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Abstract 
The purpose of this paper is to experimentally study the thermal resistance values (R-value) of 
insulation panels made mainly from natural fibers. Another investigation is to study the 
impact of the panel’s thickness on the values of thermal transmittance (U-value) of a multi-
layered installation for external wall systems to determine the optimal thickness of insulation 
panels used for building envelopes. Natural fibrous materials or renewable resources and their 
reinforcement composites are currently being used in building and construction as a potential 
solution to significantly reduce thermal load and energy consumption. In this study, the 
thermal resistance values of several samples made from rice straw, energy reed, and coir fiber 
are calculated from the thermal conductivity which was measured at room temperature (20 
°C) using the mean of heat plate method. The lowest R-value was recorded from the 
polymeric composites reinforced by coir fiber and rice straw fiber (0.11 to 0.19 m2·K/W). 
Although these samples showed the least heat insulation capacity, however, they can be used 
as an additional layer in multi-layered wall structures because of their low thermal 
conductivity coefficient. Besides, the R-value per mm was also scored to highlight a strong 
dependence of thermal resistant performance on the thickness of the samples. On the other 
hand, the simulated data showed that increased thickness resulted in decreased U-value and 
the optimal thickness can be determined when the thickness is larger than 120 mm according 
to the standard of low energy house. Overall, the calculated R-values is a valuable parameter 
to evaluate the thermal resistant effectiveness of a multi-layered installation, which allows us 
to investigate the effect of additional layers from different insulating materials used in 
building envelopes.  
Keywords: building insulation materials; natural fiber; polymeric composite; thermal 
conductivity; thermal resistance; thickness. 
 
1. Introduction 

Nowadays, buildings sector has been identified as the largest energy consumer as well as over 

1/3 of greenhouse gas emissions worldwide. More especially, buildings account for 35-36% 

of global energy demand and 38,37% of greenhouse gas emissions in the year 2019 and 2020 

according to the global status report by the UN Environment Programme in 2021, while in the 

EU, these numbers are 40% and 36%. In the context of development in green technology and 

https://doi.org/10.35511/978-963-334-453-8.Anh-Pasztory_Z
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sustainable development, enhancing the energy efficiency in buildings and constructions, as 

well as reducing the global gas emissions and the dependence on traditional resources, natural 

fiber or plant-based fiber materials are used as the possible solution to meet these 

requirements. The outstanding advantages of natural resources are renewable, lightweight, 

environmentally friendly, and biodegradability. In addition, natural fiber-reinforced polymeric 

composites have shown better mechanical capabilities, physical properties, and thermal 

performance, therefore, they can be used as a potential replacement for synthetic fiber-

fabricated composites. 

Many studies up to now have been investigated the potential of natural fibers which are 

extracted from plant-based materials or agricultural waste on improving the energy efficiency 

of the construction sector at the building level. The common natural fibers used as 

reinforcement in building insulating materials were found such as flax, hemp, coconut husk, 

rice straw, bagasse, bamboo. They are generally comprised of 5–20% lignin, 30–80% 

cellulose, 5–40% hemicellulose (Jawaid and Khalil, 2011). Coir, rice straw, reed fiber are 

plant-based resources that are the raw materials used to manufacture thermal insulating 

materials due to the low density of their fibers, high strength, and high heat retardant because 

of the low thermal conductivity as shown in Table 1 (Panyakaew and Fotios, 2011, Naidu et 

al., 2017, Hasan et al., 2021b, Bui et al., 2020, Suardana et al., 2011, Xie et al., 2015, Wahid 

et al., 2015, Pfundstein et al., 2012, El-Haddad et al., 2014, Costes et al., 2017, Prasad and 

Rao, 2007, MA Ismail, 2007, Balaji et al., 2014, Nunes et al., 2020, Hattalli et al., 2002, 

Devadiga et al., 2020, Prabakaran, 2017). 

 

Components/ 
Properties Unit 

Fiber 
Coir Rice straw Reed 

Cellulose % 36–43 35.6 50.3 
Hemicellulose % 20 20.5 21.7 
Lignin % 41–45 16.8 15 
Density kg/m3 70–120 50 490 
Tensile strength MPa 105–175 69.72 70–140 
Young’s modulus GPa 4–6 2.427 37 
Moisture content % 13.68 12.1 - 
Thermal conductivity W/m·K 0.04–0.05 0.048–0.061 0.055–0.09 

Table 1. Chemical compositions, physical, mechanical, thermal properties of coir, rice straw, and energy reed 
fiber 
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Several previous studies were conducted to investigate the thermal conductivity (λ-value) of 

some potential insulation materials made from fibers, and their thermal resistance value (R-

values) was determined through the thickness of the tested specimens. Thermal conductivity 

of wood waste ranged from 0.048 to 0.055 (W/m·K) which was close to those of organic 

insulation materials such as jute (0.038–0.055 (W/m·K)) or bagasse (0.046–0.055 (W/m·K)), 

and the highest R-values at a mean temperature of 30 °C was 1.13 (m2·K/W) showing that 

these materials can be used as good insulating materials (Cetiner and Shea, 2018). The 

equivalent thermal resistance values and thermal conductivity of cardboard panels were also 

investigated (Čekon et al., 2017). The results showed that the cardboard-based materials can 

be an attractive replacement to commonly used thermal insulating materials due to the lowest 

λ-value (0.0495 (W/m·K)) and highest RSI value (0.687 (m2·K/W)) at a mean temperature of 

20 °C. Another study on binderless coconut husk and bagasse insulation boards reported the 

thermal conductivity values ranging from 0.046 to 0.068 (W/m·K), then the highest calculated 

R-value was 0.54 (m2·K/W) (Panyakaew and Fotios, 2011). Therefore, these natural fiber-

based boards can be considered as a good thermal insulation material. 

The most effective approach to evaluate the heat resistance of an insulating material and the 

heat loss of a structure is through its thermal resistance value. The higher the R-value the 

better ability of insulation materials is to resist heat flow. According to the previous studies, 

the thermal resistance values of natural fiber-based composites were determined from their 

thermal conductivity values at room temperature (from 20 to 25 °C), and the data was 

reported from 0.5 to 1 (m2·K/W). Insulation materials with R-value lower than 0.5 (m2·K/W) 

can be used as an additional layer for multi-layered installation, whereas materials with R-

value from 1 to 2 (m2·K/W) were usually used for a wall structure of a building.  

The aim of this study is to investigate the thermal resistance values of samples made from 

natural fibrous material. Another investigation is the simulation by COMSOL Multiphysics 

program of the impact of insulation panels’ thickness on the values of thermal transmittance 

to determine the critical/optimal thickness of the panels when used as an additional layer in an 

external wall structure. 

2. Materials and Methods 

2.1. Materials 

The raw fiber materials used in this research are coir, rice straw, energy reed, and sugarcane 

bagasse fibers currently available in many tropical countries. Fig. 1 shows the samples were 
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manufactured in published studies, namely coir fibers reinforced phenol formaldehyde 

polymeric composites (CFPF) (Hasan et al., 2021a), rice straw and reed fibers reinforced 

phenol formaldehyde bio-composites (REPF) (Hasan et al., 2021c). 

2.2. Sample preparation 

The biocomposites made from short and long coir fiber, rice straw/energy reed fiber were 

manufactured by reinforcing the pre-treated fibers (NaOH 5%) with the phenolic resin using 

the hot-pressing technology. All the specimens were conditioned in the normal atmosphere 

conditions (20 °C and 60% relative humidity) before doing the measurement. 

 

  
(a) (b) 

Fig. 1. Tested samples. (a) REPF, (b) CFPF 

 

2.3. Thermal conductivity and thermal resistance value 

The thermal conductivity value (λ-value) of dry specimens was determined at a mean 

temperature of 20 °C in accordance with standard test for steady-stated heat transfer by means 

of heat plate method (according to standards: EN 12667 (Committee, 2001), and ISO 8301 

(ISO, 1991)). The thermal resistance value (noted as R) is used in describing the thermal 

efficiency of insulating material and in an analysis of heat transfer through the structural 

components of a building (such as walls, roofs, and window), calculated from Eq. 1. 

Thermal resistance (m2·K/W), dR
λ

=  (1) 

where d is the thickness of tested sample (mm), λ is thermal conductivity (W/m·K). 
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2.4. Model definition of simulation 

2.4.1. Steady state heat transfer in multilayer wall structure 

The first simulation is to study the temperature distribution, the thermal transmittance and the 

heat losses of an external wall system using the manufactured panels as an additional layer in 

1-dimensional stationary. Heat transfer through the building walls can be modelled as steady-

state and one dimensional because wall area is large enough compared to the wall thickness 

so that we consider that wall temperatures varies only in one direction (x-direction), normal 

on the wall surface (Paraschiv et al., 2020). For a multilayers wall with different structures 

and without internal heat source, the heat flow rate is expressed as Eq. 2. 

Heat flow rate (W/m2), i e

i total

T TTq
R R

−∆
= =
∑

 (2) 

where ΔT is temperature difference (K), Rtotal is the total thermal resistance of wall (m2·K/W) 

The thermal transmittance value (noted as U-value), also called the overall heat transfer 

coefficient refers to how well an element conducts heat from one side to another side. For a 

multilayer wall due to layers of different materials with different physical and thermal 

proprieties (thickness and thermal conductivity) it is often used the overall heat transfer 

coefficient, given as Eq. (3) 

The overall heat transfer coefficient (W/ m2·K ), 
, ,

1 1

total conv i ins conv o

U
R R R R

= =
+ +

 (3) 

where Rconv,i/Rconv,e is the thermal resistance of internal heat convection/external heat 

convection on the surface of wall, and Rins is the thermal resistance of insulation materials. 

The general heat loss is determined by the U-value of the materials and the difference in 

temperature between inside and outside surfaces of wall structure, given as Eq. 4. 

Heat loss (W), Q U A T= × ×∆  (4) 

where A is the area of wall (m2)  

 

2.4.2. Model definition of one-dimensional heat transfer: stationary study 

The specific model is defined with three layers, in order from indoor to outdoor: 150 mm of 

concrete, L mm of insulation layer, and 12 mm of plaster as shown in Fig. 3. The 

thermophysical properties of each material are displayed in Table 2. To calculate the heat 

loss, supposing that the wall area is 6 m2. The temperature distribution, the thermal 

transmittance value, and the heat losses were calculated in two seasons with boundary 

conditions are set as follows: from 26 to 70 °C in summertime and 20 to –20 °C in wintertime. 
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As the total wall thickness is about 188 to 192 mm which is much smaller than the wall area, 

therefore, the heat flow transfers only in one direction and the study is considered as 

stationary. 

 

Physical properties 
Insulation layer 

Concrete Coir Rice 
straw/Reed Plaster 

Thickness, d [mm] 150 8 12 30 
Density, ρ [kg/m3] 2300 450 680 1250 
Specific heat capacity, cp [J/(kg·K)] 880 2000 2500 1050 
Thermal conductivity, λ [W/(m·K)] 0.9 0.0624 0.0935 0.43 

Table 2. Physical properties of each material of wall structure 

 

 

Fig. 2. Schematic view of external wall structure 

 

2.4.3. Model definition of heat transfer in 2-floor building: stationary study 

The model definition of stationary heat transfer in 2-floor building using manufactured panels 

as an additional insulation layer is shown as Fig. 3. Additionally, the heat losses were 

presented as the increased thickness of insulation layer varied from 50 to 100 mm. 
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Fig. 3. Schematic view and initial conditions of stationary heat transfer in 2-floor building 

 

2.4.4. Model definition of the impact of thickness on U-value in multilayer wall structure 

In this case, we used the parameters of the coir and rice straw/reed fiber reinforced 

composites which was manufactured but changing the thickness and using the same simulated 

model (in section 2.3.2) to observe how the influence of thickness factor on the thermal 

transmittance values of the external wall structure. 

3. Results and Discussion 

3.1. Thermal resistance values 

Thermal resistance values (R-value) of samples tested at a mean temperature of 20 °C are 

shown in Table 3. Although the thermal resistance values of these samples were less than 0.2 

m2·K/W, they can be seen as efficient insulation material due to the lower thermal 

conductivity values. More specifically, these composites can be used as an additional layer in 

multi-layered assemblies. For example, if they insulated with 80 mm thick foil-faced 

polyisocyanurate (with thermal conductivity of 0.022 W/(m·K) and calculated R-value of 

3.64 (m2·K)/W, it would have a total R-value for the insulated wall of 3.81 (m2·K)/W. 

Consequently, it would improve the thermal resistance by more than 22 times and can be 

employed for insulating ceilings or roofs.  

Samples 
Thickness 

(mm) 
Thermal conductivity 

(W/m·K) 
Thermal resistance 

(m2·K/W) 
RSI per mm 

(m2·K/W/mm) 
CFPF 8 0.0624 0.1282 0.0160 

REPF 12 0.0935 0.1283 0.0107 

Table 3. Thermal resistance values and R-value per mm at room temperature 
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3.2. Simulation 

3.2.1. Heat conduction in stationary multilayer wall structure 

The temperature distribution of each fiber-based insulation panel under the most unfavorable 

temperature in summer and winter is shown in Fig. 4. In the summer condition, the 

temperature increased sharply leading to a large heat flux due to the high temperature 

difference, with insulated protection, the surface of the base layer temperature only rose to 43 

°C and the temperature change is mainly in the insulation layer showing that the heat 

insulation capacity was obvious. Under winter conditions, the surface temperature of 

uninsulated layer dropped dramatically to –14.8 °C while there was only 20 °C of temperature 

difference since the insulation layers were employed. In general, the temperature variation 

between the inside and outside the wall of a building was enhanced since the thermal 

insulation materials were manipulated. 

 

 

Fig. 4. Temperature distribution: (a) summertime, (b) wintertime 

 

(a) 

(b) 
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The usage of natural fiber-based insulation panel showing the reduction of heat consumption 

in both seasons as seen in Table 4. Since the insulation panels were operated, the total heat 

losses were reduced by 26% compared to the uninsulated wall. Apparently, adding a thermal 

insulator causes a significant decrease in heat consumption. This is an effective method to 

improve the energy performance of building since near zero-energy is expected to play a vital 

part in EU’s strategy to cut greenhouse gas emissions by 2050. 

 

  Heat loss (W)  

 Summertime Energy 
saving (%) Wintertime Energy 

saving (%) 
Uninsulated wall 734.22 - 667.44 - 

Coir panel 541.23 26.2 492.02 26.2 
Rice straw/Reed 

panel 541.07 26.3 491.88 26.3 

Table 4. Heat losses in summertime and wintertime 

 

3.2.2. Heat conduction in stationary 2-floor building 

As seen in Table 5, the heat losses of both floors at thickness of 50 mm when they have no 

insulation part are higher  double times than using the insulation. Moreover,  since the 

thickness increased to 100 mm, the heat losses decreased remarkably showing the thickness 

influences significantly in the energy consumption in buildings. Additionally, the minimum 

temperature on both floors in wintertime (Fig. 5) also showed a slight increase at different 

thicknesses. It is clear that the manipulation of insulation layer in the wall insulation system 

can enhance the thermal comfort of inhabitants in a building.  

 

 Heat loss (W) 
Thickness (mm) 

Uninsulated 
wall 50 60 70 80 90 100 

Floor 1 134.73 63.7 58.95 55.07 51.82 49.03 46.59 
Floor 2 75.82 26.11 23 20.51 18.48 18.48 15.32 

Table 5. Heat losses under different thicknesses of insulation layer 
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Fig. 5. Thermal comfort of 2 floors under variation of thickness of insulation layer 

 

3.2.3. Influence of thickness in the thermal transmittance values (U-value) 

The influence of thickness of insulation layer in the U-value of a multilayer external wall was 

presented in Fig. 6. As seen in the graph, the thermal transmittance decreased sharply since 

the thickness increases to 120 mm, and slight decreases since the thickness increases to 200 

mm. Based on the simulated results, the critical or optimal thickness can be valued based on 

the actual standard of low energy house. For example, the thermal transmittance values of 

exterior wall according to German legally prescribed standard for new constructions (EnEV 

2014, (Horst-P. Schettler-Köhler, 2016)) is 0.28 W/m2·K for 12–16 cm of thickness. Based on 

this standard, the optimal thickness of coir composite and rice straw/reed composite can be 

valued at around 13 cm and 20 cm, respectively.  

 
Fig. 6. Thermal transmittance values under variation of thickness of insulation layer 
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4. Conclusions  

This paper investigated the thermal resistance values of samples made from natural fiber 

materials. The main goal of the experiments was to determine thermal resistance values in 

different thicknesses at room temperature and the impact of thickness of insulation layer on 

heat conduction of external wall structure of a building. According to the thermal conductivity 

results, most of these samples are potential thermal insulation materials used in building 

envelopes. The calculated R-value of CFPF and REPF showed that they can be used in the 

multi-layered installation. The thickness factor made a significant difference in the thermal 

resistance values. The simulation has also shown that the thermal transmittance values 

decreased with increased thickness and therefore, the critical/optimal thickness of insulation 

layer can be determined. These findings contribute in several ways to our understanding of 

thermal resistance values of natural fiber-based insulation materials and provide a basis for 

further investigation on multi-layered insulation materials. As expected, natural fiber has 

shown an effective resource used as raw materials in reinforcement polymeric composites and 

has been valued as an essential replacement for traditional insulation materials in the future. 
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