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Abstract

In this paper, we study the problem of balancing binomial coefficients in

Pascal’s triangle. We give the complete solution in the direction (1,−1) for

the first four cases of the possible rays. Some linked questions have been also

examined.

Key Words: Diophantine equations, Pascal triangle, Balancing problems

Mathematics Subject Classification 2000: 11D25, 11B65

Introduction

A positive integer x is called balancing number if

1 + 2 + · · ·+ (x− 1) = (x+ 1) + · · ·+ (y − 1) (1)

holds for some integer y ≥ x + 2. The problem of determining all balancing numbers leads

to the resolution of the Pell equation u2−2v2 = 1 via introducing new variables. It is known

that the solutions x to (1) can be described by the recurrence Bn = 6Bn−1 −Bn−2, B0 = 0,

B1 = 1 with n ≥ 2 (see Finkelstein [4] or Behera, Panda, [1]). Obviously, the initial

1This paper was prepared when the first author visited the Institute of Mathematics, University of West

Hungary. He is grateful for the kind hospitality.
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values B0 = 0 and B1 = 1, as usual, serve only our convenience, the first value satisfies (1)

is B2 = 6.

Analogously to (1) one can define the so-called cobalancing numbers by

1 + 2 + · · ·+ x = (x+ 1) + · · ·+ (y − 1).

The cobalancing numbers bn can be recursively given by the relation bn = 6bn−1 − bn−2 + 2

and by the initial values b0 = 0, b1 = 2 (see, for example [3]).

One of the most general extensions of balancing numbers is when (1) is being replaced

by

1k + 2k + · · ·+ (x− 1)k = (x+ 1)` + · · ·+ (y − 1)`, (2)

where the exponents k and ` are given positive integers. In paper [5] effective and non-

effective finiteness theorems on (2) were proved. For small values of k and ` all the solutions

can be determined. For instance, in the case (k, `) = (2, 1) equation (2) can be rewritten as

2x3 + 4x = 3y2 − 3y.

After suitable transformations, using the program package MAGMA, the authors solved the

corresponding elliptic equation and found totally three balancing numbers regarded to the

pair (2, 1) of the exponents, namely x = 5, 13 and 36 with y = 10, 39 and 177, respectively.

In this paper, we pose the balancing and cobalancing problem in Pascal’s triangle, and in

the direction ~v = (1,−1) we solve the problem for the smallest four cases. Now we explain

more precisely the question.

Let n ∈ N, moreover let r ∈ N+, q ∈ Z. Then the binomial coefficient
(
n
0

)
and the

direction (r, q) define a diagonal ray in Pascal’s triangle which contains the elements

T
(n,r,q)
k =

(
n− qk
rk

)
, k = 0, 1, . . . .

Observe, that the condition q + r > 0 guarantees that the number of binomial coefficients

lying along such a diagonal ray is finite, and in this case the range of k is 0, . . . , ωn = b n
r+q
c.

It is clear, that the elements T
(n,r,q)
k cover not all the elements of the Pascal’s triangle if we

vary n ≥ 0 but keep r and q fixed. For example,
(
2
1

)
is not included by any ray if the direction

(r, q) = (2, 1) is given. Therefore, for r ≥ 2, we even define the notion of intermediate rays

with the positive integer parameter p ≤ r − 1 by

T
(n,r,q,p)
k =

(
n− qk
p+ rk

)
, k = 0, . . . .

Obviously, a finite ray ends when k takes the value ωn = bn−p
r+q
c. If we allow p = 0 in T

(n,r,q,p)
k

it returns with the elements T
(n,r,q)
k .

Now, for a fixed direction (r, q) and for a fixed value of p, according to the definition of

the balancing numbers, we claim the balancing binomial coefficient (in short, BBC)

Tx =

(
n− qx
p+ rx

)
33
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with a positive integer x for which there exist a positive integer y ≥ x+ 2 such that

x−1∑
k=0

(
n− qk
p+ rk

)
=

y−1∑
k=x+1

(
n− qk
p+ rk

)
. (3)

Applying the symmetry of Pascal’s triangle, a trivial solution to (3) can be given linked to

the direction direction (r, q) = (1, 0) (thus p = 0) for any n ≥ 2 even:(
n

0

)
+ · · ·+

(
n

n
2
− 1

)
=

1

2

(
2n −

(
n
n
2

))
=

(
n

n
2

+ 1

)
+ · · ·+

(
n

n

)
.

Obviously, the same direction with n odd provides an easy example for the cobalancing

version (CBC), that is when the sum is up to x in the left hand side of (3). A non-trivial

example for BBC is
(
82
81

)
linked to the direction (r, q) = (4,−4) and parameter p = 1, see(

2

1

)
+

(
6

5

)
+ · · ·+

(
78

77

)
= 800 =

(
86

85

)
+ · · ·+

(
114

113

)
.

Another instance is
(
7
2

)
with (r, q) = (2, 1), p = 0:(

11

0

)
+

(
9

1

)
= 10 =

(
5

3

)
.

The proposed problem, in its generality is apparently too hard. The main difficulty

is that there exist no summation formula for the truncated sum for the left hand side of

(3), although such a formula, even in one generalization of Pascal’s triangle, was given for

arbitrary full finite rays in [2]. So in the present work we restrict ourselves to examine

only the direction (r, q) = (1,−1). Clearly, these rays are infinite and p = 0. A further

specification is to consider only the cases 0 ≤ n ≤ 3, where we can describe all balancing

and cobalancing binomial coefficients.

To finish the introduction, we recall the useful, well-known identity

t∑
k=0

(
n+ k

k

)
=

(
n+ t+ 1

t

)
. (4)

1 Direction (r, q) = (1,−1)
According to the introduction, the BBC problem appears as

x−1∑
k=0

(
n+ k

k

)
=

y−1∑
k=x+1

(
n+ k

k

)
, (5)

where n is fixed, and the positive integer unknowns x and y satisfy x + 2 ≤ y. In the CBC

task the left sum goes up to x (instead of x − 1), therefore the slightly different inequality

x+ 1 ≤ y must hold.
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By (4), (5) is equivalent to(
n+ x

x− 1

)
+

(
n+ x+ 1

x

)
=

(
n+ y

y − 1

)
. (6)

Observe that in the case n = 0, we need no (6) since the right leg of Pascal’s triangle

contains the constant 1 sequence. Therefore, each element
(
n
n

)
is a BBC if n ≥ 1 (and CBC

for n ≥ 0).

Similarly, when n = 1, the elements included now construct the sequence of natural

numbers, therefore the solution to BBC or CBC task returns with the sequence of balancing

numbers or the cobalancing numbers, respectively.

Note that for arbitrary n, the CBC problem

2

(
n+ x+ 1

x

)
=

(
n+ y

y − 1

)
always has at least one solution (in the direction (1,−1)), since if x = n and y = n+ 2 then

2

(
2n+ 1

n

)
=

(
2n+ 1

n

)
+

(
2n+ 1

n+ 1

)
=

(
2n+ 2

n+ 1

)
(7)

holds.

1.1 n = 2 in BBC problem

In this subsection we prove the following theorem.

Theorem 1 There is no balancing binomial coefficient with n = 2 in the direction (1,−1).

Proof. To prove the theorem, we need to solve the diophantine equation(
x+ 2

x− 1

)
+

(
x+ 3

x

)
=

(
y + 2

y − 1

)
,

or equivalently

(x+ 1)(x+ 2)(2x+ 3) = y(y + 1)(y + 2).

Multiplying it by 4 and putting K = 2x+ 3, L = y+ 1, we obtain the diophantine equation

K3 −K = 4(L3 − L) with K ≥ 5 and L ≥ 4.

Assume that the pair (K,L) is a solution. Thus

K3 − 4L3 = K − 4L (8)

holds. Let u = K − 4L ∈ Z. Combining it with (8), we get

60L3 + 48L2u+ 12Lu2 + u3 = u. (9)
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Obviously, for a given u one can easily solves (9). For example, if u ∈ {−1, 0, 1} then only

L = 0 is possible, but it contradicts to the condition L ≥ 4. Therefore we may assume

|u| ≥ 2, and suppose that p is a prime factor of u. Clearly, L 6= 0 otherwise |u| ≤ 1 would

follow. Put g = gcd(u, 60) and first suppose

g = 1.

Observe that, by (9), u | 60L3. Subsequently, u | L3. Since p | u, we also have p | L. Let

α ≥ 1 and β ≥ 1 be the p-adic valuation of u and L, respectively. Then there exist integers

u1 and L1, neither of them is divisible by p, such that

u = pαu1, L = pβL1. (10)

Inserting (10) into (9) it implies α = 3β. Since it is true for any prime divisor p of u, it

follows that u = v3 for a suitable integer v. Then u | L3 implies v | L, that is L = kv for

some non-zero integer k. Replacing u by v3 and L by kv in (9), together with w = v2, it

leads to the Thue equation

60k3 + 48k2w + 12kw2 + w3 = 1. (11)

To determine the solutions of (11), we used MAGMA, which provided the only integer pair

(k, w) = (0, 1) satisfying (11). Then v = ±1 contradicts to |v3| = |u| ≥ 2. Thus g > 1.

The prime factorization 60 = 22 · 3 · 5 yields 11 more possibilities for g. But four

choices, when 2 || g, can immediately be excluded among them since the 2-adic valuation

ν2(60L3 + 48L2u+ 12Lu2 + u3) ≥ 2 is larger then ν2(u) = 1. As far as possible we maintain

the remaining seven cases together.

g = 3,5,15,4,12,20,60.

Put u = gu1. Clearly, 60/g and u1 6= 0 are coprime integers. Thus equation (9) leads to

60

g
L3 + 48L2u1 + 12gLu21 + g2u31 = u1. (12)

From now, one can repeat the treatment of case g = 1. That is, first check what happens if

u1 = ±1. For the eligible values of g, we obtain L = ±1 or L = ±2 or there exists no integer

L satisfying (12).

Hence |u1| ≥ 2, and an analogous way to the case g = 1 leads to the Thue equations

60

g
k3 + 48k2v + 12gkw2 + g2w3 = 1.

The following table shows its solutions determined by MAGMA.

g 3 5 15 4 12 20 60

(k, w) (−1, 1) (−2, 1), (−1, 1) no (−1, 1) (5,−1) no (1, 0)

Since either u1 = ±1 or u1 = 0 follows from the solutions above, we arrived at a contra-

diction. Thus the proof of Theorem 1 is complete. �
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1.2 n = 2 in CBC problem

According to n = 2, the specific version of the general

x∑
k=0

(
n+ k

k

)
=

y−1∑
k=x+1

(
n+ k

k

)
(13)

CBC problem simplifies to

2

(
x+ 3

x

)
=

(
y + 2

y − 1

)
.

By the following result, the only solution to this equation is the trivial one included in (7).

Theorem 2 In the direction (1,−1) the only cobalancing binomial coefficient with n = 2 is(
4
2

)
.

Proof. The proof is a clone of proof of Theorem 1. Therefore we do not go into all details,

only indicate the steps and the results at certain stages.

The equation (13) is equivalent to K3 − 2L3 = K − 2L via K = y + 1 and L = x + 2.

Introducing u = K − 2L, we obtain

6L3 + 12L2u+ 6Lu2 + u3 = u. (14)

There is no non-trivial solution to (14) with |u| ≤ 1. Now let g = gcd(u, 6).

When u is coprime to 6 we get the Thue equation

6k3 + 12k2w + 6kw2 + w3 = 1,

and it is satisfied only by (k, w) = (−1, 1) and (0, 1) (we used MAGMA again). These pairs

provides no CBC.

If g = 2, 3 or 6, (14) leads to the equations

1 = 3k3 + 12k2w + 12kw2 + 4w3,

1 = 2k3 + 12k2w + 18kw2 + 9w3,

1 = k3 + 12k2w + 36kw2 + 364w3,

respectively. The MAGMA results are shown by the following frame.

g 2 3 6

(k, w) (−1, 1) (−4, 1), (−1, 1) (1, 0)

These solutions give no new CBC, since previously we checked the possibility u1 = ±1

for each eligible g, and found that either L = 0,±1 or L = ±5. Among them only L = 5,

together with K = 4 returns with CBC, namely:(
2

0

)
+

(
3

1

)
+

(
4

2

)
=

(
5

3

)
.

�
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1.3 n = 3 in BBC and CBC problems

In this part we conclude the following results.

Theorem 3 BBC There is no balancing binomial coefficient with n = 3 in the direction

(1,−1).

CBC The only cobalancing binomial coefficient in the direction (1,−1) with n = 3 is
(
6
3

)
.

Proof. We handle parallel the two problems, which are(
x+ 3

x− 1

)
+

(
x+ 4

x

)
=

(
y + 3

y − 1

)
and 2

(
x+ 4

x

)
=

(
y + 3

y − 1

)
.

It is easy to see, that 24
(
y+3
y−1

)
= (y2 + 3y + 1)2 − 1. Put K = y2 + 3y + 1. Consequently, we

must solve the equations

2(x+ 1)(x+ 2)2(x+ 3) + 1 = K2 and 2(x+ 1)(x+ 2)(x+ 3)(x+ 4) + 1 = K2.

We use the procedure IntegralQuarticPoints of MAGMA. The integral points on the

curves are

x -4 -3 -2 -1 0

K 5 1 1 1 5
and

x -8 -5 -4 -3 -2 -1 0 3

K 41 7 1 1 1 1 7 41
,

respectively. Since x must be a positive integer, only y2 + 3y + 1 = 41 remains to check.

This case gives to y = 5 and the theorem is proved. �

Remark 1 Keeping K = y2 + 3y + 1 on the right hand sides, the same trick on the left

hand sides leads to 2L2
1 − 2L1 + 1 = K2 (BBC case) and 2L2

2 − 1 = K2 (CBC case) with

L1 = (x + 2)2 and L2 = x2 + 5x + 5, respectively. Although these are Pell equations which

can be solved by applying the standard method, the next step is to find quadratic polynomial

values among the terms of binary recurrences, and it might be rather difficult.

1.4 Arbitrary n and fixed difference y − x

If one fixes the difference y − x, then a new type of equations occurs. Considering (6) with

y ≥ x+ 2, it leads to

(x+ 1) · · · (x+ n)(2x+ n+ 1) = y(y + 1) · · · (y + n). (15)

Assume that y = x+ 2 +m for some non-negative integer m. In the sequel, we examine (15)

and its CBC version for small values of m.
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2.4.1. BBC with m = 0

Now (15) is equivalent to

(x+ 1)(2x+ n+ 1) = (x+ n+ 1)(x+ n+ 2),

and then to x2−nx− (n+1)2 = 0. The discriminant 5n2 +8n+4 must be square, let say h2,

hence we obtain the Pell equation (5n+ 4)2− 5h2 = −4. It is well known, that the solutions

in h can be described by the Fibonacci sequence with odd subscripts, while 5n + 4 must

be a term with odd subscript of Lucas sequence. Since Lν ≡ 4 (mod 5) holds if and only if

ν ≡ 3 (mod 4), it follows that n = (L4k+3 − 4)/5, k = 1, 2 . . . . Clearly, x = (n + F4k+3)/2,

and the sequence of x’s can be given by xi = 7xi−1 − xi−2 + 2.

2.4.2. BBC with m = 1

The corresponding equation is

(x+ 1)(x+ 2)(2x+ n+ 1) = (x+ n+ 1)(x+ n+ 2)(x+ n+ 3),

or equivalently

x3 − (2n− 1)x2 − (3n2 + 9n+ 4)x− (n3 + 6n2 + 9n+ 4) = 0.

A brute force type computer verification found no solution in the interval n ∈ [0; 109]. It

confirms the following

Conjecture 1 In the direction (1,−1) the BBC problem has no solution with y = x+ 3.

2.4.3. CBC with m = 0, 1

Now we have

2(x+ 1) · · · (x+ n)(x+ n+ 1) = y(y + 1) · · · (y + n) (16)

with y = x+ 1 +m (m ≥ 0). Trivially, m = 0 is a contradiction, so the first possible value is

m = 1. In this case x = n and y = n + 2 easily follow, providing infinitely many solutions,

which have already been given by (7).

2.4.3. CBC with m = 2

Equation (16) yields 2(x+ 1)(x+ 2) = (x+ n+ 2)(x+ n+ 3), which can be converted into

x2 − (2n− 1)x− (n2 + 5n+ 2) = 0. The discriminant 8n2 + 16n+ 9 is necessarily a square,

implying h2 − 2(2n + 2)2 = 1. Without going into details, it leads to every second term of

the Pell sequence defined by P0 = 0, P1 = 1 and Pi = 2Pi−1 + Pi−2. The solutions in x is

determined by the inhomogeneous recurrence x0 = 1, x1 = 13 and xi = 6xi−1 − xi−2 + 6.

Further, we have y0 = 4, y1 = 16 and yi = 6yi−1 − yi−2 − 6.
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2.4.2. CBC with m = 3

The appropriate equation appears as

2(x+ 1)(x+ 2)(x+ 3) = (x+ n+ 2)(x+ n+ 3)(x+ n+ 4),

and collecting x we gain

x3 − (3n− 3)x2 − (3n2 + 18n+ 4)x− (n3 + 9n2 + 26n+ 12) = 0.

In the interval n ∈ [0; 109] we found no solution to this.

Conjecture 2 In the direction (1,−1) the CBC problem has no solution with y = x+ 4.
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