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Abstract

This paper shows, that the Tribonacci-coefficient polynomial Pn(x) =
T2x

n + T3x
n−1 + · · · + Tn+1x + Tn+2 has exactly one real zero if n is odd,

and Pn(x) does not vanish otherwise. This improves the result in [1], which
provides the upper bound 3 or 2 on the number of zeros of Pn(x), respectively.
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1. Introduction

The Fibonacci-coefficient polynomials Fn(x) = F1x
n +F2x

n−1 + · · ·+Fnx+Fn+1,
n ∈ N+ were defined in [2]. The authors determined the number of real zeros of
Fn(x). Generally, but with specific initial values, for binary recurrences and for
linear recursive sequences of order k ≥ 2 the question of the number of real zeros
was investigated in [3] and [1], respectively.

As usual, the Tribonacci sequence is defined by the initial values T0 = 0, T1 = 0
and T2 = 1, and by the recurrence relation Tn = Tn−1 +Tn−2 +Tn−3 (n ≥ 3). The
Corollary 2 of Theorem 1 in [1] states that the possible number of negative zeros
of the polynomial

Pn(x) = T2x
n + T3x

n + · · ·+ Tn+1x + Tn+2
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does not exceed three. More precisely, Pn(x) possesses 0 or 2 negative zeros if n is
even, and 1 or 3 negative zeros when n is odd. Obviously, there is no positive zero
of Pn(x), since all coefficients are positive.

The following theorem gives that the number of negative zeros is 0 or 1 depend-
ing on the parity of n.

Theorem 1.1. The polynomial Pn(x) has no real zero if n is even, while Pn(x)
possesses exactly one real zero, which is negative, if n is odd.

In the proof, at the beginning we partially follow the approach of [1].

2. Proof of Theorem 1.1

Proof. Let f(x) = x3 − x2 − x − 1 denote the characteristic polynomial of the
Tribonacci sequence. It is known, that f(x) has one positive real zeros and a pair
of complex conjugate zeros. Put

Qn(x) = f(x)Pn(x) = xn+3 − Tn+3x
2 − (Tn+2 + Tn+1)x− Tn+2

(see Lemma 1 in [1]). Applying the Descartes’ rule of signs, Qn(x) has one positive
real zero, which obviously belongs to f(x). (It hangs together with Pn(x) possesses
no positive real roots.)

To examine the negative roots, put qn(x) = Qn(−x). In order to use Descartes’
result again, we must distinguish two cases based on the parity of n.

First suppose that n is even. Now

qn(x) = −xn+3 − Tn+3x
2 + (Tn+2 + Tn+1)x− Tn+2,

and the number of changes of coefficients’ signs predicts 2 or 0 positive zeros of
qn(x). We are going to exclude the case of 2 zeros.

Clearly, qn(0) = −Tn+2 < 0, qn(1) = −Tn+3 + Tn+1 − 1 < 0. Further, we have

q′n(x) = −(n + 3)xn+2 − 2Tn+3x + (Tn+2 + Tn+1).

The values q′n(0) = Tn+2 +Tn+1 > 0, q′n(1) = −(n+3)− 2Tn+3 +Tn+2 +Tn+1 < 0
show that the function qn(x) strictly monotone increasing locally in 0, while strictly
monotone decreasing in 1. Since q′′n(x) = −T2(n+3)(n+2)xn+1−2Tn+3 is negative
for all non-negative x ∈ R, then qn(x) is concave on R+. Consequently, if exist,
the positive zeros of the polynomial qn(x) are in the interval (0; 1).

Therefore, to show that qn(x) does not cross the x-axes it is sufficient to prove
that intersection point of the tangent lines e : y = (Tn+2 + Tn+1)x − Tn+2 and
f : y = (−(n + 3) − 2Tn+3 + Tn+2 + Tn+1)(x − 1) − Tn+3 + Tn+1 − 1 is under
the x-axes. To reduce the calculations we simply justify that x0 > x1, where x0 is
defined by e ∩ x-axes and x1 is given by f ∩ x-axes (see Figure 1).

First, (Tn+2 + Tn+1)x− Tn+2 = 0 implies

x0 =
Tn+2

Tn+2 + Tn+1
>

Tn+2

Tn+2 + Tn+2
=

1
2
.
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Figure 1

On the other hand,

x1 =
Tn+3 − Tn+1 + 1

−(n + 3)− 2Tn+3 + Tn+2 + Tn+1
+ 1 ≤ 1

2
(2.1)

holds if n ≥ 5. Indeed, (2.1) is equivalent to

1
2
≤ Tn+3 − Tn+1 + 1

(n + 3) + 2Tn+3 − Tn+2 − Tn+1
,

where both the numerator and the denominator are positive. Hence n+1 ≤ Tn+2−
Tn+1 remains to show, and it can be easily deduced, for example, by induction if
n ≥ 5.

The case n = 4 can be separately investigated. Now T5 = 4, T6 = 7, and
11x− 7 = 0 provides x0 = 7/11. Moreover, T7 = 13 and −22(x− 1)− 10 = 0 gives
x1 = 6/11. Thus x1 < x0.

Assume now, that n is odd. We partially repeat the procedure of the previous
case.

The polynomial

qn(x) = xn+3 − Tn+3x
2 + (Tn+2 + Tn+1)x− Tn+2

may have 3 or 1 positive zeros (by Descartes’ rule of signs again).
Obviously, qn(0) = −Tn+2 < 0 and qn(1) = −Tn+3 + Tn+1 + 1 < 0. Now

q′n(x) = (n + 3)xn+2 − 2Tn+3x + (Tn+2 + Tn+1),

which together with q′n(0) = Tn+2 + Tn+1 > 0, q′n(1) = (n + 3)− 2Tn+3 + Tn+2 +
Tn+1 < 0 implies the same monotonity behaviour in (0; 1) as before.
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Since the equation q′′n(x) = (n + 3)(n + 2)xn+1 − 2Tn+3 = 0 holds if and only if

xinf = n+1

√
Tn+3(
n+3

2

) ,
then qn(x) is concave on the interval (0; xinf ), and convex for x > xinf . However,
xinf > 1 if n ≥ 9, and in this case we can show that qn(x) does not intersect the
x-axes in the interval (0; 1) but there is exactly one zero if x > 1. The second
part is an immediate consequence of the existence of unique positive inflection
point xinf > 1. Concentrating on the interval (0; 1), similarly to the previous part
e : y = (Tn+2 + Tn+1)x− Tn+2 and f : y = ((n + 3)− 2Tn+3 + Tn+2 + Tn+1)(x−
1)−Tn+3 +Tn+1 +1 intersect each other under the x-axes, because of x0 > 1

2 holds
again, and

x1 =
Tn+3 − Tn+1 − 1

(n + 3)− 2Tn+3 + Tn+2 + Tn+1
+ 1 ≤ 1

2

follows, since −(n + 1) ≤ Tn+2 − Tn+1.
For n = 3 or 5 or 7 we can easily check the required property. Thus the proof

is complete.
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