
 

IJTPC(ISSN: 2322-3138), Vol.  2, March 2013. 

 

www.IJTPC.org                                                                                                                                                                                          1 

 

 

A Special Integer Sequence Strongly Connected to the Discrete Logarithm Problem 

Omar Khadir 
1
, Laszlo Szalay 

2
 

1 
Laboratory of Mathematics, Cryptography and Mechanics, Fstm   University of Hassan II Mohammedia-Casablanca,   Morocco 

2 
Institute of Mathematics, University of West Hungary, Sopron, Hungary 

 

 

ABSTRACT 

Let  � be a large prime integer. In this work, we study the recurrent sequence defined by �� � �, 0 � �� � �,  and  

	 �
��  �
2  �� �
 �� ����                                                
�
��  � � �
2  �� ���                                                       � 

 This integer sequence has connection with the discrete logarithm problem, and under certain assumptions, we obtain an exact 

solution.  
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1. INTRODUCTION 

Numerous public key cryptosystems, digital signatures 

protocols and identification schemes are based on the 

discrete logarithm problem [1, p.130]. Given a large prime 

integer � and two elements �, � in the multiplicative group ���/��� , . �,  it is computationally hard to find a natural 

exponent "  such that �#  � in ��/��� .  

In 1976 Diffie and Hellman [2] exploited this fact to show 

how two people can product and share the same common 

key even if they never met each other before. They actually 

signed the beginning of the public key cryptography era. A 

few years before, Shanks [3] presented a practical algorithm 

that solves the problem with a complexity of $�%��. In 1978, 

Pollard [4] described a Monte Carlo method based on Floyd 

algorithm for graph cycles. In the same year, Pohlig and 

Hellman [5] proposed a fast algorithm for solving the discrete 

logarithm problem in the particular case where the integer � � 1 has only short prime divisors. However, in practice, the 

index calculs seems to be the most powerful method. 

In 1985 ElGamal [6] constructed a cryptosystem and an 

ingenious digital signature scheme both based on the 

discrete logarithm problem. Since then, many variants of his 

signature algorithm were published. See [7, 8, 9] or Table 

11.5, page 457 in [1]. 

Let � be a fixed odd prime integer. In this work, we study the 

recurrent integer sequence ��
�
�� defined by �� � �, such 

that 0 � �� � �,  and 

	 �
��  �
2  �� �
 �� ����,                                                
�
��  � � �
2  �� ���.                                                       � 

We present some properties of this sequence whose 

behavior seems to be difficult to predict. We also show how 

its terms �
 are connected to the solution of the discrete 

logarithm problem. To our best knowledge, this sequence has 

not been previously studied or even mentioned in 

mathematics or computer science literature. 

The paper is organized as follows. In sec<on 2, we give the 

definition of the sequence and prove some of its 

mathema<cal proper<es. In sec<on 3, rela<on between this 

integer sequence and public key cryptography is described. 

More precisely, we explain how the sequence is efficient for 

solving the discrete logarithm problem. Conclusion is given in 

sec<on 4. 

Classical notations will be adopted. In particular, � is the set 

of all natural integers and �  � � '0(. If �, �, ) are three 

integers, we will write � * � +), if ) divides the difference � � �, and �  � -�. ) if � is the remainder in the division 

of � by ), so � � �. The great common divisor of � and � is 

denoted by gcd ��, �� and min ��, �� means the minimum of � and �. 

Throughout this article, � designs a fixed large odd prime 

integer such that element 2 is a generator of the 

multiplicative group ���/��� , . �. Notice that there exist only 
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algorithms for generating large probable primes [1 p.126, 1 p. 

135, 11 p.178, 12]. 

 In the next section, we define and study the recurrent 

sequence ��
�
�� . 

 

2. THE RECCURENT SEQUENCE AND ITS PROPERTIES 

 

We define the integer sequence ��
�
�� and prove some of 

its proper<es that will be exploited in sec<on 3 of this paper. 

The definition is as follows: 

Let �� be a natural integer less than � � 1. We put:  

567
68 �
��  �
2  �� �
 �� ����,                                                                                                                                        �1��
��  � � �
2  �� ���.                                                   � 

Let  �  29 : 1,    9 � �  be an odd prime integer such that 

number 2 is a primi<ve root of the multiplicative group     ���/��� , . �. Next proposition is essential for the sequel. It 

shows that, when an integer sequence verifies the recurrence 

rela<on (1), and when it starts with value 1, then it has a 

maximal cycle and its general term is expressed in a simple 

form. 

Proposi,on 1.  Let �;
�
�� be the integer sequence defined 

by the recurrence rela<on (1) with ;�  1. We have: 

       ��� <;�, ;� , ;= , … , ;?@� A  '1,2,3, … , 9( and  C � D 0, ;?�E  ;E . ���� C � � '0,1,2, … , 9 � 1(,  ;
 * 2F?@
 +�,,G � '1,2(. 
Proof. (i) By Fermat theorem we have 2H@� * 1 * ;� +�,. As 

2 is a primi<ve root, 2? * �1 +�, and then ;�  H@IJ=  *2?@� +�,. 

If   ;�  is even,  ;=  IK  =   * 2?@=  [p]. 

 If not,  ;=  H@IK=  * 2=?@= +�,. In both cases the exponent 

of base 2 is equivalent to �9 � 2�  modulo 9. 

Suppose that ;= * 2?@= +�,. If ;= is even,  ;L  IM  =   * 2?@L +�,, if not  ;L  H@IM=  * 2=?@L +�,.  In both cases the exponent of base 

2 is  �9 � 3� modulo 9. 

Suppose that ;= * 2=?@= +�,. If ;= is even, ;L  IM  =   * 2=?@L +�,,  if not  ;L  H@IM=  * 2=?@L +�,.  In both cases the exponent of base 

2 is  �9 � 3� modulo 9. 

Finally the exponent of base 2 associated to ;L is 9 � 3 

modulo 9. 

Continuing in this fashion, we obtain that for every � � '0,1,2, … , 9 � 1(, ;E * 2NO  +�, with PE * 9 � � +�, and 

;?  ;�  1.  We deduce, by induction, that C� D 0,;?�E  ;E . 
Therefore, as number 2 is a primitive root, all the terms  ;E are distinct when � � '0,1,2, … , 9 � 1(. On the other 

hand, 

;E � '1,2,3, … , 9(, so  ';�, ;�, … , ;?@�(  '1,2,3, … , 9(. 

(ii) We  saw in part (i) that ;E * 2NO  +�,, with 

PE * 9 � � +�,, so PE  9 � � : `9  �1 : `�9 � �, where 

` � �. Since exponents are equivalent modulo �� � 1�, it 

suffices to take ` � '0,1( or G  1 : ` � '1,2( which ends 

the proof. 

□ 

The last proposition results are generalized in the following 

theorem. 

Theorem 1.  Let  ��
�
��  be an integer sequence defined by 

the recurrence rela<on (1) with 0 � �� � �.  We have : 

If �� a 9 then '��, ��, … , �?@�(  '1,2,3, … , 9(  and C� D 0,
�?�E  �E . 

If  �� b 9 then <��, �=, … , �?A  '1,2,3, … , 9( and 

 C� D 1, �?�E  �E . 

Proof. Consider the sequence �;
�
�� defined in proposition 

1. We know that: 

<;�, ;� , ;= , … , ;?@� A  '1,2,3, … , 9( and ;?  ;�  1  so 

the set  <;�, ;� , ;= , … , ;?@� A is a cycle containing �� since 

by hypothesis 0 a �� a 9. In other words, there exists  

c � '0,1,2, … , 9 � 1( such that ��  ;d  1 and then by 

induction, for all � � �  �E  ;d�E. We deduce that 

'��, ��, … , �?@�(  '1,2,3, … , 9(  and C� D 0, �?�E  �E . 

Suppose now that �� b 9. We have  0 a �� a 9, so there 

exists c � '0,1,2, … , 9 � 1( such that ��  ;d and then 

by induction, for all � � �, �E  ;d�E. This implies  

<��, �=, … , �?A  '1,2,3, … , 9( and  C� D 1, �?�E  �E . 

□ 

Now we give two other results. In particular, statement (ii) 

below is an interesting modular equivalence. It provides a 

simple expression of the general term for any integer 

sequence ��
�
�� that verifies the recurrence rela<on (1). 

Theorem 2. If ��
�
�� is an integer sequence defined by the 

recurrence rela<on (1) with 1 a �� a 9, then: 
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(i) There exists an integer �� � '0,1,2, … , 9 � 1( 

such that  �
J  1. 

(ii) C � � '0,1,2, … , 9 � 1(, �
J�
 * 2F?@
 +�,,G � '1,2(. 
Proof.  By the first part of theorem 1, element 1 is belonging 

to the set '��, ��, … , �?@�(, so there exists an index  �� � '0,1,2, … , 9 � 1( such that �
J  1. 

 (ii) Consider the recurrent sequence �;
�
�� defined in 

proposi<on 1. From part (i) we have �
J  ;�, and by 

induction for all integers � � '0,1,2, … , 9 � 1(, �
J�E  ;E. 
Proposi<on 1 implies that �
J�E * 2F?@E  +�,, G � '1,2( which 

achieves the proof. 

□ 

As there exist fast algorithms for computing the modular 

exponentiation [1 p.71, 11 p.176], next corollary provides the 

means of a rapid computation of the general term �
 for any 

sequence defined by the recurrence rela<on (1). The formula 

is remarkable because it gives easily the term �
 by 

computing the minimum of two known positive integers. 

Corollary 1. If ��
�
�� is  an integer sequence defined by the 

recurrence rela<on (1) with 1 a �� a 9 and if  ��  is a 

natural integer such that �
J  1, then  

C � � '0,1,2, … , 9 � 1(, 

�
J�
  min '2?@
 -�. �, 2=?@
 -�. �(.                      (2)    

Proof.  Consider an integer � � '0,1,2, … , 9 � 1(   and put P  2?@
 -�. �. By Theorem 1, 1 a P a 9. Assume first 

that    1 a P a 9    (*). 

We have 2?@
 * P +�, e 2=?@
 * �P * � � P +�,, with 0 � � � P<p. In another hand: (*)e-qa P � 0 e � � 9 a� � P � �. But � � 9  H��= b 9, so 2=?@
 -�. � b 9, which 

means that  �
 cannot be equal to 2=?@
 -�. �, and 

consequently �
  2?@
 -�. �  min '2?@
 -�. �, 2=?@
 -�. �(. 

Assume now that P b 9    (**).                    

We have 2?@
 * P +�, e 2=?@
 * �P * � � P +�,, with 

0 � � � P � � 

(**)e �� a �P � �9 e 0 � � � P � � � 9  H��= .  As  

� � 9 � �, we obtain � � 9 a H@�=  9  and then 

� � P a 9 which implies that  

�
  2=?@
 -�. �  min'2?@
 -�. �, 2=?@
 -�. �( 

□ 

We move to the next section where we show the strong 

relation between the sequence ��
�
�� and the discrete 

logarithm problem. 

3. CONNECTION WITH THE DISCRETE 

LOGARITHMPROBLEM 

 

We start by recalling a well-known proposi<on [1, p.103].  It 

tells that the difficulty of solving the discrete logarithm 

problem is independent of the generator. 

Proposi,on 2. [1]  Let � be a generator of the multiplicative 

group  ���/��� , . �. If for any integer  � � '1,2,3, … , � � 1(  

we can efficiently solve the equation  2# * � +�, then we can 

also efficiently solve the equation  �# * � +�,. 
Proof.  Consider the equation �# * � +�,. Let "�  be a 

positive integer such that 2#J * � +�,. Then �# * � +�, f2##J * � +�, f ""� * g�� � 1,, where  g  is a solution of 

the equation 2h * � +�,.  Since elements 2 and � are 

generators of ��/��� ,   gcd�"�, � � 1�  1 and then "� is 

invertible modulo � � 1. Therefore " * h#J  +� � 1,, which 

achieves the proof. 

□ 

Let us now  show the connection between our integer 

sequence ��
�
�� and the discrete logarithm problem. But 

before that, we have to define a second recurrent sequence. 

Fix a prime integer � and 9  �� � 1�/2. Let ��
�
�� be the 

sequence defined by rela<on (1) and by  ��,  1 a �� a 9. We 

define recursively the integer sequence �"
�
�� as follows: 

"�  0      and  

 i"
��  �1 : "
� -�. �� � 1� �� �
 �� ����,                                                                                                                              �3�"
��  �1 :  "
 : 9� -�. �� � 1� �� ���.                                                   � 
In other words "
��  �1 :  "_� : 9k
� -�. �� � 1� where   k
  �
 -�. 2. 

Consider the modular equation 2# * � +�,  where 1 a � a 9 is given and " is an unknown variable. Define two 

integer sequences ��
�
�� and �"
�
�� respectively by the 

recurrence relations (1) and (3) with ��  �. We have the 

equivalence: 

Proposi,on 3.  An integer P is a solution to the equation 2# * � +�,   if and only if 

C � � �,       2N@#l * �
 +�,                            �4� 

  Proof. Let us prove it by induction on �. The relation is true 

for �  0. Suppose that       2N@#l * �
 +�,. If �
 is even, we 

have 

  �
��  nl=     and   "
��  �1 : "
� -�. �� � 1�,  so  

So       2N@#l * �
 +�, e  2N@#l@� * nl= * �
�� +�,. Finally 
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      2N@#loK *  2�N@#l@� �pqr �H@�� *  2N@#l@� * �
�� +�, 

If �
 is odd, we have 

 �
��  H@nl=    and   "
��  �1 :  "
 : 9� -�. �� � 1�. 

In another hand, as 2 is a generator of ��/��� :  

 2? * �1 +�,. So    2N@#l * �
 +�, e    2N@#loK *    2N@#l@�@? * � � �
2  * �
�� +�, 

□ 

Next theorem presents a theoretical characterization  of the 

solution to the discrete logarithm problem 2# * � +�,. Note 

that to make the equation intractable for cryptographic 

applications, the  bit-length of the unknown variable " should 

be at least 160 [13, p.186]. 

Theorem 3. Let ��  �,  1 a � a 9  and ��
�
�� is the 

integer sequence defined by rela<on (1). 

 If �� is  the least natural integer such that �
J  1, then 

 "
J  is a solution of the discrete logarithm problem  2# * � +�,. 
Proof By induction on the natural index  �. 

□ 

Next corollary is more precise. It transforms the hardness of 

finding the solution to the discrete logarithm problem into 

the hardness of finding the least natural integer � such that �
  1. This observation means that our recurrent sequence 

is not much easier than the famous Collatz sequence [14]. 

 

Corollary 2. Let Let ��  �,  1 a � a 9  and ��
�
�� is the 

integer sequence defined by rela<on (1). 

If �� is  the least natural integer such that �
J  1, then 

solution of the discrete logarithm problem 2# * � +�, is ��  

or �� : 9 -�. �� � 1�. 
Proof By last theorem, it suffices to justify that for any 

natural integer �, we have  "
  �.  Or "
  �� :9� -�. �� � 1�. It is not difficult to show that  "
  �s :t�9 : 1�� -�. �� � 1�, where s and t are respectively the 

number of even terms and odd terms in the set  '��, ��, … , �
@�(. Moreover since 9  H@�= ,  "
  �s : t : t9� -�. �� � 1� � '�, �� : 9�-�. �� � 1�( 

□ 

 

 

 

 

Example 1. Let us apply our method to one of the examples 

taken by Pollard in his paper [5]. The considered modular 

equation is  2# * 107 +99 989,. Here �  99 989 and 

element 2 is a generator of the mul<plica<ve group ��/��� . 

The first ten terms are �
 progressively calculated and 

dressed in the next table. 

 

� 0 1 2 3 4 5 �
 107 44941 25024 49799 25095 37447 

 � 6 7 8 9 10 �
 31271 34359 32815 33587 33201 

 

Table 1 

 

With the help of Maple software, we find the least natural � 

such that �
  1 is  �  37 839 . As �  49 994, the 

solution belongs to the pair '37 839, 87 833(. 

We can check that the second possibility is the correct one. 

Designers of cryptosystems and digital signatures should take 

in account the two following situations:  

 

Corollary 3. If from the term ��  � (respectively ��  1) we 

can reach the term �
  1 (respectively �
  �) in an 

acceptable time, then we can solve the discrete logarithm 

problem 2# * � +�,. 
Proof. This is an immediate applica<on of Corollary 2. 

□ 

 

 

Corollary 4.  If from the term   �� * �N  +�,, where α is a 

known natural integer coprime to � � 1, we can reach the 

term �
  1, in an acceptable time, then we can solve the 

discrete logarithm problem 2# * � +�,. 
Proof. Indeed :  �# * �N  +�,   f  �xy  * � +�,.   

□ 

 

4. Conclusion 

 

In this paper, we proposed and studied a new integer 

sequence that is strongly connected to the modular equation �# * � +�,. We also described its properties and showed 

how it can lead, in some cases, to an exact solution of the 

discrete logarithm problem. 
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