A note on Tribonacci-coefficient polynomials

Ferenc Mátyás ${ }^{a}$, László Szalay ${ }^{b}$
${ }^{a}$ Institute of Mathematics and Informatics, Eszterházy Károly College
fmatyas@ektf.hu
${ }^{b}$ Institute of Mathematics, University of West Hungary
laszalay@emk.nyme.hu

Submitted May 18, 2011 Accepted November 21, 2011

Abstract

This paper shows, that the Tribonacci-coefficient polynomial $P_{n}(x)=$ $T_{2} x^{n}+T_{3} x^{n-1}+\cdots+T_{n+1} x+T_{n+2}$ has exactly one real zero if n is odd, and $P_{n}(x)$ does not vanish otherwise. This improves the result in [1], which provides the upper bound 3 or 2 on the number of zeros of $P_{n}(x)$, respectively. Keywords: linear recurrences, zeros of the polynomials with special coefficients

MSC: 11C08, 11B39

1. Introduction

The Fibonacci-coefficient polynomials $\mathcal{F}_{n}(x)=F_{1} x^{n}+F_{2} x^{n-1}+\cdots+F_{n} x+F_{n+1}$, $n \in \mathbb{N}^{+}$were defined in [2]. The authors determined the number of real zeros of $\mathcal{F}_{n}(x)$. Generally, but with specific initial values, for binary recurrences and for linear recursive sequences of order $k \geq 2$ the question of the number of real zeros was investigated in [3] and [1], respectively.

As usual, the Tribonacci sequence is defined by the initial values $T_{0}=0, T_{1}=0$ and $T_{2}=1$, and by the recurrence relation $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}(n \geq 3)$. The Corollary 2 of Theorem 1 in [1] states that the possible number of negative zeros of the polynomial

$$
P_{n}(x)=T_{2} x^{n}+T_{3} x^{n}+\cdots+T_{n+1} x+T_{n+2}
$$

does not exceed three. More precisely, $P_{n}(x)$ possesses 0 or 2 negative zeros if n is even, and 1 or 3 negative zeros when n is odd. Obviously, there is no positive zero of $P_{n}(x)$, since all coefficients are positive.

The following theorem gives that the number of negative zeros is 0 or 1 depending on the parity of n.

Theorem 1.1. The polynomial $P_{n}(x)$ has no real zero if n is even, while $P_{n}(x)$ possesses exactly one real zero, which is negative, if n is odd.

In the proof, at the beginning we partially follow the approach of [1].

2. Proof of Theorem 1.1

Proof. Let $f(x)=x^{3}-x^{2}-x-1$ denote the characteristic polynomial of the Tribonacci sequence. It is known, that $f(x)$ has one positive real zeros and a pair of complex conjugate zeros. Put

$$
Q_{n}(x)=f(x) P_{n}(x)=x^{n+3}-T_{n+3} x^{2}-\left(T_{n+2}+T_{n+1}\right) x-T_{n+2}
$$

(see Lemma 1 in [1]). Applying the Descartes' rule of signs, $Q_{n}(x)$ has one positive real zero, which obviously belongs to $f(x)$. (It hangs together with $P_{n}(x)$ possesses no positive real roots.)

To examine the negative roots, put $q_{n}(x)=Q_{n}(-x)$. In order to use Descartes' result again, we must distinguish two cases based on the parity of n.

First suppose that n is even. Now

$$
q_{n}(x)=-x^{n+3}-T_{n+3} x^{2}+\left(T_{n+2}+T_{n+1}\right) x-T_{n+2},
$$

and the number of changes of coefficients' signs predicts 2 or 0 positive zeros of $q_{n}(x)$. We are going to exclude the case of 2 zeros.

Clearly, $q_{n}(0)=-T_{n+2}<0, q_{n}(1)=-T_{n+3}+T_{n+1}-1<0$. Further, we have

$$
q_{n}^{\prime}(x)=-(n+3) x^{n+2}-2 T_{n+3} x+\left(T_{n+2}+T_{n+1}\right) .
$$

The values $q_{n}^{\prime}(0)=T_{n+2}+T_{n+1}>0, q_{n}^{\prime}(1)=-(n+3)-2 T_{n+3}+T_{n+2}+T_{n+1}<0$ show that the function $q_{n}(x)$ strictly monotone increasing locally in 0 , while strictly monotone decreasing in 1 . Since $q_{n}^{\prime \prime}(x)=-T_{2}(n+3)(n+2) x^{n+1}-2 T_{n+3}$ is negative for all non-negative $x \in \mathbb{R}$, then $q_{n}(x)$ is concave on \mathbb{R}^{+}. Consequently, if exist, the positive zeros of the polynomial $q_{n}(x)$ are in the interval $(0 ; 1)$.

Therefore, to show that $q_{n}(x)$ does not cross the x-axes it is sufficient to prove that intersection point of the tangent lines $e: y=\left(T_{n+2}+T_{n+1}\right) x-T_{n+2}$ and $f: y=\left(-(n+3)-2 T_{n+3}+T_{n+2}+T_{n+1}\right)(x-1)-T_{n+3}+T_{n+1}-1$ is under the x-axes. To reduce the calculations we simply justify that $x_{0}>x_{1}$, where x_{0} is defined by $e \cap x$-axes and x_{1} is given by $f \cap x$-axes (see Figure 1).

First, $\left(T_{n+2}+T_{n+1}\right) x-T_{n+2}=0$ implies

$$
x_{0}=\frac{T_{n+2}}{T_{n+2}+T_{n+1}}>\frac{T_{n+2}}{T_{n+2}+T_{n+2}}=\frac{1}{2} .
$$

Figure 1

On the other hand,

$$
\begin{equation*}
x_{1}=\frac{T_{n+3}-T_{n+1}+1}{-(n+3)-2 T_{n+3}+T_{n+2}+T_{n+1}}+1 \leq \frac{1}{2} \tag{2.1}
\end{equation*}
$$

holds if $n \geq 5$. Indeed, (2.1) is equivalent to

$$
\frac{1}{2} \leq \frac{T_{n+3}-T_{n+1}+1}{(n+3)+2 T_{n+3}-T_{n+2}-T_{n+1}}
$$

where both the numerator and the denominator are positive. Hence $n+1 \leq T_{n+2}-$ T_{n+1} remains to show, and it can be easily deduced, for example, by induction if $n \geq 5$.

The case $n=4$ can be separately investigated. Now $T_{5}=4, T_{6}=7$, and $11 x-7=0$ provides $x_{0}=7 / 11$. Moreover, $T_{7}=13$ and $-22(x-1)-10=0$ gives $x_{1}=6 / 11$. Thus $x_{1}<x_{0}$.

Assume now, that n is odd. We partially repeat the procedure of the previous case.

The polynomial

$$
q_{n}(x)=x^{n+3}-T_{n+3} x^{2}+\left(T_{n+2}+T_{n+1}\right) x-T_{n+2}
$$

may have 3 or 1 positive zeros (by Descartes' rule of signs again).
Obviously, $q_{n}(0)=-T_{n+2}<0$ and $q_{n}(1)=-T_{n+3}+T_{n+1}+1<0$. Now

$$
q_{n}^{\prime}(x)=(n+3) x^{n+2}-2 T_{n+3} x+\left(T_{n+2}+T_{n+1}\right),
$$

which together with $q_{n}^{\prime}(0)=T_{n+2}+T_{n+1}>0, q_{n}^{\prime}(1)=(n+3)-2 T_{n+3}+T_{n+2}+$ $T_{n+1}<0$ implies the same monotonity behaviour in $(0 ; 1)$ as before.

Since the equation $q_{n}^{\prime \prime}(x)=(n+3)(n+2) x^{n+1}-2 T_{n+3}=0$ holds if and only if

$$
x_{i n f}=\sqrt[n+1]{\frac{T_{n+3}}{\binom{n+3}{2}}}
$$

then $q_{n}(x)$ is concave on the interval $\left(0 ; x_{i n f}\right)$, and convex for $x>x_{\text {inf }}$. However, $x_{\text {inf }}>1$ if $n \geq 9$, and in this case we can show that $q_{n}(x)$ does not intersect the x-axes in the interval $(0 ; 1)$ but there is exactly one zero if $x>1$. The second part is an immediate consequence of the existence of unique positive inflection point $x_{\text {inf }}>1$. Concentrating on the interval $(0 ; 1)$, similarly to the previous part $e: y=\left(T_{n+2}+T_{n+1}\right) x-T_{n+2}$ and $f: y=\left((n+3)-2 T_{n+3}+T_{n+2}+T_{n+1}\right)(x-$ 1) $-T_{n+3}+T_{n+1}+1$ intersect each other under the x-axes, because of $x_{0}>\frac{1}{2}$ holds again, and

$$
x_{1}=\frac{T_{n+3}-T_{n+1}-1}{(n+3)-2 T_{n+3}+T_{n+2}+T_{n+1}}+1 \leq \frac{1}{2}
$$

follows, since $-(n+1) \leq T_{n+2}-T_{n+1}$.
For $n=3$ or 5 or 7 we can easily check the required property. Thus the proof is complete.

References

[1] Filep, F., Liptai, K., Mátyás, F., Tóth, J.T., Polynomials with special coefficients, Ann. Math. Inf., 37 (2010), 101-106.
[2] Garth, D., Mills, D., Mitchell, P., Polynomials generated by the Fibonacci sequence, J. Integer Sequences, Vol. 10 (2007), Article 07.6.8.
[3] MátyÁs,F., Further generalization of the Fibonacci-coefficient polynomials, Ann. Math. Inf., 35 (2008), 123-128.

