edges are the black arrows. (Certain black arrows are re-colored
by red for some reason. There are also particular blue arrows in the Figure; their role will be discussed

1Email: nemeth.laszlo@uni-sopron.hu. Research of L. N. supported by MEC R 21 141018.
2Email: szalay.laszlo@uni-sopron.hu.
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later.) Let ai,j denote the label of the vertex located in ith row and jth position (0 ≤ j ≤ k + 1, 0 ≤ i).
Clearly, the fundamental rule of the construction is given by

ai,j =





1, if i = 0;
ai−1,1, if j = 0, 1 ≤ i;
ai,j−1 + ai−1,j+1, if 1 ≤ j ≤ k, 1 ≤ i;
ai,k, if j = k + 1, 1 ≤ i.

(1)

1

10

2

2

3

3

...

...

k

k k+1

Figure 1: Zig-zag shape

For fixed k ≥ 1 and given 0 ≤ j ≤ k + 1, let A(k)
j be the sequence defined by A(k)

j = (ai,j)∞i=0. The
sequence A(k)

j is the jth right-down diagonal sequence of the square k–zig-zag shape. In Figure 2, the
blue arrows represent the sequence A(4)

1 . We found A
(k)
0 = (1, A(k)

1 ) and A
(k)
k = A

(k)
k+1.

Figure 2: Square 4–zig-zag digraph (k = 4)

Let Z(k)
j , j ∈ {0, 1, . . . , k} be the jth zig-zag sequence of the square k–zig-zag shape, where Z(k)

j is
the merged sequence of A(k)

j and A
(k)
j+1. (In Figure 2, the red arrows represent the zig-zag sequence

Z
(4)
3 .) More precisely, Z(k)

j = (zi,j)∞i=0, where

zi,j =
{
aℓ,j , if i = 2ℓ;
aℓ,j+1, if i = 2ℓ+ 1.

(2)

Since Z(k)
0 and Z

(k)
k are the ‘double’ of A(k)

0 and A
(k)
k , respectively, usually we examine sequences for

j ∈ {1, 2, . . . , k − 1}.
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Now we record the two main theorems of this paper. The second one is a simple corollary of the first
one.

Theorem 1 (Main theorem). Given k ≥ 1. Then all the right-down diagonal sequences A(k)
j for

j ∈ {0, 1, . . . , k, k + 1} have the same (
⌊

k
2

⌋
+ 1)-th order homogeneous linear recurrence relation

an,j =
⌊ k

2 ⌋∑

i=0
(−1)i

(
k + 1 − i

i+ 1

)
an−1−i,j , n ≥

⌊
k

2

⌋
+ 1.

Theorem 2. Fixing k ≥ 1, the zig-zag sequences Z(k)
j for j ∈ {0, 1, . . . , k} satisfy a (2

⌊
k
2

⌋
+ 2)-th order

homogeneous linear recurrence relation given by

zn,j =
⌊ k

2 ⌋∑

i=0
(−1)i

(
k + 1 − i

i+ 1

)
zn−1−2i,j , n ≥ 2

⌊
k

2

⌋
+ 2.

2 Recurrence relations of the square zig-zag shapes

We find that any item an,j , (n ≥ 1) is the sum of the certain items of (n− 1)st row. More precisely, if
0 < j < k + 1, then

an,j = an−1,j+1 + an,j−1 = an−1,j+1 + an−1,j + an,j−2 = · · · =
j+1∑

ℓ=1
an−1,ℓ. (3)

Consider (3) for all j ∈ {1, 2, . . . , k + 1} we obtain the system

vn = M · vn−1, n ≥ 1, (4)

where

vn =




an,1
an,2
an,3

...
an,k

an,k+1




, v0 =




1
1
1
...
1
1




, and M(k+1)×(k+1) =




1 1 0 0 · · · 0 0
1 1 1 0 · · · 0 0
1 1 1 1 · · · 0 0
1 1 1 1 · · · 0 0
...

...
...

... . . . ...
...

1 1 1 1 · · · 1 1
1 1 1 1 · · · 1 1




.

We know from [5] and [7] that the characteristic polynomial of any recurrence sequence (r) defined
by the linear combination of the recurrence sequences (aj) = (ai,j)i≥0 of system (4), moreover the
characteristic polynomial of the coefficient matrix M of system (4), coincide. Consequently, we have
to determine the characteristic polynomial pk(x) of M, and then pk(x) yields the common recurrence
relation of the sequences {aj} and their linear combinations.

Since
pk(x) = |xI − M|,

where I is the appropriate unit matrix, we obtain

p0(x) = x− 1,

p1(x) =
∣∣∣∣∣
x− 1 −1
−1 x− 1

∣∣∣∣∣ = x2 − 2x,
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and for pk(x) some calculation (for details see [8]) we have the binary recurrence relation
pk(x) = x · pk−1(x) − x · pk−2(x), k ≥ 2. (5)

Because each recurrence coefficient in (5) is one of ±x, the factorization of pk(x) contains a factor xm

for some positive integer m. The next theorem provides, among others, the precise exponent m in the
factorization of pk(x).
Theorem 3. The characteristic polynomials pk(x) can be given by

pk(x) = x⌈ k
2 ⌉

⌊ k
2 ⌋+1∑

i=0
(−1)i

(
k + 2 − i

i

)
x⌊ k

2 ⌋+1−i, k ≥ 0.

By the help of Theorem 3 we are ready to give the recurrences of the right-down diagonal sequences
A

(k)
j given Theorem 1.

2.1 Sum of rows, columns, and left-down diagonal sequences

Let R(k) = (r(k)
n ) be the sum sequence of the values of the nth row of square k–zig-zag shape (see

Figure 3). Considering the partial sum relation (3) we obtain

r(k)
n =

k+1∑

j=0
an,j = an,0 + an+1,k.

So, the recurrence sequence r(k)
n is the linear combination of sequences A(k)

n , therefore they have the
same characteristic polynomial and the same recurrence relation.

Figure 3: Sum of rows, columns, and left-down diagonal sequences

Let C(k) = (c(k)
n ) be the sum sequence of columns. As an+1,0 = an,1 = an,0 + an−1,2 = an,0 + an−1,1 +

an−2,3 = · · · = ∑min{n,k+1}−1
j=0 an−j,j , then

c(k)
n =

min{n,k+1}∑

j=0
an−j,j =

{
an+1,0, if n ≤ k;
an+1,0 + an−k−1,k+1, if n > k.
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Let D(k) = (d(k)
n ) be the left-down diagonal sequence, where

dn =





ℓ≤n
2 , 2ℓ≤k∑

ℓ=0
an

2−ℓ,2ℓ, if n is even;

ℓ≤n
2 , 2ℓ≤k+1∑

ℓ=0
an

2−ℓ,2ℓ+1, if n is odd.

Since all the A(k)
j sequence satisfy the same recurrence relation, then C(k) and D(k) are so.

3 Spacial zig-zag cube graphs

Now, we define a chain of cubes as an infinite part of the cube grid in the 3-dimensional space. Given a
cube as the first item of the chain. Chose one of its vertices as a base vertex of our construction. (This
vertex is denoted by a0 in the righ-hand side of Figure 4.) Let the second cube be the cube having a
common face with the first and having the base vertex, then let the third be the cube having a common
face with the second and a common edge with the first. Let the fourth one have a common face, edge
and only one vertex with the third, second and first one, respectively, and so on. That way, generally,
the nth cube has exactly one common face, edge, vertex with the (n− 1)th, (n− 2)th, (n− 3)th cube
of the chain, respectively. Now we associate the vertices with positive integer, which gives the numbers
of the shortest ways to this vertex from the base vertex of the first cube. For the first eight cubes and
the values of vertices of the chain, see the left-hand-side of Figure 4.
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6 18

2

c4

c7 b8
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a0 a1

b4 b6
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1
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139

62

124

25

a5

a7

a8

a9

d3

d4

d5

d6

d7

d8

Figure 4: A cube zig-zag shape

According to the right-hand side of Figure 4 we can define zig-zag sequences ai, bi, ci and di associated
to the vertices of the cube chain. When we reconsider the vertices, edges and their sequences to a
directed graph form, we gain Figure 5. Solving the system of recurrence equations, we obtain Theorem 4.

Theorem 4. The sequence (ai)∞i=0 satisfies the fourth-order linear homogeneous recurrence relation

ai+1 = ai + ai−1 + 3ai−2 + ai−3, (i ≥ 3)

with initial values a0 = 1, a1 = 1, a2 = 2, a3 = 6.

4 Conclusions

With a special directed zig-zag graph defined on a part of the square grid we generally determined the
recurrences of some special directional sequences associated to the graph. We give new combinatorial
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Figure 5: Digraph form of the system of recurrences

interpretations to more then forty sequences appearing in OEIS [9]. For example, if k = 4, then
A

(4)
1 = A080937 A(4)

2 = A094790, A(4)
3 = A094789, A(4)

4 = A005021, Z(4)
2 = A006053, (d(4)

2n ) = A052975,
(d(4)

2n+1) = A060557, D(4) = A028495, and in case of cube zig-zag sequences: A214663, A232162, A232164,
A232165.
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