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Abstract
The optimization of manufacturing systems is rarely a deterministic task in practice, 
as uncertainties of various origins often have significant impact on the feasibility or 
quality of a production plan. The decision making process is often a complex multi-
stage mechanism that anticipates and reacts to numerous parameter changes, both 
internal and external. Such optimization problems and the corresponding approaches 
are often classified and categorized based on the features of the addressed uncertain-
ties and the desired objective. The goal of this paper is twofold. First, a system-
atic approach is presented to enumerate the possible optimization problems for a 
given set of uncertainties and degree of freedom in the planning. This approach is 
illustrated via a scheduling example that is inspired by literature case studies and 
focuses on financial objectives with varying demands and prices in the market. 
Then, selected problem classes identified by the approach are discussed in detail, 
illustrating and examining the available techniques to tackle them, citing literature 
studies applying the same or similar approaches.
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List of symbols: Notations of the problem data and proposed models

Sets
U	� Set of available processing units
P	� Set of possible products

 *	 Krisztián Attila Bakon 
	 bakon.krisztian@pen.uni-pannon.hu

	 Máté Hegyháti 
	 hegyhati.mate@uni-sopron.hu

	 Tibor Holczinger 
	 holczigner.tibor@pen.uni-pannon.hu

1	 Institute of Informatics and Mathematics, University of Sopron, Bajcsy‑Zsilinszky utca 9., 
Sopron 9400, Hungary

2	 Department of Applied Informatics, University of Pannonia, Zrinyi u. 18., Nagykanizsa 8800, 
Hungary

http://orcid.org/0000-0003-1882-094X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-023-00854-4&domain=pdf


	 M. Hegyháti et al.

1 3

I	� Set of tasks
S	� Set of scenarios
Ip ⊆ I	� Set of tasks to produce product p ∈ P

I−
i
⊂ I	� Set of predecessor tasks for task i ∈ I

Ui ⊆ U	� Set of units capable to carry out task i ∈ I

C	� Set of batch number configurations feasible within the time horizon

Parameters
h	� [h] time horizon
P(s)	� Probability of scenario s ∈ S

pti,u	� [h] processing time of task i ∈ I in unit u ∈ Ui

bp	� [t] (maximal) batch size for product p ∈ P

lbp	� [t] lower bound for demand of product p ∈ P

ubp	� [t] upper bound for demand of product p ∈ P

dp	� [t] market demand for product p ∈ P

dp,s	� [t] expected demand for product p ∈ P in scenario s ∈ S

sp	�
[
cu∕t

]
 selling price for product p ∈ P

sp,s	�
[
cu∕t

]
 selling price for product p ∈ P in scenario s ∈ S

op	� [cu∕t
] overproduction cost for product p ∈ P

op,s	�
[
cu∕t

]
 overproduction cost for product p ∈ P in scenario s ∈ S

up	�
[
cu∕t

]
 underproduction cost for product p ∈ P

up,s	�
[
cu∕t

]
 underproduction cost for product p ∈ P in scenario s ∈ S

np,c	� Number of batches produced from p ∈ P in configuration c ∈ C

Variables
bp ≥ 0	� Variable for batch size for product p ∈ P

qp ≥ 0	� Variable for produced quantity of product p ∈ P

qo
p
≥ 0	� Variable for overproduction of product p ∈ P

qo
p,s

≥ 0	� Variable for overproduction of product p ∈ P in scenario s ∈ S

qu
p
≥ 0	� Variable for underproduction of product p ∈ P

qu
p,s

≥ 0	� Variable for underproduction of product p ∈ P in scenario s ∈ S

xc,s	� Binary variable denotes whether batch configuration c ∈ C would be 
selected in scenario s ∈ S

ws ≥ 0	� Aggregated objective variable for scenario s ∈ S

Notations for problem class enumeration
I 	� Set of input parameters
D	� Set of decisions
I
k	� Set of input parameters become available after stage k

D
k	� Set of decisions made in stage k

I
P	� All process data necessary for scheduling

D
S	� Set of decisions related to scheduling

I
M	� Set of market related parameters

D
B	� Set of decisions determining the size of each batch

�
B	� Set of variables represent or are infected by decisions from DB
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�̄
B	� Set of variables do not represent or are not infected by decisions from DB

�
B	� Set of constraints contain some �B variables

�̄
B	� Set of constraints do not contain any �B variable
�k	� Number of variables affected by decision Dk

�k	� Number of scenarios which approximate Ik

1 � Introduction and literature review

Real-life operation and optimization of production systems almost always have to 
deal with several uncertainties. Scheduling problems arising in the industry are no 
exception. Many papers in the literature discuss various approaches to tackle these 
uncertainties in both scheduling and other fields of process optimization.

The goal of this paper is twofold:

•	 First, a generalized way of looking at the decision making process is presented. 
Based on this aspect, a systematic approach can be derived to enumerate the pos-
sible problem classes regard to the sets of inputs given and decisions to be made.

•	 This approach is demonstrated with an illustrative scheduling problem class that 
aims to maximize profit. Some of the generated problem classes feature uncer-
tainties, and the possible techniques to address them are discussed for some 
classes.

The paper is structured as follows: the rest of the section provides a literature review 
of batch process scheduling (Sect.  1.1), followed by a brief review of addressing 
uncertainties in the production industry (Sect. 1.2). The end of this section, Sect. 1.3 
discusses advancement on the intersection of the two fields above, scheduling with 
uncertainties.

Section 2 provides the definition of an illustrative scheduling problem class that 
will be used later for demonstration. The proposed abstraction to decision making 
processes is presented in Sect. 3. Section 3.2 details the problem class enumeration 
procedure based on this abstraction. The problem class from Sect. 2 is used as an 
illustrative example.

Selected problem classes (referred to as cases) are investigated in detail in Sect. 4. 
These cases are selected in a way to highlight deterministic, reactive, and preemp-
tive techniques in scheduling. At the end of the paper, the conclusions are drawn.

1.1 � Batch process scheduling

Scheduling is an often used decision-making process in many and different kinds 
of manufacturing and services industry, where in a given time period the allocation 
of resources to different tasks is dealt with the goal to optimize one or more objec-
tives. Resources can take many different forms, tasks may be the operations, activi-
ties, stages or executions of different kinds of processes. Objectives can also take 
several shapes and forms, like minimization of completion time of several tasks. In 
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industrial environments, the processes take place within a given framework, but due 
to the different environmental effects and other factors, there is always the possibil-
ity of a certain degree of uncertainty.

Multi-purpose batch production plants are characterized by flexibility and variety 
in production, which can be used to meet customer demands and with the variety 
of different production paths to reduce production costs. Due to their diversity, they 
can be categorized in several ways (Méndez et al. 2006). Problem definition consists 
of three types of information, which are the recipe per product, the assignment of 
tasks to equipment, and the quantities to be produced from the products. The recipe 
contains the minimum information needed to manufacture the product, which is a 
unique description of specific product manufacturing requirements. Depending on 
user requirements, the following four levels are used in batch processes:

•	 General recipe identifies the raw materials, their quantity and the required pro-
cessing tasks.

•	 Site recipe is a general recipe supplemented with site information, which means 
site-specific information

•	 Master recipe contains information about the required equipment, raw materials 
with the required quantities and the process of product production.

•	 Control recipe contains additional information about the production units. This 
recipe is derived from the master recipe.

Of the four types, the master recipe is applied during the batch process scheduling, 
which can be represented by a graph where nodes denote the production tasks and 
arcs denote the relationships between them (Sanmartí et al. 2002). Another impor-
tant parameter of batch scheduling problems is the intermediate storage method. The 
intermediate storage options and implementation depend on the situation, produc-
tion policy and the product itself. If the products can be stored without restriction, 
the Unlimited Intermediate Storage (UIS) policy is applied, whereas if storage is not 
an option or not possible, it is called Non-intermediate Storage (NIS) policy. In the 
case where the intermediate storage capacity is finite, it means Finite Intermediate 
Storage (FIS) or Common Intermediate Storage (CIS) policy. The strictest storage 
policy is Zero Wait (ZW), when the rule does not allow intermediate storage, even 
in the processing units. These storage rules may be present in a mix, called Mixed 
Intermediate Storage (MIS) policy (Hegyháti and Friedler 2010).

1.2 � Uncertainty in process optimization

As the complexity of the processes increases, so does the likelihood of uncertainty, 
which requires special attention. There are several solutions for dealing with uncer-
tainty, but to use them first, it is necessary to identify the uncertainty, which pro-
vides a preliminary determination and understanding of the hypothetical cause. Each 
can be classified into separate categories according to certain aspects. The source of 
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uncertainty can be a dynamic event, which has the following categories (Suresh and 
Chaudhuri 1993):

•	 Workpiece related events: random job arrival, non-deterministic processing time
•	 Machine related events: machine breakdowns, loading limits
•	 Operation related events: operation delays, unstable production
•	 Other events: operator absence, defective materials

Another approach is that uncertainty is not simply a lack of knowledge. On the one 
hand, uncertainty can arise from inadequate information, which can be of the fol-
lowing types: inexactness, unreliability, and border with ignorance. On the other 
hand, there are situations where information is abundant, yet there is uncertainty 
(Van Asselt and Rotmans 2002). Expanding and decreasing information can further 
increase or decrease uncertainty. Increasing the necessary information in complex 
processes can put already established processes into a new perspective, about which 
additional knowledge can be used to identify additional uncertainties, which may 
mean that our knowledge is limited and insufficient, or the process is more complex 
than it used to be (Sluijs 1997). Uncertainties resulting from this knowledge-based 
deficiency can also appear in the model in several ways. Several general locations 
can be identified to establish the occurrence of uncertainty in the outcome (Walker 
et al. 2003):

•	 In the problem-making phase of the model, the context is defined, which is par-
ticularly important in the decision support practice (Dunn 2018).

•	 The model uncertainty can be divided into two parts: the model structure 
uncertainty and the model technical uncertainty, which is the uncertainty arising 
from the computer solution (Sluijs 1997).

•	 It is sometimes worthwhile to classify the inputs of the model into controllable 
and uncontrollable categories, depending on whether it is possible to influence 
the values of the input variables.

•	 The method used to calibrate the model parameters is associated with the uncer-
tainty of the parameters (Harremoës and Madsen 1999).

•	 The output of the model may include uncertainty, referenced as model outcome 
uncertainty, which can appear to the interest to the decision maker as cumula-
tive uncertainty (Bankes 1993).

Additional uncertainty factors must also be taken into account, but the main factors 
can be summarized based on the aforementioned (Bakon et al. 2022). The identifica-
tion of uncertainty is crucial in constructing the appropriate model, as ignoring it 
can lead to misleading or bad results, the consequences of which are revealed after 
decisions are made.
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1.3 � Uncertainty in batch process scheduling

To deal with uncertainty, it is necessary to distinguish between static and dynamic 
scheduling. In the case of a static schedule, the data are known in advance and the 
schedule is fixed. The origin of the uncertainty can arise from several factors, as 
mentioned earlier, therefore a dynamic schedule is required to address it as the 
schedule plan must be modifiable.

•	 Proactive approach To address uncertainty, it is achieved through modeling 
solutions or by optimizing its performance under different scenarios (Liu et al. 
2007; O’Donovan et al. 1999).

•	 Reactive scheduling A preliminary schedule is required to start, which is modi-
fied or re-optimized when the uncertainty parameters are realized or an unex-
pected event occurs (Mihoubi et al. 2021).

•	 Stochastic scheduling In the case of available information about the uncertainty, 
stochastic variables can be used with probabilistic description when implement-
ing a deterministic model (Ma et al. 2021).

•	 Fuzzy programming In the event when historical data is not available or the prob-
ability distribution is unknown, fuzzy programming can handle the uncertainty. 
Instead of using stochastic variables, a fuzzy programming implementation is 
used (Balasubramanian and Grossmann 2003; Prade 1979).

•	 Robust scheduling During robust scheduling steps, the impact of disturbances on 
performance should be minimized by incorporating uncertainties into the model 
describing the scheduling task. This makes the schedule less sensitive to various 
distractions. Two fundamental aspects of optimization are solution robustness 
and quality robustness (Herroelen and Leus 2005).

In the case of a production system, the rework process is important if several aspects 
support the need to achieve better results. In case of semi-finished and finished 
products, when the objective is to minimize inventory cost, determining the opti-
mal batch size is of paramount importance (Sarker et  al. 2008). To reduce inven-
tory cost if inventory is depleted at certain intervals in the production stage, an 
approach can be made that provides a solution for equal- and unequal-sized batch 
deliveries (Glock 2010), which can result in lower total costs. In the case of a two-
stage production system, supplementing the solution with a variable that can prop-
erly measure the production rate may be a good solution to reduce excess inven-
tory (Glock 2011). There are several other solutions in the literature where the batch 
sizing problem is solved. Such a solution could be a holistic scheduling algorithm 
(Bicheno et al. 2001), or in the case of a single-stage system due to defective items 
(Jamal et  al. 2004) and in the case of multi-stage manufacturing systems solving 
the optimal batch sizes (Sarker et  al. 2008). Investigating the implementation of 
Just-In-Time, where batch-sizing decisions (McKenzie and Jayanthi 2007) have an 
impact on different demand patterns from an operational and financial point of view 
adequate results were achieved. Similarly, if the Just-In-Time scheduling problem 
is approached from a general due date perspective, solution is achieved by treat-
ing it as an integrated batch sizing problem (Hazır and Kedad-Sidhoum 2014). 
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Distributionally robust optimization based models can provide sufficient flexibility 
for random demands to adjust resource actions (batch sizes) in multi-stage decision-
making (Shang and You 2018). Adjusting batch sizes to dynamic events entails fre-
quent adjustments of job sequence, which can be avoided with a buffering mecha-
nism (Qin et al. 2018). In Chemical, Petrochemical and Pharmaceutical Indsutries, 
risk mitigation approaches have the ability to explicitly take into account param-
eter uncertainty within a mathematical framework (Verderame et al. 2010). Demand 
uncertainty can be addressed with stochastic models, which can allow uncertain 
product demand correlation with the objective of profit maximization (Petkov and 
Maranas 1997). In short-term scheduling of multiproduct and multipurpose batch 
plants, the schedule from a multiperiodic formulation has much bigger robustness 
compared to the one determined based on the vertexes of the uncertainty range, con-
sidered as scenarios (Vin and Ierapetritou 2001). For due date changes, adopting 
discrete-time simulation method for minimizing responsiveness and tardiness is a 
viable solution in precast concrete structures (Kim et al. 2020). With prefabricated 
construction productivity and on-time delivery of precast components, a real case 
study can be conducted to test the validity of a two-level rescheduling model and 
achieve significant cost savings (Wang and Hu 2018). The applicability of two-stage 
adaptive robust optimization approaches are demonstrated on two case studies by 
introducing uncertain parameters (processing time, order demand) into the single-
stage deterministic model and reformulating it into a two-stage batch scheduling 
model (Shi and You 2016). Polynomial-time efficient algorithms can be proposed 
for single-machine scheduling problems with serial and parallel batches under 
uncertain processing times using worst-case scenario analysis (Wu et  al. 2023). 
For a single machine with availability constraints, where the machine suffers from 
unexpected breakdowns, a genetic algorithm by integrating a run-based preventive 
maintenance into the production scheduling model can optimize system robustness 
and stability with experimental results (Lu et al. 2015). Demand uncertainty may be 
represented by scenario trees in a multi-stage stochastic programming model with 
lot-sizing (batch size for each product) and overall system costs (production cost, 
setup cost, inventory cost, backlog cost)(Hu and Hu 2018). The results of a case 
study with two-stage sotachastic programming model for a manufacturing company 
producing braking equipment in automotive industry has showed that production 
quantity is more sensitive to the uncertainty than production sequence (Hu and Hu 
2016). A combination of a mixed-integer linear programming and an agent-based 
reactive scheduling method can be used to minimize total cost of inventory hold-
ing and production setup, where processing times are uncertain (Chu et al. 2015). 
Rescheduling is traditionally viewed as an approach if uncertainty is present, but 
the event-triggered rescheduling has some shortcomings (constantly incoming new 
information), which can be addressed by approaching the rescheduling as an online 
problem (Gupta et al. 2016).
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2 � Illustrative scheduling problem class

The problem class selected for illustration is the mid-term scheduling of a produc-
tion plant with an economic objective. The goal is to find a production schedule that 
fits into the predefined time horizon and maximizes the expected profit that derives 
from the following components:

•	 Income by selling the produced products
•	 Penalties if market demand is not met, or exceeded

There are several possible products produced via precedential recipes by the avail-
able units. For the sake of simplicity, processing is the only step with time require-
ments. Cleaning, transportation, etc. are considered to be instantaneous.

The core sets and parameters of the problem can be summarized as:

U set of available processing units
P set of possible products
bp maximal batch size for p ∈ P [t]
dp market demand for p ∈ P [t]
sp selling price for p ∈ P 

[
cu∕t

]

op overproduction penalty for p ∈ P 
[
cu∕t

]

up underproduction penalty for p ∈ P 
[
cu∕t

]

Ip set of tasks to produce p ∈ P , and let I = ∪p∈PIp
I−
i
 ⊂ I set of predecessor tasks for i ∈ I

Ui ⊆ U set of units capable to carry out i ∈ I

pti,u ≥ 0 processing time of i ∈ I in u ∈ Ui [h]
h ≥ 0 is the time horizon [h]

To help to understanding the notations, an instance of this problem class is pre-
sented. Figure  1 shows the recipe of this instance which contains 3 products 
( P = {A,B,C} ). Product A has a sequential production recipe with 3 produc-
tion steps ( IA = {i1, i2, i3} ), product B also has a sequential production recipe 
with 2 production steps ( IB = {i4, i5} ) and the recipe of product C has 4 tasks 

Fig. 1   Example instance of the illustrative problem class
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( IC = {i6, i7, i8, i9} ) and it is not sequential. The recipe contains 4 processing units 
( U = {u1, u2, u3, u4} ), which can be used for production. Tasks i1 and i6 can be per-
formed by two processing units (u1, u2) where the processing time of task i1 is 4 h 
and the processing time of i6 is 8 or 9 h using u1 or u2, respectively. Task i6 gener-
ates 2 intermediates and task i9 has 2 prerequisite tasks (i7, i8).

Figure 1 does not contain all information of the system, like cost parameters. The 
parameters of the products and tasks are summarized in Tables 1 and 2, respectively, 
and the time horizon (h) is 55 h.

3 � Proposed abstraction for decision processes

3.1 � General concepts

From an abstract point of view, the difference between deterministic and stochastic 
problems comes down to the timing of the revelation of the values of input param-
eters and when certain decisions have to be made.

In the deterministic case, the values of all of the input parameters are known 
in advance, i.e., their values are revealed before any decision is made. In contrast, 
stochastic problems have some input data, whose value is revealed later than oth-
ers, and some decisions have to be made between these two timings. The data that 
reveals themselves after some decisions have been made are often called uncertain.

Table 1   Parameters of products for the example problem instance shown in Fig. 1. The units of measure 
are [t] , [t] , 

[
cu∕t

]
 , 
[
cu∕t

]
 and 

[
cu∕t

]
 for parameters bp , dp , sp , op and up respectively

Product p bp dp sp op up Ip

A 7 29 100 2 3 {i1, i2, i3}

B 4 20 120 5 3 {i4, i5}

C 8.5 78 150 1 1 {i6, i7, i8, i9}

Table 2   Parameters of tasks for 
the example problem instance 
shown in Fig. 1

Task pti.u [h]

i I−
i

Ui u1 u2 u3 u4

i1 ∅ {u1, u2} 4 4
i2 {i1} {u3} 2
i3 {i2} {u4} 2
i4 ∅ {u3} 6
i5 {i4} {u4} 5
i6 ∅ {u1, u2} 8 9
i7 {i6} {u3} 3
i8 {i7} {u3} 2
i9 {i7, i8} {u4} 4
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If all of the decisions have to be made before the uncertain data reveal themselves, 
the approach is non-reactive. Robust and preventive approaches belong to this cat-
egory, and the differentiation often lies in the selected objective function. However, 
if some decisions can be made or altered after an uncertain input is revealed, the 
approach is reactive.

Note, that unexpected events, such as unit shutdowns are within the scope of the 
description above. Such events could be considered as new, however, they can also 
be looked at as predefined parameters that reveal their values later. For example, 
possible shutdowns can be considered as boolean parameters for each task, which 
either turn out to be 0 or 1 at the time of their execution.

More often than not, if uncertain values are revealed later, there is still some 
information available on their possible values. These can be based on a predictive 
simulation, historical data, assessment from experts, etc. The level of detail of 
this information can vary a lot, and can influence the approach to be used. In this 
paper we will focus on the following options:

Estimated value- Only a single value is prognosed, which may be the mean or 
median value.
Interval - An interval is given for the possible values of the parameter, but no 
information is available about the probability distribution within that interval.
Probability distribution - A continuous or discrete probability distribution 
function is given for uncertain parameters.

Naturally, not all of the above are applicable for all cases, e.g., an interval predic-
tion for a binary variable is trivial. However, the detailedness of this information 
can highly influence the possible objectives and approaches that can be devel-
oped. For example, without an interval, it is theoretically impossible to develop a 
robust approach with the worst case as an objective or bound. Similarly, expected 
values can only be incorporated into the approach if some distributions on the 
contributing values are available. From the practical point of view, the difficulty 
to assess this data can vary a lot based on the parameter, and may be unreason-
ably expensive to do so.

3.2 � Enumeration procedure on the illustrative problem class

From the theoretical point of view, if there are n inputs and m decisions, there 
are (n + m)! different orders of them, that could be considered as different prob-
lems. From the planners’ perspective, some of these orders can be considered the 
same. A decision can only rely on data that has already been revealed, therefore 
if two decisions are neighbors in an ordering, swapping them will not alter the 
information available for either of them. This can reduce the number of cases by 
magnitudes.

Moreover, in practice, input parameters are often revealed in larger groups, and 
some decisions also have to be made simultaneously. For illustration, let us split 
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both the decisions and inputs of the considered illustrative problem class into two 
such groups:

D
S : the set of decisions related to scheduling, such as choosing the number of 

batches to be produced, and the assignment, sequencing, and timing of each task.
D

B : the set of decisions determining the size of each batch.
I
P : all the process data including recipes, processing times, task-unit compat-

ibilities, etc. (U, P, bp , Ip , I−i  , Ui , pti,u , h).
I
M : market related parameters describing demand, sell price, and costs for 

over- and underproduction ( sp , op , up , dp).

The idea behind this separation is that while IM may change on a daily basis, IP is 
more stable. Similarly, a facility often prepares the schedule ( DS ) in advance for a 
week or so, and may only do small adjustments on a daily basis, which in this case is 
considered to be the sizing of the batches ( DB).

Having these four groups, 4! = 24 different orders could have been considered, 
as illustrated in Fig. 2. Each order represents a different problem class, which will 
be referred to as cases in the rest of the paper. For a more expressive visualization, 
decision-items have orange background color, while information-items have green. 
The connected cases can be transformed into each other by swapping two neighbor-
ing items. The connections by swapping non-neighboring items are omitted from the 
Figure for transparency, as it would mean an additional 36 edges.

As mentioned before, some of these cases can be considered identical, as the 
decision-items have the same information available for them. These groups of cases 
are indicated by gray areas in Fig.  3. For example, the following four orders all 

Fig. 2   Different cases for the illustrative example
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describe the deterministic case: IPIMDS
D

B , IMIPDS
D

B , IPIMDB
D

S , IMIPDB
D

S , 
which can be simplified just as ID.

Removing these duplications, 14 cases remain, which are summarized in Table 3. 
Not all of the cases have equal practical significance:

•	 Scheduling before any process data are available is meaningless, which elimi-
nates cases 5, 7–11, 13.

•	 In cases 5–7, 10, and 13, market parameters are known earlier than process 
parameters. While not completely impossible, these cases will be omitted from 
discussion as market environment data are usually much more volatile than pro-
cess data.

•	 The remaining are cases 12 and 14, where batch sizing data have to be made 
a-priori. A valid scenario that could be described by these cases is when the sizes 

Fig. 3   Equivalent cases for the illustrative example

Table 3   Considered cases for 
the illustrative problem class 
from Sect. 2

Case Order Case Order

1 ID 8 DI

2 I
P
D

S
I
M
D

B 9 D
S
I
P
D

B
I
M

3 I
P
D

B
I
M
D

S 10 D
S
I
M
D

B
I
P

4 I
p
DI

M 11 D
S
ID

B

5 I
M
D

S
I
P
D

B 12 D
B
I
P
D

S
I
M

6 I
M
D

B
I
P
D

S 13 D
B
I
M
D

S
I
P

7 I
M
DI

P 14 D
B
ID

S
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of the units have to be decided in the design phase of a plant, and scheduling 
decisions have to be made much later without the option of scaling the processes 
down. From the scheduling point of view, these are cases when the batch sizes 
are fixed.

Note, that in some cases, the decision maker is in a better position than in 
others. Clearly, the deterministic case ( ID ) is the most advantageous among all 
of them, when all of the information is available before any decision has to be 
made. This relation can be defined formally and forms a partial ordering, with 
the deterministic case being the maximal element, and case 8 as the minimal. In 

Fig. 4   Strongness directed 
network of merged cases for the 
illustrative example

Fig. 5   Strongness hierarchy of merged cases for the illustrative example
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the current context, it is more expressive to talk about stronger and weaker cases 
instead of larger and smaller ones. Informally, a case is stronger than another, 
if the decision maker has always at least as much or more information available 
for all of the decisions than in the other case. (Formally, case X is stronger than 
case Y, if for all D-type items, the set of I -type items preceding it in case Y is a 
subset of those in case X.) Obviously, identical cases are equally strong and form 
equivalence classes.

In Fig. 4, this ordering is represented by the direction of the arcs. Transitive 
arcs are omitted for transparency.

Another layout of the same network in Fig. 5 better indicates the strongness 
hierarchy, and the selected cases for Sect. 4 are also indicated.

4 � Evaluation of selected cases

The 4 selected cases will be discussed in detail in this section. The main aspects 
of the investigation will focus on

•	 Complexity - How many variables or constraints a proposed model may 
require compared to the baseline.

•	 Reusability - In a practical setting, how much of the effort needs to be repeated 
if the problem is solved on a daily basis with changed data.

•	 Generalizability - How easy, solvable it is if the profit function is generalized.

4.1 �  ID deterministic case

This is the strongest case that can serve as a baseline. All information is known in 
advance, thus the model is deterministic.

Fig. 6   The profit function of a 
product



1 3

Optimization with uncertainties: a scheduling example﻿	

The problem can be formulated as a mixed-integer linear programming prob-
lem easily. Depending on the type of model used (precedence-based, discrete, 
continuous, etc.) the number of continuous and binary variables, as well as the 
number of constraints may vary a lot.

The profit function according to the base problem defined in Sect. 2 is:

where qp indicates the produced quantity from product p ∈ P . This is a piecewise 
linear function for each product with two pieces: above and below dp . For better 
understanding Fig.  6 shows the profit function of a product and Fig.  7 shows the 
profit function of 3 products.

This function can be modeled in different ways: a binary variable may be intro-
duced for each product for the selection of the segments, or two non-negative 
continuous variables can be introduced for under- and overproduction, and the 
profit is reformulated as:

where qo
p
 and qu

p
 are non-negative continuous variables that model max(0, qp − dp) 

and max(0, dp − qp) , respectively.1 This also means that qp must be replaced by 
dp + qo

p
− qu

p
 everywhere else in the model.

It is also important to note, that the evaluation of the profit (and thus op, up and sp ) 
only appears in the objective function, and they have no influence on the other parts 
of the model. This has two beneficial consequences.

If the IM variables change for the next day, the solution acquired before will still 
be feasible if the qo

p
 and qu

p
 are shifted with the change in demand. This means that 

with this simple preprocessing step, a feasible solution for the MILP model is avail-
able, providing an initial upper bound. Since this solution is primal feasible, the 
bound can be improved by running the second phase of the simplex algorithm to 

∑

p∈P

(
sp ⋅min(qp, dp) − up ⋅max(0, dp − qp) − op ⋅max(0, qp − dp)

)

∑

p∈P

(
sp ⋅ dp − (up + sp) ⋅ q

u
p
− op ⋅ q

o
p

)

Fig. 7   The profit function of three products

1  Note, that this formulation is only valid if op ≥ 0 and up ≥ −sp , which is generally the case, as both op 
and up are at least non-negative in a real scenario.
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achieve higher profit by allowing to change only the mass related continuous vari-
ables, while keeping discrete scheduling variables and continuous timing variables 
fixed.

The other benefit is, that if a more complex profit evaluation is needed to model 
the real life example, properly it will only appear in the objective function. Thus, for 
example, if this function is quadratic in nature, the problem can still be formulated 
as a Mixed Integer Quadratic Programming (MIQP) problem (Bonami et al. 2018; 
Mencarelli and D’Ambrosio 2019). Modern solvers such as CPLEX or Gurobi can 
solve MIQP problems with some solver specific restrictions. For example in case of 
CPLEX the objective function can contain quadratic terms and it must be convex or 
the objective function can contain only quadratic terms which are products of binary 
variables (in this case, the objective function is not necessarily convex). Moreover, 
the constraints must be inequalities and the constraints that contain a quadratic term 
can be represented as second order cone programs (SOCP) or the quadratic term in 
a constraint involves only multiplication of binary variables.2 In the case of multi-
objective problems, formulating the problem as MILP or MINLP, Pareto optimal 
solutions can be achieved with the CPLEX or BARON solver (Capón-García et al. 
2011).

4.2 � IPDI
M market‑sensitive scheduling and batch‑sizing

In this case, one has to make the scheduling and sizing decisions before the market 
data reveals itself. Unlike in the deterministic case, it becomes important what kind 
of information is available about the the uncertain values.

4.2.1 � Expected demand

The simplest option is if a value is estimated, and then the goal of the optimization 
is to maximize profit for that scenario. This situation is equivalent to the determinis-
tic case from the mathematical point of view.

4.2.2 � Demand interval

A slightly more detailed option is, if there is an interval [lbp, ubp] available for each 
uncertain variable. Then, for each production plan, a worst-case and a best-case sce-
nario can be evaluated. If an estimated case is also available within the interval, 
an “expected-case” is also available. These values give rise to several optimization 
objectives, for example:

2  https://​www.​ibm.​com/​docs/​en/​icos/​20.1.​0?​topic=​optim​izati​on-​solvi​ng-​mixed-​integ​er-​progr​amming-​
probl​ems-​quadr​atic-​terms Accessed 24 Oct 2021.

https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-solving-mixed-integer-programming-problems-quadratic-terms
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-solving-mixed-integer-programming-problems-quadratic-terms
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•	 Maximizing expected- or best- case while having a lower bound on the worst-
case

•	 Maximizing worst-case

Maximizing the worst-case scenario is simple, as it will happen at one of the ends 
of the given interval, whether qp is inside it or not. Thus, one can add the profit 
expressions as in the deterministic case once with dp = lbp and then with dp = ubp 
for each product. Then, for each product a new profit variable is introduced as the 
lower bound of these two cases. These continuous variables are then summed in the 
maximization objective.

Implementing a lower bound on the worst case can be done in a similar fash-
ion. The only difference is that the sum mentioned previously is present in a con-
straint with this lower bound. Maximization of the expected case is the same as the 
deterministic case. Maximizing the best case is similar, with the only difference that 
if qp is within the interval, then dp can be equal to it. If qp < lbp , then the profit 

should be calculated as if dp = lbp . The situation is similar if qp > ubp . This can be 

done easily if qo
p
 models max(0, qp − ubp) (instead of max(0, qp − dp) ) and qu

p
 does 

the same for max(0, lbp − qp) . Note, that this modeling trick does not allow to use 

Fig. 8   The aggregate profit function of three scenarios of a product (product A)
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dp + qo
p
− qu

p
 instead of qp in the other parts of the model anymore. One should add a 

new bounded q�
p
∈ [0, ubp − lbp] variable, and use dp + qo

p
− qu

p
+ q�

p
 instead.

4.2.3 � Discrete demand distribution

In some cases, the probability distribution of the uncertain values can be estimated 
with a (finite) discrete distribution function. For the sake of simplicity, let us assume 
that there is a finite set of scenarios, S, and the expected values of all of the uncer-
tain variables are given for all of the scenarios. In a more complex case, some sets 
of uncertain variables would have their scenarios independently. However, having 
independent scenario sets S1, S2,… would only translate to |S1| ⋅ |S2| ⋅… global sce-
narios. For each s ∈ S , there is a probability assigned, P(s) such that 

∑
s∈S P(s) = 1.

Evaluating the profit would require separate qo
p,s

 and qu
p,s

 variables for each sce-
nario, s ∈ S , which would model max(0, qp − dp,s) and max(0, dp,s − qp) , where 
dp,s is the expected demand in the scenario. In the objective function there is just a 
weighted version of the original objective for each scenario:

where sp,s , up,s , and op,s are the price, under- and overproduction costs for product 
p ∈ P in the scenario s ∈ S . Figure 8 shows an aggregate profit function of a product 
in case of three scenarios with probabilities 0.4, 0.5 and 0.1.

Thus the model requires 2 ⋅ (|S| − 1) additional continuous variables, and the 
constraints for setting them. Note, however, that these variables are strongly 
bound together, as for all s ∈ S , dp,s + qo

p,s
− qu

p,s
 must represent the same value, qp 

that is independent from s.
Incorporating continuous distribution functions into an MILP model is impossi-

ble expect for trivial cases. Regardless of the detail of the information on the market 
data, if it changes, re-running the model is equally time consuming as it was in the 
deterministic case. Similarly, considering a more complex cost function is possible 
within similar limits as in the deterministic case.

Note, that the ideas above are general, not specific to the illustrative example. If 
there are uncertain variables and variables that depend on them, the scenario-based 
approach can be used in the same way even if those variables are binary decision 
variables.

Scenario-based approach is applied with uncertainty of the number of jobs using 
MILP and branch-and-price algorithm to minimize the expected costs (Wullink 
et  al. 2004). Similarly, with uncertain time requirements of elective operations in 
theater scheduling decisions with the objective to maximize the expected profit is 
applied in (Freeman et al. 2016). Data-driven uncertainty set with probability dis-
tributon for market demand is used to maximize the net present value at each time 
period in Ning and You (2017).

∑

s∈S

P(s) ⋅
∑

p∈P

(
sp,s ⋅ dp,s − (up,s + sp,s) ⋅ q

u
p,s

− op,s ⋅ q
o
p,s

)
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4.3 � IPDS
I
M
D

B market‑reactive batch‑sizing

This case represents a middle point between the previously discussed cases, as 
it is clearly visible in Fig. 5. Compared to the deterministic case in Sect. 4.1, it 
is weaker, as scheduling decisions have to be made before market information is 
available. On the other hand, it is a stronger case than the market-sensitive one 
from Sect. 4.2, as the decision maker has the ability to react on the market infor-
mation with the decisions about batch sizing.

If the possible outcomes from IM are finite, a two-stage model can be easily for-
mulated. For example, having a finite set of scenarios, S, as discussed in a previ-
ous section. In such a situation, for each variable, x that either represents a decision 
from DB or a calculated value based on those variables, a set of variables, xs has to 
be introduced, where s ∈ S . Obviously, qu

p
 and qo

p
 would be such derived variables, 

and any variables they derive from, possibly the independent sizing variables for the 
batches. Thus, instead of qo

p
 and qu

p
 , several ( 2 ⋅ |S| to be precise) variables are intro-

duced, denoted by qo
p,s

 and qu
p,s

 , respectively for s ∈ S . This is similar to expected 
profit maximization discussed in the previous chapter. However, a key difference is 
that these variables are more independent, as dp,s + qo

p,s
− qu

p,s
 (representing qp,s ) can 

be different for each scenario.
Any constraint that involves any of these variables have to be added multiple 

times for all s ∈ S , as well. For example, if an objective variable, ws is introduced, 
the following constraints may be added:

Having these variables, an expected profit can simply be expressed as 
∑

s∈S P(s) ⋅ ws . 
Imposing a lower bound on the worst case situation can be done by setting the lower 
bound for all ws variables. If the worst case is to be maximized, a new variable w 
may be introduced with w ≤ ws for all s ∈ S , and then this variable is maximized.

Note, that this approach can significantly increase the size of the model, and 
thus, its computational need. Let us say that �B variables represent or are infected by 
decisions from DB and �̄B are not. Similarly, let �B denote the number of constraints 
that have any of those �B variables, and �̄B those that rely only on the non-affected 
variables.

In the market-sensitive case from the previous section, the model would have 
�
B + �̄

B variables and �B + �̄
B constraints. In the scenario-based market-reactive 

case, the model has |S| ⋅ �B + �̄
B variables and |S| ⋅ �B + �̄

B constraints. Clearly, by 
increasing the number of scenarios the complexity of the model increases, as well. 
This presents a practical trade-off between having a solvable model and having a 
more detailed scenario distribution that models the uncertain variables better.

Naturally, the number and type of those �B variables and �B constraints are sig-
nificant. In this illustrative example, only a small portion of the variables is affected, 
and all of them are continuous. Similarly, only a few equality constraints are affected 
by those variables. Most of the variables and constraints deal with scheduling deci-
sions, such as timing, allocation, precedence, etc, that are unaffected by DM . Thus, 

ws =
∑

p∈P

(
sp,s ⋅ dp,s − (up,s + sp,s) ⋅ q

u
p,s

− op,s ⋅ q
o
p,s

)
∀s ∈ S
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this is a much more fortunate situation than IPDB
I
M
D

S would have been. The set of 
variables affected by scheduling decisions is a much larger subset of all of the vari-
ables, i.e., �S is much larger than �B , and the same could be said about �S in relation 
to �B.3 Moreover, plenty of these variables are binary, thus not only |S| ⋅ �S + �̄

S is 
significantly larger than |S| ⋅ �B + �̄

B , it is true for the affected number of discrete 
variables, as well. Obviously, solving the model in that case is a much more CPU 
extensive job than in this one. In addition, sequencing constraints that utilize big-M 
relaxation are also affected by DS in the IPDB

I
M
D

S case. Thus, the two-stage model 
with |S| ⋅ �S + �̄

S constraints would not only have more constraints, but probably 
provide worse bounds due to the increased number of big-M constraints.

Note, that the idea above can be generalized to three-stage, four-stage, ..., 
n-stage cases, as well, that do not appear in our illustrative example. Let us con-
sider a I0D1

I
1 …D

n
I
n case, where �k variables are affected by Dk but unaffected 

by Dk+1
,… ,D

n , and the outcome for each Il is approximated by �l scenarios. For 
the sake of simplicity, it is assumed, that these scenarios are independent from each 
other. In this case, there would be only one version of the �1 variables only affected 
by D1 , �1 different version of all of the variables affected only by D1 and D2 , as in 
the above case. For the variables that are affected by D1 , D2 and D3 , �1 ⋅ �2 different 
versions must be added, and so on. Finally, the �n variables that are affected by Dn 
have a total number of �1 ⋅ �2 ⋅ ⋯ ⋅ �n−1 . Altogether, the total number of variables is:

As an illustration, Table 4 shows the number of variables for several n values while 
considering that �k = 1 and the number of scenarios for each stage is also uniform, 
e.g., �k is independent of k and simply denoted by � . In this simplified case the above 

�1 + �1 ⋅

(
�2 + �2 ⋅

(
�3 + �3 ⋅

(
… �n

)
…

))
=

n∑

k=1

(
�k ⋅

k−1∏

l=1

�l

)

Table 4   Number of variables in 
the n-stage model with �k = 1 
and uniform � values

� n

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 1 3 7 15 31 63 127 255
3 1 4 13 40 121 364 1 093 3 280
4 1 5 21 85 341 1 365 5 461 21 845
5 1 6 31 156 781 3 906 19 531 97 656
6 1 7 43 259 1 555 9 331 55 987 335 923
7 1 8 57 400 2 801 19 608 137 257 960 800
8 1 9 73 585 4 681 37 449 299 593 2 396 745
9 1 10 91 820 7 381 66 430 597 871 5 380 840
10 1 11 111 1 111 11 111 111 111 1 111 111 11 111 111

3  Note, that �S is not necessarily �̄B , as some redundant calculated variables may are affected by both set 
of decision variables.
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formula reduces to n ⋅
∑n−1

k=0
�
k . Also, if the case were deterministic, the original 

number of variables would be n in each case, which is the same as if � = 1.
Re-running these models can be exhaustive, however, in this particular example, 

if the number of feasible solutions for the part of the model with �̄B variables and 
�̄
B constraints are manageable, a two-stage solution approach can be implemented. 

First, the feasible solutions to this part of the model are generated and saved. This is 
a time consuming process, but it has to be done only when IP changes, which is rare. 
Next, each time the predictions on IM change, the only remaining part of the model 
needs to run for all of the saved schedules. Obviously, this is only reasonable, if

•	 The deterministic part is heavy, with many discrete variables and big-M con-
straints

•	 This part of the model has a relatively small number of feasible solutions
•	 The frequently changing part of the model is small and quick to solve

The advantage of this approach besides the reduced CPU times is that the models for 
the two parts are handled separately. It makes a possibility to apply different solution 
approaches. For example, the first part can be done by an MILP or SAT approach, 
while the profit optimization part can rely on something else. This allows the model 
to address more complex profit functions or continuous probability distributions for 
I
M . For example, if only the demand changes, the news-vendor model (Edgeworth 

1888) can be applied to address a continuous distribution for dp (Hegyhati et  al. 
2010). An additional benefit is that the saved schedules can be evaluated indepen-
dently which makes it easy to deploy the calculations on a cluster, and carry out the 
computations in parallel. By doing this, more complex profit functions or a higher 
number of considered scenarios becomes possible to consider.

4.4 � IPDB
I
M
D

S market‑reactive scheduling

At first glance, this case could seem unrealistic, however, it actually represents an 
integrated planning and scheduling problem if the equipment units must always be 
operated in 100% capacity, and their sizes have to be decided in the facility-design 
phase. In this case, the sizing of the equipment units means the sizing of the batches 
as well, which is done once before building the factory, and thus before the daily 
market data is revealed. Thus, batch sizing decisions can not reflect on the daily 
demand, however, scheduling decisions can.

Similarly to the market-sensitive batch-sizing case, a two-stage programming 
model can easily be derived if the distribution of market data can be described in the 
form of discrete scenarios. However, as mentioned previously, the number of vari-
ables and constraints affected by DS is much larger than that of DB . As a result, this 
model would become highly inefficient even with a small number of scenarios.

A more reasonable approach could be to generate all of the feasible schedules 
before making the decisions on batch sizing. Although this process would definitely 
take a considerable amount of time, most probably, that is not a significant issue in 
the planning phase of a facility. Generating all of the feasible schedules via MILP 
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models can be cumbersome, but other approaches, such as an S-graph algorithm or 
potential constraint programming model can do this in a straight-forward way.

The end result of this procedure is a list of batch number configurations (P-tuple 
of integers), that are feasible within the time horizon. Let C denote this set, and 
np,c refer to the number of batches produced from p ∈ P in the configuration c ∈ C . 
D

S is reduced to a single selection from C, which would mean |C| binary variables, 
whose sum is 1.

In the two-stage model, that would result in |C| ⋅ |S| binary variables, which may 
be a huge number, however, the overall model is very simple:

Where bp is now a first stage continuous variable, and binary variable xc,s denotes 
whether batch configuration c would be selected in scenario s. As a result, the latter 
equality contains a bilinear term, that could be linearized. This preventive model can 
provide the solution with the highest expected profit.

There are two more practical considerations to discuss for this case. When 
the planning phase is over in practice, and thus the bp values are fixed, the prob-
lem reduces to a deterministic profit maximization scheduling problem, as all the 
remaining decisions can be made after all the input data is revealed. Thus, if the 
market data change for the same factory, the bp values can be considered as input 
parameters at that point. However, if the C set is still kept, finding the optimal profit 
reduces to finding the minimal element between the values of the |C| profit options. 
The calculation of these profit options is a very simple formula, which can be done 
in parallel if necessary.

Another practically interesting situation is, when a similar plant (with the same 
set of units and products) is to be designed with different market estimates (scenar-
ios and related parameters). If that were to happen, the |C| configurations would still 
be valid, and could be reused with the model above.

If other meta-information is also saved during the generation of the configura-
tions, such as the minimal makespan for each configuration, the generation of the C 
set can be avoided and replaced by simple filtering if the new plant differs by having 
a shorter time horizon or having a subset of products. Even if the time horizon gets 
a bit longer, most of the computation can be skipped using the old C set as a cache.

5 � Concluding remarks

Uncertainties are almost guaranteed for any application in the field of optimization. 
The contributions of this paper to this topic are twofold. In the first part, a generic 
characterization approach is presented for stochastic optimization problems. This 
method identifies a problem class by an alternating sequence of sets of information 
reveals and decisions to be made. The enumeration of such problem classes was 
illustrated by a stochastic scheduling example, where both the problem data, and 

∑
c∈C

xc,s = 1 ∀s ∈ S

dp,s + qo
p,s

− qu
p,s

=
∑
c∈C

np,c ⋅ bp ⋅ xc,s ∀p ∈ P, s ∈ S
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the set of decisions are split into two parts. Two relations among those classes were 
identified: an equivalence relation for sequences that define the same problem, and 
a partial ordering where a "stronger" problem class is unequivocally more beneficial 
for the decision maker, with the deterministic class being the maximal element.

For the illustrative example, 14 such distinctive classes were derived from the 24 
possible sequences, and referred to as cases. The second part of the paper focused on 
the possible modeling and optimization techniques for 4 selected cases, where some 
or all of the decisions have to be made before market data is revealed. These options 
were discussed in detail, and investigated from the aspect of complexity, general-
izability and reusability. While some of the statements hold for other optimization 
problems, regardless of the nature of their information and decision sets, others 
exploit problem specific features to propose more efficient approaches. This part of 
the discussion focuses not only on theoretical complexity, but possible implementa-
tion and practical application of the mentioned approaches, such as building a cache 
of feasible schedules a-priori. This second part leaves room for follow-up papers to 
conduct empirical tests on case studies, and compare the results based on quality, 
efficiency, and applicability.
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