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Lichtenstein’s integral equation for the Stokes problem via
conformal mapping 1

Sándor Zsuppán
Berzsenyi Dániel Evangélikus (Lı́ceum) Gimnázium

zsuppans@gmail.com

ÖSSZEFOGLALÓ. Sı́kbeli egyszeresen összefüggő tartományon kitűzött Stokes feladattal
kapcsolatos Lichtenstein peremintegrál egyenletet vizsgáljuk a tartomány egységkörre való
konform leképezésének segı́tségével. Az elméleti eredmények mellett néhány numerikus
kı́sérlet tapasztalatait is ismertetjük.

ABSTRACT. We investigate Lichtenstein’s boundary integral equation method for the Stokes
problem on a planar simply connected domain by transforming it onto the unit disc via con-
formal mapping. We also present some simple numerical experiments utilizing the conformal
mapping as a prerequisite.

1 Introduction

Lichtenstein’s integral equation [2] transforms the equations of the stationary Stokes problem
and also the equation of linear elasticity into a boundary integral equation for the divergence of
the displacement field or for the pressure in case of Stokes flows. The kernel in this boundary
integral equation is connected to Green’s function for Dirichlet boundary value problems for
the Laplacian on the domain. In this article we use conformal mapping in order to transform
the problem onto the unit disc and we obtain an equivalent of Lichtenstein’s integral equation
with a kernel connected to the conformal mapping instead of Green’s function. Following the
theoretical derivation of the boundary integral equation on the unit circle we also examine a
simple numerical method for solving it, which we illustrate with some concrete examples.

2 Lichtenstein’s integral equation on the unit disc

Let Ω be a simply connected planar domain with boundary denoted by ∂Ω. Consider the fol-
lowing stationary Stokes problem

∆wU(w) = ∇wP (w), for w ∈ Ω, (1)
divw U(w) = σP (w), for w ∈ Ω, (2)

U(w) = U0(w), for w ∈ ∂Ω, (3)

1KULCSSZAVAK. Stokes feladat, peremintegrál módszer.
KEYWORDS. Stokes problem, boundary integral equation.

https://doi.org/10.20312/dim.2022.09
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for the unknown functions U and P, where σ ∈ R is a real parameter. This problem is connected
to linear elasticity (parameter σ connected to the Lamé constants) or to the Cosserat eigenvalue
problem (if setting U0 = 0 and σ denoting an eigenvalue) or also to Stokes flows if σ = 0 and
U , P describe flow velocity and pressure, respectively. Therefore we refer to these variables in
this note from here on as velocity and pressure. By the divergence theorem the boundary values
U0 of the velocity have to fulfil the compatibility condition∫

∂Ω

U0n = σ

∫
Ω

P, (4)

where n denotes the unit outward pointing normal vector to the boundary of Ω. This means
especially in case of Stokes flows (σ = 0) that the pressure function P is determined by (1)-(3)
only up to an additive constant. Comparing the divergence of (1) with the Laplacian of (2) yields
that in case σ ̸= 1 the pressure function P is harmonic in Ω, which observation is important for
the considerations of the present note.

If we think Ω as a subset of the complex plane, then the velocity function U = (U1;U2)
can be identified by the complex valued function U = U1 + iU2. The divergence of U and the
gradient of P become divw U(w) = 2Re {∂wU(w)} and ∇wP (w) = 2∂wP (w), respectively,
where ∂w and ∂w denote the Wirtinger derivatives.

According to the Riemann mapping theorem there is a unique conformal map g : D → Ω
with g(0) = w0 and g′(0) > 0 for each interior point w0 ∈ Ω, where D denotes the unit disc, see
e.g. [3]. If ∂Ω is smooth enough then g extends continuously to ∂D. Moreover, the smoothness
properties of the boundary ∂Ω are related to the boundary behaviour of the conformal mapping
on ∂D, c.f. [4].

Using this mapping we can transform the problem (1)-(3) to the unit disc.

∆zu(z) = g′(z)∇zp(z), for z ∈ D (5)

2Re

{
1

g′(z)
∂zu(z)

}
= σp(z), for z ∈ D (6)

u(z) = u0(z), for z ∈ ∂D, (7)

where the new unknown functions are u(z) = U(g(z)) and p(z) = P (g(z)) with w = g(z). The
transformed pressure function p is also harmonic on the unit disc for σ ̸= 1 because transfor-
mations by conformal mappings preserve harmonicity. Using that the unit outer normal to ∂Ω
at w = g(z) is n(g(z)) = zg′(z)

|g′(z)| and that |dw| = |g′(z)|dz there follows
∫
∂Ω

U0(w)n(w)|dw| =
Re
∫
∂D u0(z)zg′(z)|dz|, which means that the compatibility condition (4) transforms as

Re

∫
∂D

u0(z)zg′(z)|dz| = σ

∫
D
p|g′|2. (8)

In [2] a method is proposed for transforming the problem (1)-(3) into a boundary integral equa-
tion on ∂Ω. In the present paper we adapt this method for the transformed problem (5)-(7).
Because for σ ̸= 1 the transformed pressure function p is harmonic on the unit disc, we can use
in this case the Poisson integral formula

p(z) =

∫
∂D

1− |z|2

|z − ζ|2
ϕ(ζ)

|dζ|
2π

for z ∈ D, (9)

where ϕ denotes the unknown boundary value of the pressure function on the unit circle. By
the harmonicity of p from (5) there follows

∆z

(
u(z)− 1

2
g(z)p(z)

)
= 0
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using ∂zg(z) = 0, i.e. the function u − 1
2
gp is also harmonic on the unit disc. Again by the

Poisson integral formula there follows

u(z)− 1

2
g(z)p(z) =

∫
∂D

1− |z|2

|z − ζ|2

(
u0(ζ)−

1

2
g(ζ)ϕ(ζ)

)
|dζ|
2π

for z ∈ D.

Multiplying (9) with g(z) and combining it with the previous equation we obtain for z ∈ D

u(z) =
1

2

∫
∂D

1− |z|2

|z − ζ|2
(g(z)− g(ζ))ϕ(ζ)

|dζ|
2π

+

∫
∂D

1− |z|2

|z − ζ|2
u0(ζ)

|dζ|
2π

. (10)

This equation expresses the values of the function u in the interior of the unit disc using its
known boundary values and also the unknown boundary values ϕ of the pressure function.
Substituting (10) into (6) yields for z ∈ D:

Re

{∫
∂D

g(ζ)− g(z)

g′(z)(ζ − z)
· ζ

ζ − z
ϕ(ζ)− 2ζ

g′(z)(ζ − z)2
u0(ζ)

|dζ|
2π

}
= (1− σ)p(z). (11)

Here we used the derivatives of the involved kernels:

∂z

(
1− |z|2

|z − ζ|2
(g(z)− g(ζ))

)
=

1− |z|2

|z − ζ|2
g′(z) +

g(z)− g(ζ)

z − ζ
· ζ

z − ζ
and

∂z

(
1− |z|2

|z − ζ|2

)
=

ζ

(z − ζ)2
for z ∈ D.

In order to obtain a boundary integral equation for the unknown boundary values ϕ we calculate
the limit z → ∂D in (11). For the first term in the integral in (11) we have the decomposition

Re

∫
∂D

g(ζ)− g(z)

g′(z)(ζ − z)
· ζ

ζ − z
ϕ(ζ)

|dζ|
2π

=

∫
∂D

L(z, ζ)ϕ(ζ)
|dζ|
2π

+Re

∫
∂D

ζ

ζ − z
ϕ(ζ)

|dζ|
2π

, (12)

where L(z, ζ) denotes the kernel

L(z, ζ) = Re

((
g(ζ)− g(z)

g′(z)(ζ − z)
− 1

)
· ζ

ζ − z

)
. (13)

If the conformal mapping g is smooth enough in the sense that its second derivative is continu-
ous in the closed unit disc then the kernel (13) is also continuous in D and we obtain

L(z, ζ) =

Re
((

g(ζ)−g(z)
g′(z)(ζ−z)

− 1
)
· ζ
ζ−z

)
for z ̸= ζ,

Re
(

zg′′(z)
2g′(z)

)
for z = ζ,

(14)

for z, ζ ∈ ∂D.

Remark 1. The kernel (14) can be also expressed for z, ζ ∈ ∂D as

L(z, ζ) = Re

(
1

g′(z)

∞∑
m=2

amζ
m−1

m−2∑
k=0

(k + 1)(zζ)k

)

using the series expansion g(z) =
∑∞

m=0 amz
m of the conformal mapping.
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On the other hand by the properties of the kernel ζ
ζ−z

= 1
1−zζ

for z ∈ D, ζ ∈ ∂D and by (9)
we have

Re

{∫
∂D

ζ

ζ − z
ϕ(ζ)

|dζ|
2π

}
=

1

2
p(0) +

1

2
p(z)

for the second term in (12). Utilizing these equations we obtain from (11) the boundary integral
equation(

1

2
− σ

)
ϕ(z) = p(0) +

∫
∂D

L(z, ζ)ϕ(ζ)
|dζ|
2π

− lim
x→z

Re

∫
∂D

2ζ

g′(x)(ζ − x)2
u0(ζ)

|dζ|
2π

(15)

for z ∈ ∂D. By the mean value property
∫
∂D ϕ(ζ)

|dζ|
2π

= p(0) for the real valued harmonic
function p there follows(

1

2
− σ

)
ϕ(z) =

∫
∂D

(1 + L(z, ζ))ϕ(ζ)
|dζ|
2π

− lim
x→z

Re

∫
∂D

2ζ

g′(x)(ζ − x)2
u0(ζ)

|dζ|
2π

. (16)

This boundary integral equation can be used to obtain the unknown boundary values ϕ for
the pressure function p using the prescribed boundary data u0 for the velocity u. Then substitut-
ing the ϕ data into (11) and (9) we can calculate the velocity and pressure values at any interior
point of the unit disc. These are also the velocity and pressure values at the corresponding
conformal image of this interior point of the unit disc.

Remark 2. If we set the parameter σ = 0 then the pressure p is determined by the system
(5)-(7) only up to an additive constant. In order to assure uniqueness we have to prescribe the
value of the pressure in a point or we have to prescribe its integral over the domain to be some
constant (e.g. zero). That is, in case σ = 0 we can set for example p(0) = 0 in (15). In case
σ ̸= 0 then we have to use (16). If we set u0 = 0 and we consider (5)-(7) as an eigenvalue
problem then we also have the same uniqueness issue regarding the pressure p. In this case
σ = 0 is an eigenvalue with the constant pressure as eigenfunction (and u being any divergence
free velocity function.)

Remark 3. If the conformal mapping g is not smooth enough, i.e. it does not have continuous
second derivative in the closed unit disc, but if ∂Ω has a Dini-smooth corner of opening πα
with 0 < α ≤ 2 at the point g(ζ) for some ζ ∈ ∂D then according to Theorem 3.9. in [4] the
functions

g(z)− g(ζ)

(z − ζ)α
and

g′(z)

(z − ζ)α−1

are ̸= 0,∞ in a neighbourhood of ζ within the closed unit disc. Hence their quotient has a
finite angular limit for z → ζ . Considering the fact that this quotient is the reciprocal of the
Visser-Ostrowski quotient for the conformal mapping g (see equation (3) in Chapter 11 of [4]),
we obtain the limit

g(z)− g(ζ)

g′(z)(z − ζ)
→ 1

α
for z → ζ.

We can use this for calculating the limit in (11) when z → D, i.e. for obtaining the boundary
integral equation from (11). It turns out that instead of (13) we have to use the kernel

L(z, ζ) = Re

(
g(ζ)− g(z)

g′(z)(ζ − z)
− 1

α

)
· ζ

ζ − z
. (17)

In the smooth case we have α = 1 and therefore (17) reduce to (13).
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Remark 4. In [1] another integral equation for the transformed pressure on D was derived also
using the conformal mapping of the unit disc onto the problem domain, see Theorem 3 in [1].

Remark 5. In case of the polynomial mapping g(z) = a1z+ · · ·+anz
n setting u0 = 0 we have

the Cosserat eigenvalue problem for the image domain g(D) as discussed in the introduction.
Equation (16) simplifies to(

1

2
− σ

)
ϕ(z) = Re

{
1

g′(z)

n−1∑
k=1

(
n−k∑
ℓ=1

ak+ℓϕℓ

)
kzk−1

}
,

where ϕ(z) = 2Re
{∑∞

k=0 ϕkz
k
}

. This can be written in a block matrix form if we have the
Taylor series expansion 1

g′(z)
=
∑∞

k=0 bkz
k for the reciprocal of the derivative of the conformal

map. (
B 0
B′ 0

)(
A 0
0 0

)(
ϕ
ϕ′

)
= (1− 2σ)

(
ϕ
ϕ′

)
, (18)

where (ϕ, ϕ′) is the block vector composed from ϕ = (ϕ1, . . . , ϕn−1) and ϕ′ = (ϕn, ϕn+1, . . . ),
the two finite matrix blocks A,B ∈ C(n−1)×(n−1) are defined by

Ak,ℓ =

{
kak+ℓ if k + ℓ ≤ n,

0 otherwise ,
Bk,ℓ =

{
bk−ℓ, if k ≥ ℓ,

0, otherwise,

and the infinite matrix block B′ has the k-th row (bn+k−2, · · · , bk, 0, 0, · · · ) for k = 1, 2, . . . .
The block A is a Hankel matrix multiplied by a diagonal matrix and the block B is a Toeplitz
matrix, they are very similar to those investigated in [6, 7]. Because of this block structure (18)
can be decomposed into two parts:

• if ϕ = 0 and ϕ′ is a vector having only one non zero entry, then σ = 1
2

is the eigenvalue,

• if ϕ′ = 0, then the finite matrix eigenvalue problem BAϕ = (1 − 2σ)ϕ gives other
eigenvalues.

Another possibility for reducing the infinite matrix eigenvalue problem to a finite one is that
the reciprocal of the derivative of the conformal map is itself a polynomial, see [7]. In these
cases the domain Ω = g(D) is a quadrature domain meaning that integrals of holomorphic
functions over the domain reduce to a finite quadrature rule similar to the mean value property
of holomorphic functions on the unit disc.

Example 6. Exact solution of (16) is not possible for each conformal mapping only for the
simplest ones. For the univalent quadratic polynomial g(z) = z + az2, where |a| ≤ 1

2
, which

maps the unit disc onto a cardioid, one easily computes the kernel (13) as

L(z, ζ) = Re

(
aζ

1 + 2az

)
,

which yields ∫
∂D

L(z, ζ)ϕ(ζ)
|dζ|
2π

= Re

(
aϕ1

1 + 2az

)
,

where we have set the series expansion ϕ(z) = 2Re
∑∞

j=0 ϕjz
j . Prescribing the boundary

values u0(ζ) =
∑∞

j=0 u0,jζ
j +

∑∞
j=0 u0,−jζ

j
for the velocity and substituting these along with

σ = 0 into (15) yields

1

2
ϕ(z)− Re

aϕ1

1 + 2az
= −Re

2

1 + 2az

∞∑
j=0

u0,j+1(j + 1)zj.
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Using the fact, that the functions zj for j ∈ Z constitute a complete orthonormal system on ∂D
w.r.t. 1

2π
dt, there follows

ϕ1 + 2a2ϕ1 − 4(au0,1 − u0,2) = 0,

which has the solution

ϕ1 =
(au0,1 − u0,2)− 2a2(au0,1 − u0,2)

1
4
− |a|4

.

Now, that we have computed ϕ1 from the coefficients of the velocity boundary data and of the
conformal map, we also obtain the whole boundary function ϕ(z) of the pressure p as

ϕ(z) = Re
2aϕ1 − 4

∑∞
j=0 u0,j+1(j + 1)zj

1 + 2az
for z ∈ ∂D.

For example the velocity boundary values corresponding to u0(ζ) = −izg′(z) = −iζ − 2iaζ2

are tangential to the boundary of the cardioid in each point and therefore obviously fulfil the
compatibility condition (8). In this case we obtain the exact pressure boundary values as

ϕ(z) = −4
1− 4|a|2

1− 2|a|2
Im

1

1 + 2az
.

This can be utilized as a benchmark for numerical solutions of (16) for example.

Example 7. For the case of a cardioid from the previous example the eigenvalue problem (18)
reduces to

Re

{
a

1 + 2az
ϕ1

}
=

(
1

2
− σ

)
ϕ(z),

from which one has the eigenvalue 1
2

with infinite multiplicity and the two additional eigenval-
ues 1

2
± |a|2. Hence the Cosserat constant, that is the least positive Cosserat eigenvalue of the

cardioid is σ(g(D)) = 1
2
− |a|2, see also the corresponding example in Remark 12 of [7].

3 Numerical experiments
In this section we examine a simple numerical treatment of the boundary integral equation (16).
We set N ≥ 2 points zk = eitk (k = 0, 1, . . . , N − 1) on the unit circle so that their angles
satisfy 0 ≤ t1 < · · · < tN−1 < 2π. These points partition the unit circle in N disjoint arcs.
We denote the arc between the points zk and zk+1 by Ak, i.e. Ak = {z = eit | tk ≤ t ≤ tk+1},
where we set tN = t0 + 2π meaning zN = z0. We approximate the unknown function ϕ(z) on
∂D by a piecewise constant function on the arcs of the given partition of the unit circle, that is,
ϕ(z) = ϕℓ ∈ R for z ∈ Aℓ. We intend to calculate these approximate values by discretizing
(16), especially the integral with the kernel (13). It means that for each point zk ∈ D we
approximate by ∫

∂D

L(zk, ζ)ϕ(ζ)
|dζ|
2π

≈
N−1∑
ℓ=0

ϕ(zℓ)

∫
Aℓ

L(zk, ζ)
|dζ|
2π

= [Lϕ]k ,

where by a slight abuse of notation ϕ ∈ RN denotes the vector composed of the approximate
values of ϕ(z) on the arcs Aℓ (ℓ = 0, 1, . . . , N − 1) and L ∈ RN×N is the matrix composed of
the entries

Lk,ℓ =

∫
Aℓ

L(zk, ζ)
|dζ|
2π

. (19)
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These entries are calculated from the auxiliary information about the conformal mapping g by
numerically evaluating its defining integral (19) over the arc Aℓ. This auxiliary information
about the mapping g can be its Taylor expansion coefficients or its values at some points of the
arcs Aℓ. If the domain which g maps the unit disc on is a simple domain, then we know the exact
mapping function and its Taylor series coefficients, as for example in the cases of a cardioid or
a square. For more complicated domains we have to calculate the mapping numerically, see
e.g. [5] for the theoretically and also numerically important case of the Schwarz-Christoffel
mapping of the unit disc onto polygonal domains. Given the images g(zk) of each point zk in
the partition then we can use the trapezoid rule for example to approximate the integral over the
arc Aℓ in (19) as

Lk,ℓ ≈
L(zk, zℓ+1) + L(zk, zℓ)

2
· ∆tℓ
2π

.

Here the values L(zk, zℓ) are calculated utilizing (14), wherein for the approximate calculation
of the derivatives g′(zk) and g′′(zk) we can use some Taylor coefficients of g or if we are not
given any of them then we first compute them using for example discrete Fourier transform.

For the other integral in (16) involving the boundary data u0 there follows for z ∈ D that∫
∂D

ζ

(ζ − z)2
u0(ζ)

|dζ|
2π

=

∫
∂D

ζ

(1− zζ)2
u0(ζ)

|dζ|
2π

=
∞∑

m=1

u0,mmzm−1,

where u0(ζ) =
∑∞

m=−∞ u0,mζ
m again as in Example 6. Here the coefficients u0,m can be

again calculated from the boundary data u0(ζ) given in some discrete points on the unit circle
approximately by discrete Fourier transform for example. Having these coefficients for m =
1, 2, . . . , n we conclude

Mu0(zk) = Re lim
x→zk

∫
∂D

2ζ

g′(x)(ζ − x)2
u0(ζ)

|dζ|
2π

≈ Re
2

g′(zk)

n∑
m=1

u0,mmzm−1
k .

Combining the previous approximating terms we obtain the matrix equation

1

2
ϕ− Lϕ = −Mu0 (20)

with the matrices L,M ∈ RN×N defined by the equations above for ϕ ∈ RN instead of the
integral equation (16) for the function ϕ(z). The solution of (20) yields approximate bound-
ary values of the pressure, which can be substituted into (9) and (10) in order to compute the
pressure and velocity at any interior point of interest.

In the rest of this section we present some numerical experiments which are calculated by
the NumPy package for Python, see https://numpy.org/. For the calculations we used
the quadratic conformal mapping of the unit disc onto a cardioid as in the previous examples.

Example 8. The matrices L and 1
2
I−L are near singular practically for any number of partition

points on the unit circle. The condition number of the matrix 1
2
I − L in (20) is well behaved

only if the magnitude of the derivative of the conformal mapping is bounded from below on the
boundary, i.e. |g′(z)| > ϵ > 0. If |g′(z0)| is near zero on the boundary and this point is near to
a point in the partition then this condition number becomes very large and the solution of the
system (20) will be very sensitive for small changes in the input values. This is illustrated on the
Figure 1. Without suitable preconditioning in this ill-conditioned case the numerical solution
deviates from the exact solution in Example 6 as shown in Figure 2.

https://numpy.org/
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Figure 1: Condition number of 1
2
I − L

Figure 2: Comparison of the exact and approximate pressure boundary values

Example 9. The Cosserat constant, i.e. the least positive Cosserat eigenvalue, of the image
domain g(D) can be deduced from the maximum eigenvalue of the problem (15) (i.e. setting
u0 = 0), see also Remark 5 and Example 7. The eigenvalue structure of the matrix L is
practically independent of the partition size as the comparison of the middle and right diagrams
on Figure 3 shows. The vast majority of the eigenvalues is practically zero except for few which
are also several magnitude smaller than the maximal eigenvalue. If any of the partition points

Figure 3: Eigenvalues of L

is nearly a zero of the derivative of the conformal map then the numerical determination of the
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spectrum of L is also inaccurate: compare the left and middle diagrams on Figure 3. Therefore
this affects the numerical approximation of the Cosserat constant of the domain via the maximal
eigenvalue of the matrix L as shown on Figure 4.

Figure 4: Approximating the Cosserat constant of the cardioid
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