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A B S T R A C T   

Stakeholders and policymakers have been becoming more and more interested not just in the potential organic 
carbon (SOC) saturation level of soils but also in spatially explicit information on the degree of SOC deficit, which 
can support future policy and sustainable management strategies, and carbon sequestration-associated spatial 
planning. Thus the objective of our study was to develop a cubist-based pedotransfer function (PTF) for pre-
dicting and mapping the saturated SOC content of the topsoils (0–30 cm) in Hungary and then compare the 
resulting map with the actual SOC map to determine and assess the degree of SOC deficit. It was assumed that 
topsoils covered by permanent forests can be practically considered as saturated in SOC. Using the monitoring 
points of the Hungarian Soil Information and Monitoring System located in forests as reference soil profiles, we 
developed a cubist-based PTF. The transparent model structure provided by cubist allowed to show that not just 
the physicochemical properties of soils (e.g., texture, and pH) but also environmental conditions, such as 
topography (e.g., slope, altitude, and topographical position) and climate (e.g., long-term mean annual tem-
perature, and evaporation), characterizing landscape are important factors in predicting the level of SOC satu-
ration. Our results also pointed out that there is SOC deficit on large part of the country (~80%) showing high 
spatial variability. It was also revealed that the most considerable potential for additional SOC sequestration can 
be found related to soils with medium to high actual SOC content.   

1. Introduction 

Soil organic carbon (SOC) is widely known as a key property 
regarding fertility, soil health, and various ecosystem services. The SOC 
content may rapidly change in time and space, thus it varies in a wide 
range in soils due to environmental and anthropogenic conditions. 
However, the degree of possibly stabilized SOC is limited, which is often 
called saturation. There is an increasing demand on the determination, 
assessment and mapping of the potential saturation level of various soils 
as enrichment in SOC improves soil quality, provides an effective and 
economical solution for greenhouse gas control of the atmosphere (Lal, 
2004a, 2004b) and contributes to achieving land degradation neutrality 

(Keesstra et al., 2018; Stavi and Lal, 2015). Beyond the complex mo-
lecular interactions and processes between the mineral phase and 
organic matter content of the soil, which are mostly unknown (Inagaki 
et al., 2020), the term SOC saturation is suitable and applicable also for 
policymakers and stakeholders (O’Rourke et al., 2015). It, therefore, 
provides useful indicator for sustainable management. Accordingly, an 
adequate and proper map based database of potential SOC saturation is a 
necessity to take the four per mille (Minasny et al., 2017) objectives into 
practice. However, the theoretical saturation value of a certain soil is 
still not easy to determine, no universal prediction method is accepted 
(Sanderman et al., 2010). The difficulty is that many synergic and in-
dependent properties - such as climatic, geological, topographic, and 
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land use conditions of the field and the mineralogical and grain size 
distribution of the soil - affect SOC storage and saturation (Briedis et al., 
2018; Cotrufo et al., 2019; Fekete et al., 2021). 

The actual SOC content reflects the dynamic equilibrium between 
the organic matter input and mineralization by the microbiome, high-
lighting the role of environmental properties rather than organic matter 
composition (Schmidt et al., 2011). If the organic matter production 
differs by orders from mineralization, the SOC content changes rapidly. 
The inhibited mineralization by water saturation, for example, causes 
organic matter accumulation such as histic horizons even under defi-
cient biomass production (Aide et al., 2020). As under the above cir-
cumstances, SOC cannot be saturated, thus saturation concept should be 
limited only to mineral soils. Nevertheless, many mineral soils are also 
oversaturated based on different saturation models (Wiesmeier et al., 
2014). 

The stabilization of organic matter is thus related to its protection 
against microbial availability. This protection is reported as binding 
directly to the mineral surface (Chenu et al., 2019; Kögel-knabner et al., 
2008) or by the shelter effect of soil aggregates (Six et al., 2002). In early 
studies, the ratio of the fine fraction (particles < 20 or 50 µm) was 
considered as the primary driving force of potential SOC saturation 
(Hassink, 1997). Besides, measurements prove that there are differences 
among land uses and soil depth in the fine fraction related SOC content 
(Chen et al., 2019, 2018). On average, only half of the SOC was asso-
ciated with the fine fraction (Wiesmeier et al., 2014), thus Barré et al. 
(2017) stated that the SOC holding capacity of the fine fraction is 
irrelevant for the SOC saturation value of the bulk soil. The increasing 
number of investigations provided a wider dataset for identifying 
various indicators. In many studies, the mineral composition of the clay 
fraction was found to be the most important property determining the 
SOC concentration and, therefore, the saturation level. Especially the 
role of the sesquioxides or the extractable amount of aluminum was 
determined important (Rasmussen et al., 2018). In other studies, the 
specific surface area, the amount of exchangeable cations or the base 
saturation determined the SOC capacity mostly (Juhos et al., 2021). 

Nonetheless, these indicators do not take particulate organic matter 
(POM) into account. According to the traditional approach, POM is of 
raw plant residues without relevant mineral protection, thus does not 
contribute to the saturation. In sandy soils, however, POM is the main 
fraction of soil organic matter (SOM) (Hanegraaf et al., 2009) and may 
also persist in the long run (Witzgall et al., 2021). Moreover, the SOC 
stock increase due to forestation or tillage shift is mainly triggered by the 
increasing POM content (Cardinael et al., 2015; Chimento et al., 2016). 
Thus the theoretical concept of saturation can only hardly be interpreted 
directly into practice. However, some recent papers still keep the 
traditional approach considering only the mineral phase associated OM 
as sequestered and the indicator of saturation degree (Chen et al., 2018). 
For instance, Chen et al. (2019) estimated SOC storage potential for the 
bulk soil and limited the term “SOC saturation” only to the mineral 
phase associated OM. In the present study, SOC saturation is meant as 
the highest available SOC content of the bulk soil independently of pools 
(Barré et al., 2017; Chenu et al., 2019; Six et al., 2002). 

Nowadays, Barré et al. (2017) recommended two approaches for 
SOC saturation estimation: (i) predicting storage kinetics and estimate 
the final capacity value for a given land use scenario, and (ii) reference 
establishment predicting the highest SOC concentration. Both ap-
proaches are applicable only by using empirical observations of SOC 
content and storage and model-driven approaches. Thus, the application 
of the highest measured SOC content as the possible saturation limit is 
still an axiom. Barré et al. (2017) suggested the highest 10% of SOC 
contents for a given agroclimatic region under forest to be considered as 
the potential saturation value. However, the pedological and topo-
graphical heterogeneity for such an agroclimatic zone triggers low 
spatial representability of the highest 10% (Suleymanov et al., 2021). 
On the other hand, the created SOC saturation models are suitable only 
for those conditions which were considered during the model 

construction, thus the results cannot be extrapolated. Feng et al. (2013) 
suspected the linear regression SOC saturation models for large datasets 
being dubious due to the presence of unsaturated points and resulting in 
oversaturated predictions. Thus, both the measured data and model- 
driven approaches should be considered parallel to achieve the best 
SOC saturation prediction in a countrywide scale investigation. 

Since the late 1980s, pedotransfer functions (PTFs) have been 
developed to estimate soil properties, functions and services from other 
more easily and/or cheaply measurable soil properties to satisfy specific 
or complex demands on information relating to soils (Bouma, 1989; Van 
Looy et al., 2017). In the last few years, a number of novel approaches, 
techniques and thoughts have been adapted, for example, the applica-
tion of machine learning (ML) techniques in developing PTFs (Makó 
et al., 2017; Shiri et al., 2017; Xiangsheng et al., 2016). Data-driven 
predictive models given by ML algorithms has proved to be highly 
efficient, however, we should note that resulting data-driven models are 
hardly interpretable (i.e., not really transparent for users). A further 
novelty is to use not just soil properties as predictors in developing PTFs 
but also further environmental covariates (Gupta et al., 2021; Szabó 
et al., 2019) characterizing the soil forming factors. Besides, a number of 
papers also pointed out that if there is spatially exhaustive information 
on the predictors available, then PTFs can also be used for predictive 
mapping (Gupta et al., 2021; Tóth et al., 2017; Zhang et al., 2018). 
However, no map is error free (Heuvelink, 2018) and thus the quanti-
fication and assessment of spatial uncertainty has become an essential 
part of every predictive mapping procedure in soil science (Heuvelink 
and Webster, 2022; Szatmári and Pásztor, 2019). This is of great 
importance, as it can help end-users to make appropriate and respon-
sible decisions based on the resulting maps to achive the desired goals. 

The objective of our study is to develop a machine learning-based 
PTF for predicting the saturated SOC content of the topsoils (0–30 cm) 
in Hungary with a resolution of 100 m, and then quantify and assess its 
uncertainty using error propagation analysis. The resulting map is then 
compared with the actual SOC content map of Hungary (Szatmári et al., 
2019b; Szatmári and Pásztor, 2019) in order to assess the degree of SOC 
deficit in the country. 

2. Concept for determining and mapping SOC saturation 

The approach we used in this study is based on the principle that 
topsoils under permanent forest land cover due to the unlimited plant 
residuum input can be practically considered as saturated in SOC. About 
30% of the territory of Hungary is covered by forest on a wide range of 
soil types, including Luvisols, Podzols, Arenosols, Cambisols, and even 
Chernozems, among others. Theoretically, some permanent grassland 
sites may be saturated as well, their involvement, however, is neglected 
owing to the less reliable land-use history or the role of occasional hydric 
conditions that might happen on these lowland sites or the effect of 
grazing. 

The quasi SOC saturated forest topsoils have high SOC concentration 
variance, and thus they are not suitable for a general reference group. 
Besides, various landscape positions or changes in topographical prop-
erties must also affect the way and threshold of SOC saturation for the 
local scale. Accordingly, only topsoils with similar physicochemical 
properties (e.g., texture, pH) and environmental conditions (e.g., 
topography, climate) are comparable directly in terms of SOC satura-
tion. Our concept, therefore, focuses on the measured soil properties and 
environmental conditions and aims to find relationship between them (i. 
e., fit a PTF), which can be used to predict saturated SOC content at 
unvisited sites. Using the developed PTF, the theoretical (potential) SOC 
saturation value will be predicted across Hungary. Comparing the 
saturated SOC content with the actual SOC content, the saturation 
deficit can be determined and assessed. 
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3. Materials and methods 

3.1. Reference soil profiles and harmonization 

In this study, we used the soil profiles of the Hungarian Soil Infor-
mation and Monitoring System (SIMS) (Fig. 1), which is a countrywide 
soil monitoring system providing geographically referenced biological, 
physical and chemical information on the status and temporal change of 
Hungarian soils. It consists of 4,859 soil horizons belonging to 1,236 soil 
profiles. The following three types of soil profiles are distinguished in 
SIMS (Fig. 1):  

(i) “I” points (n = 865), which have been placed on agricultural 
lands (i.e., arable lands, pastures and orchards),  

(ii) “E” points (n = 183), which have been placed in forests,  
(iii) “S” points (n = 188), which have been placed in so-called “hot 

spot” regions representing different types of environmental haz-
ards (e.g., mining sites, landfills or industrial areas) 

Soil profiles placed in forests (i.e., “E” points) have been specifically 
designed for providing spatio-temporal information on soils in the 
context of forest ecosystems and therefore they are appropriate for the 
objective of this study. This means 183 soil profiles (Fig. 1) with 618 soil 
horizons in total. According to the concept on determining SOC satu-
ration presented in Section 2, we could assume that the topsoils repre-
sented by these profiles are practically saturated in SOC and therefore 
they can be used as reference soil profiles for developing an empirical, 
data-driven predictive model between SOC saturation, and further soil 
properties and environmental covariates. 

In this study, we used the following chemical and physical soil data 
associated with the soil horizons of “E” soil profiles: soil organic carbon 
(SOC) content [unit: %], pH [unit: -], calcium carbonate content [unit: 
%], as well as sand (>50 µm), silt (50–2 µm), and clay (<2 µm) content 
[unit: %]. In the following, we will consider data on SOC in these soil 

horizons as saturated. The role of the other soil properties listed previ-
ously in SOC saturation is frequently discussed in the literature. For 
instance, a number of papers demonstrated the specific role of the 
fraction of fine particles (i.e., silt and clay content) in SOC saturation 
(Chen et al., 2018; Hassink, 1997). Others highlighted the role of spe-
cific surface area of the soil (Beare et al., 2014). The presence of cations 
such as calcium or sodium also has an effect on SOC saturation by 
creating complexes with SOM molecules that make soil organic matter 
stable and more resistant to mineralization (Juhos et al., 2021) or more 
mobile for leaching or decomposition, respectively (Wong et al., 2010). 
Furthermore, pH provides indispensable information on the acidity/ 
alkalinity of the soil, which basically determines the quality and the 
degree of polymerization of SOM molecules in soil (Rasmussen et al., 
2018). 

Since the depth and thickness of soil horizons varies from soil profile 
to soil profile, there was a need to harmonize all soil data for the topsoil 
(0–30 cm). We used the mass-preserving spline technique (Bishop et al., 
1999; Malone et al., 2011) for modelling the vertical distribution of each 
of the soil properties listed above at each reference soil profile. The fitted 
splines were used to derive the values of soil properties for the topsoil at 
each reference soil profiles. The splined, so-called harmonized values 
were used in further modelling. 

3.2. Spatially exhaustive information on soil and environmental 
covariates 

In Table 1, we summarized the spatially exhaustive information on 
soil and environmental covariates used in this study. Under the aegis of 
DOSoReMI.hu (https://www.dosoremi.hu), a number of soil related 
properties, functions and services at various depths (e.g., soil depths 
specified by the GlobalSoilMap initiative (Arrouays et al., 2014)) have 
been mapped for Hungary using advanced digital soil mapping tech-
niques (Pásztor et al., 2020, 2018, 2017, 2015). In this study, we used 
the maps of soil properties listed in Section 3.1 as spatially exhaustive 

Fig. 1. Location of the soil profiles of the Hungarian Soil Information and Monitoring System (SIMS) (n = 1,236).  
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information on soil. We should note that all these maps have been 
directly compiled for the topsoil (0–30 cm) with a spatial resolution of 
100 m and quantified prediction uncertainty. 

In addition to soil information, we also used spatially exhaustive 
environmental covariates, which may affect SOC saturation. Topog-
raphy and its attributes were characterized by a countrywide digital 
elevation model (DEM) (source: Bashfield and Keim, 2011) and a 
number of geomorphometric parameters derived from that DEM, 
respectively. The derived geomorphometric parameters are also sum-
marized in Table 1. Their role in SOC saturation is also decisive. For 
example, LS factor integrates the length and steepness of a slope and 
therefore provides quantified information on soil erosion susceptibility. 
Topographic wetness index is in relation with soil moisture associated 
with topographic position and therefore affects microbiological activity 
and SOM decomposition. Vertical and horizontal distance to channel 
network also provide information on the potential water-affectedness of 
soils. 

We characterized climatic conditions by the data layers of long-term 
mean annual precipitation, temperature, evapotranspiration and evap-
oration provided by the Hungarian Meteorological Service (Szentimrey 
and Bihari, 2007). The role of climate in point of SOC saturation is also 
important because climatic conditions quantitatively determine miner-
alization of organic carbon in soils. Due to the various data sources, we 
resampled each of the environmental covariates into a common 
geographic reference system with a resolution of 100 m. 

3.3. Developing pedotransfer function 

A regression matrix was created, which contained the location of the 
reference soil profiles in its rows, as well as the harmonized values of soil 
properties and the extracted values of environmental covariates asso-
ciated with these soil profiles in its columns. This regression matrix and 
the vector of the harmonized values of saturated SOC content were the 
basis for developing a machine learning-based PTF between saturated 
SOC content (as response variable), as well as the other soil properties 
and environmental covariates (as predictors). 

Our aim was to apply a machine learning (ML) technique that not 
just performs outstandingly but also provides fairly easily interpretable 
predictive model. The cubist algorithm suits for these prerequisites since 
it is a frequently applied ML algorithm with high performance (Adhikari 
et al., 2014, 2013; Minasny and McBratney, 2008; Viscarra Rossel et al., 
2015) and provides transparent model structure (Malone et al., 2017; 
Miller et al., 2015; Viscarra Rossel and Webster, 2012). In brief, cubist, 
which is an amalgamation of several methodologies developed mostly in 
the 1990s by Quinlan (1993, 1992, 1987), is a machine learning tech-
nique for generating rule-based predictive models (Kuhn and Johnson, 
2013). Using the vector of the response variable’s data and the regres-
sion matrix of the predictors, cubist partitions the response data into 
subsets within which their characteristics are similar with respect to the 
predictors used. A series of rules defines these subsets and these rules are 
arranged in a hierarchy. Each rule has a specific multivariate linear 
regression model and takes the form of “IF-THEN-ELSE”, where.  

(i) “IF” defines the conditions for the subset,  
(ii) “THEN” contains a specific multivariate linear regression model 

fitted to the subset,  
(iii) “ELSE” stands for the next rule in the hierarchy. 

When prediction of the response variable is targeted, it is checked 
whether the new values of predictors meet the rule’s conditions. If they 
meet the conditions, then the rule’s specific multivariate linear regres-
sion model is appropriate for predicting the value of the response vari-
able. If they do not meet the conditions, then the next rule in the 
hierarchy is visited and its conditions are used for checking the new 
values. It is repeated till the new values meet one of the rules’ conditions 
in the hierarchy and thus its specific multivariate linear regression 
model is appropriate for predicting the value of the response variable. 

3.4. Quantification and propagation of uncertainty 

In Hungary, we have made great efforts in recent years to provide 
prediction uncertainty to each digital soil mapping product in order to 
meet the end-users’ demand for reliable spatial or spatio-temporal soil 
information (Pásztor et al., 2020; Szatmári et al., 2021, 2020, 2019b; 
Szatmári and Pásztor, 2019). Therefore, the spatial uncertainty of the 
digital soil property maps presented in Table 1 had been quantified and 
validated earlier (Pásztor et al., 2020) using geostatistical and/or ma-
chine learning approaches (Szatmári and Pásztor, 2019). Additionally, 
the covariance between the interpolation errors of these maps had also 
been quantified using multivariate geostatistics, as soil properties often 
show spatial interdependency with each other (Webster and Oliver, 
2007), which affects the reliability of uncertainty quantifications espe-
cially when uncertainty propagation is also targeted (Heuvelink, 1998). 
Here we should note that we had no quantified information on the un-
certainty of the environmental covariates used in this study. Hence, we 
were not able to directly account for their uncertainty. 

We used a first-order Taylor expansion to propagate uncertainty 
through the fitted cubist-based PTF, as several studies demonstrated its 
applicability with PTFs (e.g., Román Dobarco et al., 2019b, 2019a; Styc 
et al., 2021; Styc and Lagacherie, 2021). Uncertainty propagation 
analysis can be formulated mathematically as follows (Heuvelink, 
1998): 

Table 1 
Summary of the spatially exhaustive information on soil and environmental 
covariates used in this study. Abbreviation: DEM: digital elevation model, LS 
factor: slope length-gradient factor, MRVBF: multiresolution valley bottom 
flatness, MRRTF: multiresolution ridge top flatness, and SOC: soil organic 
carbon.  

Factor Covariates Unit Reference/Source 

Soil Calcium carbonate [%] Pásztor et al. (2020) 
pH [-] Szatmári et al. (2020) 
Clay [%] Laborczi et al. (2019) 
Silt [%] Laborczi et al. (2019) 
Sand [%] Laborczi et al. (2019) 
Actual SOC* [%] Szatmári and Pásztor 

(2019) 
Topography Elevation [m] DEM 

Slope [%] DEM 
Profile curvature [-] DEM 
Total curvature [-] DEM 
Topographic position index [m] DEM 
Topographic roughness index [-] DEM 
Surface area [m2] DEM 
MRVBF [-] DEM 
MRRTF [-] DEM 
LS factor [-] DEM 
Topographic wetness index [-] DEM 
SAGA wetness index [-] DEM 
Vertical distance to channel 
network 

[m] DEM 

Horizontal distance to channel 
network 

[m] DEM 

Channel network base level [m] DEM 
Diurnal anisotropic heating [-] DEM 
Mass balance index [-] DEM 
Stream power index [-] DEM 

Climate Mean annual precipitation [mm] Szentimrey and Bihari 
(2007) 

Mean annual temperature [◦C] Szentimrey and Bihari 
(2007) 

Mean annual evapotranspiration [mm] Szentimrey and Bihari 
(2007) 

Mean annual evaporation [mm] Szentimrey and Bihari 
(2007) 

*Actual SOC content was only used for assessing SOC deficit. 
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Eq. 1. 

Y = g(Z)

where g is the fitted cubist-based PTF, Y is the saturated soil organic 
carbon content as the output of the PTF and Z = [Z1,Z2,⋯, Zn]

T is the 
vector of the PTF’s input variables. The objective is to determine the 
uncertainty in Y, given the PTF g and the inputs Z and their associated 
uncertainty (Heuvelink, 2018). The uncertainty in Y is identified by the 
variance of Y, which is given by (Heuvelink, 1998): 

Eq. 2. 

σ2
Y ≅

∑n

i=1

∑n

j=1
ρijσiσj

δg
δzi

(μ) δg
δzj

(μ)

where n is the number of the PTF’s input variables, ρij is the corre-
lation coefficient between the uncertainties in zi and zj, σi and σj are the 
uncertainties in zi and zj, respectively, δg

δzi
(μ) and δg

δzj
(μ) are the first de-

rivatives of g with respect to zi and zj, respectively, and μ =

[μ1, μ2,⋯, μn]
T is the vector of the mean values of the n input variables. 

We should note that if there is no correlation between the input variables 
(i.e., ρij = 0), then σ2

Y is simply a summation of parts, each attributed to 
one of the inputs. This partitioning property allows to analyse how much 
each input contributes to the final uncertainty (Heuvelink, 2018, 1998). 
This is of great importance when deciding which of the inputs’ uncer-
tainty should be diminished to reduce the final uncertainty. 

4. Results 

4.1. Cubist-based PTF 

Table 2 summarizes the descriptive statistics of the harmonized data 
on saturated SOC content and further soil properties used as predictors 
in this study. The development of the cubist-based PTF was com-
plemented with 5-times repeated 10-fold cross-validation. According to 
the results of cross-validation, an R-squared value of 0.56 was obtained, 
i.e., the developed PTF explained almost 60% of the total variation of the 
saturated SOC data. Table 3 presents the model structure of the PTF, 
which not just summarizes the conditions and the specific multivariate 
linear regression models fitted to the different subsets of saturated SOC 
content data partitioned in model fitting but also shows the hierarchy 
via the number of rules (Table 3, first column). More detailed infor-
mation on the fitted PTF function can be found in the Supplementary 
Material. Fig. 2 presents the spatially exhaustive soil and environmental 
covariates, which were found to be informative at the significance level 
of 0.05 based on the fitted cubist-based PTF (Table 3). 

Fig. 3 (left map) presents spatial information on which of the rules 
and the associated multivariate linear regression model is appropriate 
for predicting the saturated SOC content on a particular area in 
Hungary. We should note that the rules identified notable geographical 
regions:  

(i) Rule 1 covers the sandy areas of Hungary with low SOC content,  

(ii) Rule 2 refers to the hilly and mountainous regions of Hungary 
with acidic soils,  

(iii) Rule 3 relates to non-sandy lowlands with neutral or alkali soils,  
(iv) Rule 4 is for the most elevated areas of Hungary with mostly 

acidic soils. 

Increasing rule numbers predict an increasing SOC saturation value 
along the rules (Table 3). Rule 1 covers the sandy areas of Hungary 
(Fig. 3), which have the lowest SOC storage capacity due to the lack of 
the fine fraction. The clay content and the pH are directly connected, 
whereas the sand content and the mean annual temperature are inverse 
relationships with the predicted SOC saturation value. Rule 2 relates the 
acidic areas with lower sand content and slope steepness < 14% (Fig. 3). 
In this group, higher clay content, altitude, pH, slope angle, and length 
indicate higher predicted SOC saturation, while the higher evaporation, 
sand content and mean annual temperature triggers lower SOC satura-
tion values. Rule 3 predicts the SOC saturation values for non-sandy sites 
with neutral or alkali conditions (Fig. 3). This is the only group where 
the sand content is not a predictor variable. In contrast, evapotranspi-
ration, pH and slope steepness all decrease the SOC saturation values. 
Rule 4 covers the acidic sites with high slope steepness (Fig. 3), where 
both sand content and topographic position index increase the saturated 
SOC content. 

4.2. Applicability of the developed PTF 

We should note that the fitted cubist-based PTF was elaborated on 
sampling points located in permanent forest in Hungary and therefore it 
is worth investigating whether there are areas where the applicability of 
the PTF is not recommended. As it was presented in Table 3, the fitted 
PTF is a set of specific multivariate linear regression models, each having 
a range within which the given regression model is reasonable to use for 
predicting the saturated SOC content. However, out of this range the 
applicability of the given regression model is definitely not recom-
mended due to extrapolation. Therefore, we used the specific multi-
variate linear regression models (Table 3) to identify areas throughout 
the entire area of Hungary where extrapolation of the fitted PTF should 
be expected (Fig. 3, right map). It was found that for 7,922.7 km2 the 
fitted cubist-based PTF cannot be used because of extrapolation. 
Considering the total area of Hungary (93,030 km2) this means about 
8%. Although the areas, where the application of the fitted PTF is not 
recommended, show scattered pattern throughout the country, notable 
regions of Hungary can be identified. Almost 90% of the areas 

Table 2 
Summary statistics of saturated soil organic carbon content (SOCsat) and further 
soil properties harmonized for the topsoil (0–30 cm) at the reference soil profiles 
(n = 183). Abbreviation: SD: standard deviation.  

Soil properties Unit Minimum Maximum Mean Median SD 

SOCsat [%] 0.16 6.87 2.17 1.72 1.41 
pH [-] 3.73 8.09 5.72 5.35 1.18 
Calcium 

carbonate 
[%] 0.00 20.96 4.83 4.05 3.83 

Sand [%] 2 99 49 44 29 
Silt [%] 0 80 35 35 21 
Clay [%] 0 56 17 16 12  

Table 3 
The model structure of the cubist-based pedotransfer function used for pre-
dicting the saturated soil organic carbon (SOCsat) content in the topsoil (0–30 
cm). Note that a significance level of 0.05 was used to select the informative 
covariates. Annotation: See the Supplementary Material for more detailed in-
formation on the fitted pedotransfer function.  

Rule Condition Specific multivariate linear regression model 

1 IF 
Sand > 61.69 

THEN 
SOCsat = 0.6 + 0.113 Clay – 0.0008 Sand – 0.02 
Temperature  
+ 0.01 pH 

2 IF 
pH ≤ 6.24 and 
Sand ≤ 61.69 
and 
Slope ≤ 13.96 

THEN 
SOCsat = 7.6 – 0.0087 Evaporation + 0.022 LS factor  
+ 0.0004 Altitude – 0.0013 Sand – 0.03 Temperature +
0.02 pH 

3 IF 
pH > 6.24 and 
Sand ≤ 61.69 

THEN 
SOCsat = 31.6 – 0.0217 Evapotranspiration – 0.8 pH – 
0.139 Slope 

4 IF 
pH ≤ 6.24 and 
Sand ≤ 61.69 
and 
Slope > 13.96 

THEN 
SOCsat = 0.8 + 0.0966 Sand + 0.27 Topographic position 
index  
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characterized by salt-affected soils (e.g., Danube-Tisza Interfluve, 
Hortobágy) are proved to be not suitable for the application of the fitted 
PTF, which can be attributed not just to their extreme sodicity, alkalinity 
or salinity but also to the fact that their formation is highly influenced by 
shallow groundwater, permanent or temporary waterlogging. Addi-
tionally, areas characterized by highly or moderately water-affected 
soils are also highlighted along the main rivers (e.g. Danube, Tisza, 
Dráva) and in the eastern part of the country, which is completely 
acceptable as the concept introduced in Section 2 is referred to mineral 
soils and not to water-affected soils, where the balance between SOM 
accumulation and mineralization is strongly affected by surplus water. 
This also true for the peatlands, which can be easily identified on the 
map too (e.g. southestern part of Lake Balaton). 

4.3. Spatial prediction of saturated SOC content with uncertainty 
propagation 

Fig. 4.A presents the spatial distribution of saturated SOC content 
over Hungary as a result of the application of the fitted cubist-based PTF 
(Table 3) on spatially exhaustive soil and environmental covariates 
(Fig. 2). Next to this map we also presented its variance (Fig. 4.B), as one 

of the main results of the uncertainty propagation analysis performed. 
This map can be interpreted as the uncertainty in the saturated SOC 
content spatial predictions. We found that higher uncertainty is associ-
ated with areas where extrapolation of the fitted PTF is expected (Fig. 3, 
right map). We should also highlight that the final uncertainty associ-
ated with the saturated SOC content predictions takes into consideration 
not just the uncertainty associated with the fitted PTF but also the 
prediction uncertainty of the digital soil mapping products listed in 
Table 1. As was mentioned in Section 3.4, the partitioning property al-
lows to analyze how much each input contributes to the final uncer-
tainty. Thus, we determined the contributions and relative contributions 
of the input soil maps (Fig. 4.C and E) and the cubist-based PTF (Fig. 4.D 
and F) to the uncertainty in the saturated SOC content spatial pre-
dictions (Fig. 4.B). As we had no information about the uncertainty of 
the environmental covariates (Fig. 2, second and third row), we could 
not determine their contributions to the final uncertainty. However, 
their uncertainty contributes to the uncertainty in the fitted PTF (Fig. 4. 
D and F). This is because the cubist-based PTF was elaborated on their 
uncertain data and not on measured ones as in the case of soil inputs, 
where we used actual measurements from SIMS. Hence, uncertainty in 
the environmental covariates (Fig. 2, second and third row) is also 

Fig. 2. Spatially exhaustive soil (first row) and environmental covariates (second row: climatic variables, and third row: topographical variables) found to be 
informative for predicting saturated soil organic carbon content in Hungary. Annotation: Settlements and open water bodies were left blank. 

Fig. 3. Spatial distribution of the rules defined by the cubist-based pedotransfer function (left map) and the applicability of the pedotransfer function over Hungary 
(right map). Annotation: Conditions and multivariate linear regression models associated with the rules can be found in Table 3. Note that settlements and open 
water bodies were left blank. 
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represented in the PTF uncertainty. By comparing the relative contri-
butions (Fig. 4.E and F), it was found that the contribution of PTF un-
certainty to the final uncertainty is much larger than the contribution of 
the soil maps uncertainty. 

4.4. SOC deficit in Hungary 

We compared the saturated SOC content map with the actual SOC 
map of Hungary (Fig. 5.A) (Szatmári and Pásztor, 2019). In brief, the 
actual SOC map also refers to the topsoil (0–30 cm) and has been created 
by using a combination of geostatistics and advanced ML techniques. A 
detailed description on the soil data, environmental covariates and 
digital soil mapping methodology used for predicting the spatial distri-
bution of the actual SOC content can be found in Szatmári and Pásztor 
(2019). By subtracting the saturated SOC map from the actual SOC map, 

we compiled a difference map presenting the SOC deficit for the topsoil 
in Hungary (Fig. 5.C). On the map, negative values (i.e., red colors) 
present areas with SOC deficit, whereas positive values (i.e., blue colors) 
show areas where soils are saturated or oversaturated in SOC. According 
to the compiled difference map, not just large parts of the country (ca. 
80%) can be characterized by SOC deficit but it also shows high spatial 
variability across Hungary. Note that the uncertainty in the spatial 
predictions of saturated SOC content (Fig. 4.B) is an order of magnitude 
larger than the uncertainty in the spatial predictions of actual SOC 
(Fig. 5.B). Because of this the uncertainty in the SOC deficit map (Fig. 5. 
C) must be also large, which does not allow to delimit areas with sta-
tistically significant SOC deficit in the country. 

Fig. 4. Saturated soil organic carbon content for the topsoil (0–30 cm) (A) and its variance as a result of uncertainty propagation analysis (B). Contributions and 
relative contributions of the input soil maps (C and E) and the cubist-based pedotransfer function (D and F) to the uncertainty in saturated soil organic carbon content 
spatial predictions (B). Abbreviations: SOC: soil organic carbon, and PTF: pedotransfer function. Annotation: Settlements and open water bodies were left blank. 
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5. Discussion 

5.1. Interpretation and discussion of the results 

The sand content was the most important predictor, which was 
included in three out of the four regression models. In two cases, it was 
inversely proportional with the SOC saturation value, even though in 
Rule 4, on the steepest parts sand content was proportional with SOC 
saturation (Table 3). This may result from the increased infiltration due 
to the coarser texture resulting in a lower amount of runoff and soil/ 
carbon loss (Nagy et al., 2020). The other general predictor is pH which 
regulates the predicted SOC saturation value in the Rules 1–3 (Table 3). 
It has a positive effect on sandy soils and under acidic and neutral 
conditions. In contrast, in the alkali range, pH has a very strong inverse 
relationship with SOC saturation. This may indicate the mitigated SOC 
saturation potential under sodic conditions (Rasmussen et al., 2018; 
Wong et al., 2010), even though in the current case, the spatial pre-
diction is unreliable for sodic soils due to extrapolation (Fig. 3, right 
map). Regarding the climatic effects, both evaporation and evapo-
transpiration decrease SOC saturation on non-sandy and non-hilly fields. 
Mean annual temperature mitigates SOC saturation as was reported by 
several studies (Wiesmeier et al., 2014; Zhang et al., 2015). Topography 
provided ambivalent results as slope steepness decreased SOC saturation 
values on the flat areas, but topographic position index and the LS factor 
were in direct linkage with the saturation. Taking the spatial resolution 
of the present study into account, the erosion and soil redistribution 
processes (Ghosh et al., 2021) may result in a more detailed spatial 
pattern (Centeri et al., 2014). 

We should highlight that the compiled map of saturated SOC content 
(Fig. 4.A) should be interpreted together with the PTF’s applicability 
map (Fig. 3, right map), as it was found that for 8% of the area of 
Hungary extrapolation of the fitted PTF should be expected. Therefore it 
is better to disregard those areas from the assessment, where the PTF’s 
applicability is not recommended. As a general trend in Hungarian 
topsoils, the highest SOC deficits (Fig. 5.C) occur in areas with medium 
to high actual SOC content (Fig. 5.A). Base saturated Chernozems and 
Kastanozems storing more than two percent of SOC have the capacity to 
sequester an additional one percent of SOC mainly on the plains of 
Hungary (Fig. 5.C). The mountainous parts of the country as well as the 
acidic fields have lower capacity, however, it still means 0.1–0.5% 
additional SOC storage potential. 

5.2. Limitations and further research 

The estimated SOC saturation deficit value is rather theoretical with 
practical applicability. The saturated forest sites used as references have 
no tillage but practically unlimited organic matter input. On cropfields, 
however, a considerable amount of organic matter is gathered as yield 
and straw thus, the OM input is limited. Moreover, tillage increases SOM 
mineralization. Consequently, the theoretically calculated saturation 
value is hardly available for the practice without land use change 
(Stewart et al., 2007). Ensuring food security, most cropfields must be 
kept as arable land in the long run, accordingly loading the total amount 
of calculated SOC deficit is unlikely. Nevertheless, the application of 
conservation agriculture technics is believed to relevantly increase the 
SOC content under cropfields (Gelybó et al., 2022; Jakab et al., 2022; 
Madarász et al., 2021). Thus the amount of SOC saturation deficit may 
be an efficient indicator to identify hot spots where cultivation shift 
would benefit most, independently of the theoretical amount of SOC 
saturation. 

On the other hand, we also should note that considerable parts of the 
country have been indicated as saturated or oversaturated (Fig. 5.C). 
The highest values of oversaturation are mostly related to peatlands (e. 
g., southwestern part of Lake Balaton) and other water affected areas. As 
it has been already mentioned in the Introduction, on these sites, the 
temporal or former water coverage inhibited the mineralization of soil 
organic matter, which process cannot be captured by the developed PTF 
(Fig. 3, right map) since the approach used in this study was based solely 
on forest sites. Further reason of (over-)saturation is related to the areas 
covered by Arenosols, especially in the Danube-Tisza Interfluve (Fig. 5. 
C). These soils can be characterized by basically low SOC concentration, 
where low changes may trigger oversaturation. Under the above con-
ditions, the role of particulate organic matter or fresh plant debris may 
cause increased variability in Arenosols resulting in oversaturation. 

In this study, we used the monitoring points of SIMS located in 
permanent forests (i.e., the “E” points) as reference soil profiles, which is 
a coherent dataset because the description of soil profiles, field sampling 
and laboratory analyses have been carried out according to a predefined 
protocol based on the Hungarian Standards. We should note that only a 
limited number of soil profiles located in permanent forests are available 
(n = 183), therefore more effort should be made in the future to collect 
additional soil samples from permanent forests across Hungary. The age 
of these permanent forests may also affect the current saturation degree 
if they are afforested in the recent past thus also, the age of forests would 
be useful to include in further studies. 

The uncertainty associated with the saturated SOC content spatial 

Fig. 5. Spatial distribution of the actual soil organic carbon (SOC) content (A) and the associated prediction uncertainty (B), and the the map of SOC deficit (C). 
Annotation: Settlements and open water bodies were left blank. 
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predictions was larger than the uncertainty of the actual SOC content by 
an order of magnitude (Fig. 4.B and 5.B), which made it impossible to 
delimit areas with statistically significant SOC deficit in Hungary. Note 
that this is not unique in the literature, a number of papers demonstrated 
that large prediction uncertainty can put restraint to digital soil assess-
ment (Heuvelink et al., 2020; Szatmári et al., 2021, 2019b). However, 
the methodology presented in this study and the compiled maps pro-
vided useful preliminary results on identifying and delimiting areas with 
SOC deficit in Hungary, which should be fine-tuned in the future with 
probably more additional observations on saturated SOC content. As it 
was pointed out by the results of uncertainty propagation analysis, this 
large amount of uncertainty can be mostly attributed to the fitted PTF 
(Fig. 4.D and F). This is of great importance, as it basically gives the 
direction on how to design the additional sampling campaign in order to 
successfully improve the cubist-based PTF and at the same time reduce 
its uncertainty. Besides, the cubist algorithm also proved to be an effi-
cient ML technique not just for developing PTF but also for making the 
resulting PTF more transparent for users, an issue frequently addressed 
in recent studies (Szatmári et al., 2020; Wadoux et al., 2020). The 
transparency of the model structure can help us not just to better un-
derstand soil and environmental conditions affecting SOC saturation but 
also to optimize the number and location of additional sampling points 
making the additional soil survey more cost-effective. In the last few 
years, a number of studies have addressed the issue of optimizing sam-
pling design with known model structure and demonstrated that un-
certainty can be reduced (Ließ, 2015; Szatmári et al., 2019a, 2015; 
Wadoux et al., 2019). 

6. Conclusions 

Our objective was to develop a cubist-based PTF, which can be used 
for predicting and mapping the saturated SOC content of the topsoils in 
Hungary and then compare the resulting map with the actual SOC map 
in order to assess the degree of SOC deficit in the country. The fitted 
cubist-based PTF proved to be efficient in predicting SOC saturation 
across Hungary, furthermore, the cubist algorithm gave a fairly trans-
parent model structure, which helped to better understand the factors 
and driving forces of SOC saturation. We have highlighted that not just 
the physicochemical properties of soils, but also environmental condi-
tions, such as topography and climate, characterizing landscape are 
important factors in predicting the level of potential SOC saturation. Our 
results also pointed out that there is SOC deficit on large part of the 
country (ca. 80%), which shows high spatial variability. Besides, the 
most considerable potential for additional SOC sequestration was found 
related to soils with medium to high actual SOC content. 
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G. Szatmári et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.catena.2023.107086
https://doi.org/10.1016/j.catena.2023.107086
https://doi.org/10.1371/journal.pone.0105519
https://doi.org/10.2136/sssaj2012.0275
https://doi.org/10.1201/b16500-4
https://doi.org/10.5194/bg-2017-395&iuml;
https://doi.org/10.1007/s10533-014-9982-1
https://doi.org/10.1007/s10533-014-9982-1
https://doi.org/10.1016/S0016-7061(99)00003-8
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0040
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0040
https://doi.org/10.1016/j.catena.2017.12.003
https://doi.org/10.1016/j.catena.2017.12.003
https://doi.org/10.1016/j.geoderma.2015.06.015
https://doi.org/10.1016/j.geoderma.2015.06.015
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0055
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0055
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0055
http://refhub.elsevier.com/S0341-8162(23)00177-7/h0055
https://doi.org/10.1016/J.SCITOTENV.2019.02.249
https://doi.org/10.1016/j.still.2018.11.001
https://doi.org/10.1016/j.still.2018.04.011
https://doi.org/10.1016/j.still.2018.04.011
https://doi.org/10.1111/gcbb.12232
https://doi.org/10.1038/s41561-019-0484-6
https://doi.org/10.1007/s10533-020-00728-w
https://doi.org/10.1007/s10533-011-9679-7
https://doi.org/10.1007/s10533-011-9679-7
https://doi.org/10.1016/j.catena.2020.105127
https://doi.org/10.1111/J.1365-2389.2008.01115.X


Catena 227 (2023) 107086

10

Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association 
with clay and silt particles. Plant Soil 191, 77–87. https://doi.org/10.1023/A: 
1004213929699. 

Heuvelink, G.B.M., 2018. Uncertainty and Uncertainty Propagation in Soil Mapping and 
Modelling. Springer, Cham, pp. 439–461. https://doi.org/10.1007/978-3-319- 
63439-5_14. 

Heuvelink, G.B.M., 1998. Error propagation in environmental modelling with GIS. Taylor 
and Francis. https://doi.org/10.4324/9780203016114. 

Heuvelink, G.B.M., Angelini, M.E., Poggio, L., Bai, Z., Batjes, N.H., van den Bosch, R., 
Bossio, D., Estella, S., Lehmann, J., Olmedo, G.F., Sanderman, J., 2020. Machine 
learning in space and time for modelling soil organic carbon change. Eur. J. Soil Sci. 
https://doi.org/10.1111/ejss.12998. 

Heuvelink, G.B.M., Webster, R., 2022. Spatial statistics and soil mapping: A blossoming 
partnership under pressure. Spat. Stat. 100639 https://doi.org/10.1016/J. 
SPASTA.2022.100639. 

Inagaki, T.M., Possinger, A.R., Grant, K.E., Schweizer, S.A., Mueller, C.W., Derry, L.A., 
Lehmann, J., Kögel-Knabner, I., 2020. Subsoil organo-mineral associations under 
contrasting climate conditions. Geochim. Cosmochim. Acta 270, 244–263. https:// 
doi.org/10.1016/j.gca.2019.11.030. 

Jakab, G., Vancsik, A., Filep, T., Madarász, B., Zacháry, D., Ringer, M., Ujházy, N., 
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Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., 
Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an 
ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature10386. 

Shiri, J., Keshavarzi, A., Kisi, O., Karimi, S., Iturraran-Viveros, U., 2017. Modeling soil 
bulk density through a complete data scanning procedure: Heuristic alternatives. 
J. Hydrol. 549, 592–602. https://doi.org/10.1016/j.jhydrol.2017.04.035. 

Six, J., Feller, C., Denef, K., Ogle, S., Sa, J.C.D.M., Albrecht, A., 2002. Soil organic matter, 
biota and aggregation in temperate and tropical soils - Effects of no-tillage. 
Agronomie 22, 755–775. https://doi.org/10.1051/agro:2002043. 

Stavi, I., Lal, R., 2015. Achieving Zero Net Land Degradation: Challenges and 
opportunities. J. Arid Environ. 112, 44–51. https://doi.org/10.1016/j. 
jaridenv.2014.01.016. 

Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F., Six, J., 2007. Soil carbon 
saturation: Concept, evidence and evaluation. Biogeochemistry 86, 19–31. https:// 
doi.org/10.1007/s10533-007-9140-0. 

Styc, Q., Gontard, F., Lagacherie, P., 2021. Harvesting spatially dense legacy soil datasets 
for digital soil mapping of available water capacity in Southern France. Geoderma 
Reg. 24, e00353. 

Styc, Q., Lagacherie, P., 2021. Uncertainty assessment of soil available water capacity 
using error propagation: A test in Languedoc-Roussillon. Geoderma 391, 114968. 
https://doi.org/10.1016/J.GEODERMA.2021.114968. 

Suleymanov, A., Gabbasova, I., Suleymanov, R., Abakumov, E., Polyakov, V., Liebelt, P., 
2021. Mapping soil organic carbon under erosion processes using remote sensing. 
Hungarian Geogr. Bull. 70, 49–64. 10.15201/hungeobull.70.1.4. 
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Szatmári, G., Pásztor, L., Heuvelink, G.B.M., 2021. Estimating soil organic carbon stock 
change at multiple scales using machine learning and multivariate geostatistics. 
Geoderma 403, 115356. https://doi.org/10.1016/J.GEODERMA.2021.115356. 
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