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Abstract

For a positive real number x let the Fibonacci distance ‖x‖F be the dis-
tance from x to the closest Fibonacci number. Here, we show that for integers
a > b > c ≥ 1, we have the inequality

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√

log a).
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1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. For a positive real number x we put

‖x‖F = min{|x− Fn| : n ≥ 0}.
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In [4], it was shown that there are no positive integers a > b > c such that
ab + 1 = F`, ac + 1 = Fm and bc + 1 = Fn for some positive integers `,m, n.
Note that if such a triple would exist, then max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ 1. This
suggests investigating the more general problem of the triples of positive integers
a > b > c in which all three distances ‖ab‖F , ‖ac‖F and ‖bc‖F are small. We have
the following result.

Theorem 1.1. If a > b > c ≥ 1 are integers then

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√
log a).

We have the following numerical corollary.

Corollary 1.2. If a > b > c ≥ 1 are positive integers such that

max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ 2,

then a ≤ exp(415.62). In fact, the solution with maximal a of the above inequality
is the following:

(a, b, c) = (235, 11, 1).

2. The proof of Theorem 1.1

2.1. Preliminary results

We put (α, β) = ((1 +
√
5)/2, (1−

√
5)/2) and recall the Binet formula

Fk =
αk − βk√

5
valid for all k ≥ 0. (2.1)

We write (Lk)k≥0 for the Lucas companion of the Fibonacci sequence (Fk)k≥0 given
by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Its Binet formula is
Lk = αk + βk for all k ≥ 0. Furthermore, the inequalities

αk−2 ≤ Fk ≤ αk−1 and αk−1 ≤ Lk ≤ αk+1 hold for all k ≥ 1.
(2.2)

We put
M = max{‖ab‖F , ‖ac‖F , ‖bc‖F }. (2.3)

Lemma 2.1. We have M ≥ 1.

Proof. Assume that M = 0. Then

6 ≤ ab = Fn, 3 ≤ ac = Fm, 2 ≤ bc = F`

for some positive integers n > m > ` ≥ 3. If n > 12, then, by Carmichael’s
Primitive Divisor Theorem (see [2]), there exists a prime p | Fn which does not
divide Fk for any 1 ≤ k < n. In particular, p cannot divide FmF` = Fnc

2, which
is impossible. Thus, n ≤ 12. A case by case analysis shows that there is no
solution.
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We put
ab+ u = Fn, ac+ v = Fm, bc+ w = F`, (2.4)

where |u| = ‖ab‖F , |v| = ‖ac‖F and |w| = ‖bc‖F . In the above, `, m, n are positive
integers and since F1 = F2, we may assume that min{`,m, n} ≥ 2. Furthermore,

max{|u|, |v|, |w|} =M.

We treat first the case when a ≤ 4M .

Lemma 2.2. If a ≤ 4M , then

max{`,m, n} ≤ 5 log(3M).

Proof. If a ≤ 4M , then

αn−2 ≤ Fn = ab+ u ≤ 4M(4M − 1) +M < 16M2,

so

n ≤ 2 +
2 log(4M)

logα
< 2 + 2.1 log(4M)

= 2 + 2.1 log(4/3) + 2.1 log(3M)

< 2.7 + 2.1 log(3M) < 5 log(3M).

A similar argument works for ` and m.

From now on, we assume that a > 4M .

Lemma 2.3. Assume that a > 4M . Then

(i) n > max{`,m};

(ii) a >
√
Fn;

(iii) n ≥ 3.

Proof. (i) Note that

Fn = ab+ u ≥ ab−M > ac+M ≥ ac+ v = Fm,

where the middle inequality ab −M > ac +M holds because it is equivalent to
a(b−c) > 2M , which holds because a > 4M and b > c, so b−c ≥ 1. Hence, n > m.
In the same way,

Fn = ab+ u ≥ ab−M > bc+M ≥ bc+ w = F`.

The middle inequality is ab−M > bc+M , which is equivalent to b(a− c) > 2M .
If a − c ≥ 2M , then indeed b(a − c) > 2M because b > 1. If a − c < 2M , it
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follows that b > c > a− 2M > 2M (because a > 4M), and a− c > 1, so again the
inequality b(a− c) > 2M holds. This implies (i).

(ii) Here, by the previous argument, we have

a2 > ab+M ≥ ab+ u = Fn.

This implies (ii).
(iii) is a consequence of (i) and of the fact that min{`,m} ≥ 2.

Lemma 2.4. When a > 4M , it is not possible to have u = v = 0.

Proof. If u = v = 0, then, since n > m by (i) of Lemma 2.3, we have

a ≤ gcd(ab, ac) = gcd(Fn, Fm) = Fgcd(n,m) = Fn/d ≤ αn/d−1,

where d > 1 is some divisor of n and where in the above we used the second
inequality in (2.2). Hence, by (ii) of Lemma 2.3 and inequality (2.2), we get

αn/2−1 ≤
√
Fn < a ≤ αn/d−1 ≤ αn/2−1,

a contradiction.

The following lemma follows immediately by the Pigeon–Hole Principle and is
well–known (see Lemma 1 in [3], for example).

Lemma 2.5. Let X ≥ 3 be a real number. Let a and b be nonnegative integers with
max{a, b} ≤ X. Then there exist integers λ, ν not both zero with max{|λ|, |ν|} ≤√
X such that |aλ+ bν| ≤ 3

√
X.

2.2. Some biquadratic numbers
We write

Fn − u =
1√
5
(αn − βn)− u =

1√
5

(
αn − (−α−1)n

)
− u

=
α−n√

5

(
α2n −

√
5uαn − (−1)n

)

=
α−n√

5
(αn − u1,n) (αn − u2,n) . (2.5)

In the above,

ui,n =

√
5u+ (−1)i

√
5u2 + 4(−1)n

2
, i ∈ {1, 2}. (2.6)

In the same way,

Fm − v =
α−m√

5
(αm − v1,m) (αm − v2,m) , (2.7)
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where

vj,m =

√
5v + (−1)j

√
5v2 + 4(−1)m

2
, j ∈ {1, 2}. (2.8)

Observe that u2,n = (−1)n+1u−11,n and v2,m = (−1)m+1v−11,m. Furthermore, both
u1,n, u2,n are roots of the polynomial

fu,n(X) = (X2 − (−1)n)2 − 5u2X2 = X4 − (5u2 + 2(−1)n)X2 + 1.

Similarly, both v1,m and v2,m are roots of the polynomial

fv,m(X) = (X2 − (−1)m)2 − 5v2X2 = X4 − (5v2 + 2(−1)m)X2 + 1.

Put K = Q(
√
5, u1,n, v1,m). Then the degree d = [K : Q] of K over Q is a divisor

of 32. Further, K contains α, u1,n, u2,n, v1,m, v2,m and all their conjugates. It
follows easily that all conjugates u(s)i,n for s = 1, . . . , d satisfy

u
(s)
i,n =

1

2

(
±
√
5u±

√
5u2 + 4(−1)n

)
, i = 1, 2, s = 1, . . . , d,

therefore the inequality

|u(s)i,n| ≤
1

2

(√
5|u|+

√
5u2 + 4

)
≤ 1

2

(√
5M +

√
5M2 + 4

)
< 3M (2.9)

holds for i = 1, 2 and s = 1, . . . , d. Similarly the inequality

|v(s)j,m| < 3M (2.10)

holds for j = 1, 2 and s = 1, . . . , d.

2.3. The first upper bound on n

The key step of the proof is writing

a | gcd(ab, ac) = gcd(Fn − u, Fm − v),

and passing in the above relation at the level of principal ideals in OK. Using
relations (2.5) and (2.7), we can write in OK:

aOK | gcd ((αn − u1,n) (αn − u2,n)OK, (α
m − v1,m) (αm − v2,m)OK)

|
∏

1≤i≤2
1≤j≤2

gcd ((αn − ui,n)OK, (α
m − vj,m)OK) . (2.11)

Passing to the norms in K, we get

ad = NK/Q (aOK) ≤
∏

1≤i≤2
1≤j≤2

NK/Q (gcd ((αn − ui,n)OK, (α
m − vj,m)OK)) . (2.12)
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For i, j ∈ {1, 2} put

Ii,n,j,m = gcd ((αn − ui,n)OK, (α
m − vj,m)OK) . (2.13)

In order to bound the norm of Ii,n,j,m in K, we use the following lemma.

Lemma 2.6. When a > 4M , there exist coprime integers λ, ν satisfying
max{|λ|, |ν|} ≤ √n such that |nλ+mν| ≤ 3

√
n and

αnλ+mν − uλi,nvνj,m ∈ Ii,n,j,m. (2.14)

Proof. The existence of a pair of integers λ, ν not both zero such that the inequal-
ities max{|λ|, |ν|} ≤ √n and |nλ +mν| ≤ 3

√
n hold follows from Lemma 2.6 for

(a, b,X) = (n,m,X). The condition X ≥ 3 is fulfilled for our case by (iii) of
Lemma 2.3. The fact that λ and ν can be chosen to be in fact coprime follows by
replacing the pair (λ, ν) by (λ/ gcd(λ, ν), ν/ gcd(λ, ν)). Finally, observing that

αn ≡ ui,n (mod Ii,n,j,m) and αm ≡ vj,m (mod Ii,n,j,m),

exponentiating the first of the above congruences to power λ, the second to power
ν, and multiplying the resulting congruences, we get containment (2.14).

In what follows, in this section we make the following assumption:

Assumption 2.7. Assume that that pair (λ, ν) from the conclusion of Lemma 2.6
satisfies

αnλ+mν − uλi,nvνj,m 6= 0 for all i, j ∈ {1, 2}. (2.15)

The main result of this section is the following.

Lemma 2.8. Under the Assumption 2.7, when a > 4M , we have

a ≤ 24(3M)8
√
n. (2.16)

Proof. By congruence (2.14), we have

Ii,n,j,m |
(
αnλ+mν − uλi,nvνj,m

)
OK,

and taking norms in K we get

NK/Q(Ii,n,j,m) | NK/Q
(
(αnλ+mν − uλi,nvνj,m)OK

)
= NK/Q(α

nλ+mν − uλi,nvνj,m).

Since the number appearing on the right above is not zero by Assumption 2.7, we
get

NK/Q(Ii,n,j,m) ≤ NK/Q
(
αnλ+mν − uλi,nvνj,m

)
,

therefore

NK/Q(Ii,n,j,m) ≤
d∏

s=1

∣∣∣(α(s))nλ+mν − (u
(s)
i,n)

λ(v
(s)
j,m)ν

∣∣∣ .
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Inequalities (2.9) and (2.10) together with the inequalities for λ and ν from the
statement of Lemma 2.6 and the fact that α(s) ∈ {α, β} imply that

∣∣∣(α(s))nλ+mν − (u
(s)
i,n)

λ(v
(s)
j,m)ν

∣∣∣ ≤ |α|3
√
n + (3M)2

√
n < 2(3M)2

√
n,

for s = 1, . . . , d, where for the last inequality we used (3M)2 ≥ 32 > α3. Hence,

NK/Q(Ii,n,j,m) ≤ 2d(3M)2d
√
n,

Thus, by inequality (2.12), we get

ad ≤
∏

1≤i≤2
1≤j≤2

NK/Q(Ii,n,j,m) ≤ 24d(3M)8d
√
n,

giving
a ≤ 24(3M)8

√
n,

which is what we wanted to prove.

Lemma 2.8 has the following consequence.

Lemma 2.9. Under the Assumption 2.7, when a > 4M , we have

n < (41 log(3M))2. (2.17)

Proof. Combining the inequality (2.16) of Lemma 2.8 for a with (ii) of Lemma 2.3
and inequality (2.2), we get

αn/2−1 ≤
√
Fn < a ≤ 24(3M)8

√
n.

It gives

n

2
− 1 <

4 log 2

logα
+

(
8 log(3M)

logα

)√
n < 5.8 + 16.7 log(3M)

√
n,

or
n <

(
13.6

log(3M)
√
n
+ 33.4

)
log(3M)

√
n < (41 logM)

√
n,

because n ≥ 3. So
n < (41 log(3M))2,

which is what we wanted to prove.

From now on, we assume that

n ≥ (41 log(3M))2. (2.18)

Lemma 2.2 tells us that if this the case, then also the inequality a > 4M holds. In
particular, for such values of n Assumption 2.7 cannot hold. This is the case we
study next.
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2.4. General remarks when Assumption 2.7 does not hold
From now on, we study the cases when Assumption 2.7 does not hold. In this case,
there exist i0, j0 ∈ {1, 2} such that

αnλ+mν = uλi0,nv
ν
j0,m. (2.19)

In particular
(α4)nλ+mν = (u4i0,n)

λ(v4j0,m)ν . (2.20)

Observe that if u = 0, then

ui,n = (−1)i
√

(−1)n, i ∈ {1, 2},

therefore u4i0,4 = 1. Similarly, if v = 0, then v4j0,m = 1. If u 6= 0, then write

5u2 + 4(−1)n = du,ny
2
u,n,

where du,n is a positive square free integer and yu,n is some positive integer. Ob-
serve that du,n is coprime to 5 so 5du,n is square free. Observe further that 5u2

and du,ny2u,n have the same parity and

u2i,n =
1

2

(
5u2 + du,ny

2
u,n

2
+ (−1)i

√
5du,nuyu,n

)
∈ Q(

√
5du,n) = Ku,n

for i = 1, 2. Moreover, u21,n is an algebraic integer and a unit in the quadratic field
Ku,n the inverse of which is u22,n. Similarly, if v 6= 0, we write

5v2 + 4(−1)m = dv,my
2
v,m,

where dv,m is some positive square free integer and yv,m is some positive integer.
As in the case of u2i,n, we have

v2j,m ∈ Q(
√

5dv,m) = Kv,m

is a unit in the quadratic field Kv,m. We continue with the following result.

Lemma 2.10. In case when uv 6= 0, and inequality (2.18) holds, it is not possible
that Q(

√
5), Q(

√
5du,n) and Q(

√
5dv,m) are three distinct quadratic fields.

Proof. Assume that the three quadratic fields Q(
√
5), Ku,n and Kv,m were distinct.

Then du,n and dv,m are distinct square free integers larger than 1 which are coprime
to 5. By Galois theory, there is an automorphism of Q(

√
5,
√

5du,n,
√

5dv,m), let’s
call it σ, such that σ(

√
5) = −

√
5, σ(

√
du,n) = −

√
du,n and σ(

√
dv,m) = −

√
dv,m.

Observe that σ leaves both
√
5du,n and

√
5dv,m invariant, therefore σ(u2i,n) = u2i,n

and σ(v2j,m) = v2j,m for i, j ∈ {1, 2}, while σ(α) = β. Applying σ to the equation
(2.20), we get

(β4)λm+νn = (u4i0,n)
λ(v4j0,m)ν . (2.21)

144 F. Luca, L. Szalay



Multiplying relations (2.20) and (2.21), we get

1 = (u2i0,n)
4λ(v2j0,m)4ν or (u2i0,n)

4λ = (v2j0,m)−4ν .

Thus, u4λi0,n is in Q(
√

5du,n) ∩ Q(
√

5dv,m) = Q. Since u2i0,n is in fact a positive
unit ditinct from 1 in Ku,n, we get that λ = 0, and then also ν = 0, which is not
allowed.

We now put
U = Q(

√
5, u41,n, v

4
1,m).

If u = 0, then u41,n = 1, so that U has degree 2 or 4 over Q. The same holds when
v = 0. Finally, when uv 6= 0, then u41,n ∈ Q(

√
5du,n) and v41,m ∈ Q(

√
5dv,m), so

U ⊆ Q(
√
5,
√

5du,n,
√
5dv,m).

Lemma 2.9 implies that the field appearing in the right hand side of the above
containment cannot have degree 8 over Q. Hence, U must have degree 2 or 4 over
Q in case uv 6= 0 as well.

We shall refer to the case when [U : Q] = 4 as the rank two case, and to the
case when [U : Q] = 2 as the rank one case.

2.5. The rank two case
We start with the following result.

Lemma 2.11. Assume that inequality (2.18) holds. Then in the rank two case, we
have uv 6= 0.

Proof. Assume, for example, that u = 0. Then, since we are in the rank two case,
it follows that dv,m > 1. Now equation (2.20) implies that

(α4)nλn+mν = (u4i0,n)
λ(v4j0,m)ν = (v4j0,m)ν .

This shows that (v4j0,m)ν ∈ Q(
√
5) ∩Q(

√
5dv,m) = Q. Since v2j0,m is in fact a unit

of infinite order in Kv,m, we get that ν = 0, which implies that also nλ+mν = 0,
therefore nλ = 0. Thus, λ = ν = 0, which is not allowed. The same contradiction
is obtained when v = 0.

Lemma 2.12. Assume that inequality (2.18) holds. Then in the rank two case, we
have du,n = dv,m > 1.

Proof. If this were not so, then we would either have du,n = 1 and dv,m > 1
or du,n > 1 and dv,m = 1. Assume say that du,n = 1 and dv,m > 1. Then
u4i0,n ∈ Q(

√
5). Relation (2.20) now shows that

(α4)nλ+mν(u−4i0,n)
λ = (v4j0,m)ν .
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The above relation shows that (v4j0,m)ν ∈ Q(
√
5) ∩ Q(

√
5dv,m) = Q. This implies

easily that ν = 0. Now relation (2.20) shows that (α4)nλ = (u4i0,n)
nλ. Since λ

and ν = 0 are coprime, we get that λ = 1, and so α4n = u4i0,n. This shows that
αn = ±ui0,n. In particular,

αn = |ui0,n| < 3M

(see inequality (2.9)), so that

n ≤ log(3M)

logα
< 3 log(3M),

which contradicts inequality (2.18).

Lemma 2.13. Assume that inequality (2.18) holds. Then we cannot be in the rank
two case.

Proof. Assume that we are in the rank two case. By Lemma 2.12, we have du,n =
dv,m > 1. Put D = du,n. We then have the following relations

5u2 −Dy2u,n = 4(−1)n+1;

5v2 −Dy2v,m = 4(−1)m+1.

By a result of Nagell (see Theorem 3 in [5]), we have n ≡ m (mod 2). Further, put
ε = (−1)n+1 and let (X,Y ) = (a, b) be the minimal solution in positive integers of
the Diophantine equation

5X2 −DY 2 = 4ε. (2.22)

Then all other positive integer solutions (X,Y ) of the above equation (2.22) are of
the form √

5X +
√
DY

2
=

(√
5a+

√
Db

2

)k

for some odd positive integer k. In particular, putting ζ = (
√
5a +

√
Db)/2, we

then have
√
5|u|+

√
Dyu,n

2
= ζku and

√
5|v|+

√
Dyv,m

2
= ζkv

for some odd positive integers ku and kv. We now see invoking (2.6) that

ui,n = sign(u)

(√
5|u|+ (−1)isign(u)

√
Dyu,n

2

)
= sign(u)ζηi,uku ,

where ηi,u = 1 if sign(u) = (−1)i and ηi,u = −1 if sign(u) = (−1)i+1. Similarly,

vj,m = sign(v)ζηj,vkv
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where ηj,v ∈ {±1}. Going back to relation (2.19), we get

αnλ+mν = sign(u)λsign(v)νζηi0,uλku+ηj0,vνkv .

Since α and ζ are multiplicatively independent, we get that

nλ+mν = 0, sign(u)λsign(v)ν = 1, ηi0,uλku + ηj0,vνkv = 0.

From the left relation above we get that λ and ν have opposite signs. From the
right relation above, we get that λ/ν = −ηj0,vηi0,ukv/ku, and since λ and ν are
coprime, we get that they are both odd and that ηi0,u = ηj0,v. Finally, since λ
and ν are both odd, from the middle relation above we get that sign(u) = sign(v).
Put e = gcd(ku, kv). Writing ku = e`u, kv = e`v, and putting δ = sign(u) and
η = ηi0,u, we get that

ui0,n = δ(ζηe)`u = (δζηe)`u and vj0,m = δ(ζηe)`v = (δζηe)`v .

Writing ζ1 = δζηe, we get that

ui0,n = ζ`u1 and vj0,m = ζ`v1 .

Further, `u/`v = ku/kv = −ν/λ = n/m, so that if we put k = gcd(m,n), then
n = `uk and m = `vk. Since u1,nu2,n = ε = v1,mv2,m, it follows that if i1 and j1
are such that {i0, i1} = {j0, j1} = {1, 2}, then

ui1,n = εζ−`u1 = ζ`u2 and vj1,m = εζ−`v1 = ζ`v2 ,

where ζ2 = εζ−11 . Thus,

αn − ui0,n = (αk)`u − ζ`u1 ;

αn − ui1,n = (αk)`u − ζ`u2 ;

αm − vj0,m = (αk)`v − ζ`v1 ;

αm − vj1,m = (αk)`v − ζ`v2 .

Since `u and `v are coprime, it follows that

Ii0,n,j0,m = gcd
((

(αk)`u − ζ`u1
)
OK,

(
(αk)`v − ζ`v1

)
OK
)
= (αk − ζ1)OK. (2.23)

Similarly,

Ii1,n,j1,m = gcd
((

(αk)`u − ζ`u2
)
OK,

(
(αk)`v − ζ`v2

)
OK
)
= (αk − ζ2)OK. (2.24)

As for Ii0,n,j1,m, we have

(αk)`u ≡ ζ`u1 (mod Ii0,n,j1,m) and (αk)`v ≡ ζ`v2 (mod Ii0,n,j1,m).
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Exponentiating the first congruence above to `v and the second to `u, and com-
paring the resulting congruences, we get

ζ`u`v1 ≡ ζ`u`v2 (mod Ii0,n,j1,m)

so that
Ii0,n,j1,m | (ζ2`u`v1 − ε)OK, (2.25)

and the principal ideal on the right above is not zero. Similarly,

Ii1,n,j0,m | (ζ2`u`v2 − ε)OK. (2.26)

Hence, divisibility relation (2.11) together with relations (2.23)–(2.26) now implies

a | (αk − ζ1)(αk − ζ2)(ζ2`u`v1 − ε)(ζ2`u`v2 − ε).

Taking norms in K, we get that

ad ≤ |NK/Q(α
k − ζ1)||NK/Q(α

k − ζ2)||NK/Q(ζ
2`u`v
1 − ε)||NK/Q(ζ

2`u`v
2 − ε)|. (2.27)

Since
u
(s)
i0,n

= (ζ
(s)
1 )`u

and `u ≥ 1, it follows, by (2.9), that

|ζ(s)1 | < 3M.

Similarly, |ζ(s)2 | < 3M . Furthermore,

ζ ≥
√
5 +
√
3

2
> α.

Since
ζe`u = |ui,n| for some i ∈ {1, 2},

we get that

`u ≤ e`u ≤
log(3M)

logα
< 2.1 log(3M).

Similarly, `v ≤ 2.1 log(3M). It now follows that

|(α(s))k − ζ(s)1 | ≤ αk + 3M ≤ 6Mαk for all s = 1, . . . , d.

Similarly,

|(α(s))k − ζ(s)2 | ≤ αk + 3M ≤ 6Mαk for all s = 1, . . . , d.

Finally,

|(ζ(s)1 )2`u`v − ε| ≤ (|(ζ(s)1 )`u |)2`v + 1 = |u(s)i0,n|
2`v + 1 < 2(3M)4.2 log(3M),
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for all s = 1, . . . , d and a similar inequality holds with ζ1 replaced by ζ2. We thus
get that

|NK/Q(α
k − ζi)| < (6M)dαdk, |NK/Q(ζ

2`u`v
i − ε)| < 2d(3M)4.2d log(3M)

for i = 1, 2, which together with (2.27) gives

ad < (6M)2dα2dk22d(3M)8.4d log(3M),

or
a < 16(3M)2+8.4 log(3M)α2k. (2.28)

Observe that k = n/`u = m/`v, and n > m (by (i) of Lemma 2.3) and `u > `v are
odd and coprime. Thus, `u ≥ 3. If `u = 3, then `v = 1, so m = n/3. If this is the
case, then

a ≤ ac = Fm − v ≤ Fm +M < Fm + a/2

(because a > 4M), therefore a < 2Fm = 2Fn/3. With (ii) of Lemma 2.3 and
inequality (2.2), we get

αn/2−1 <
√
Fn < a < 2Fn/3 < 2αn/3−1,

therefore
n <

6 log 2

logα
, so n ≤ 4,

a contradiction. Thus, we conclude that it is not possible that `u = 3. Thus,
`u ≥ 5. Hence, k ≤ n/5. Inequality (2.28) together with (ii) of Lemma 2.3 and
(2.2) give

αn/2−1 <
√
Fn < a < 16(3M)2+8.4 log(3M)α2n/5.

Then

n

10
< 1 +

log 16

logα
+

(
2 + 8.4 log(3M)

logα

)
log(3M)

< 7.8 + 2.1(2 + 8.4 log(3M)) log(3M)

< 7.8 + 22(log(3M))2,

so
n < 78 + 220(log(3M))2 < 300(log(3M))2,

which contradicts inequality (2.18).

In particular, if inequality (2.18) holds, then we are in the rank one case.
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2.6. The rank one case
Lemma 2.14. Assume that (2.18) holds. We have u = ±Ft and v = ±Fs for
some nonnegative integers t, s which are either zero or satisfy n ≡ t (mod 2) and
m ≡ s (mod 2).

Proof. Since we are in the rank one case, it follows that u2i0,n ∈ Q(
√
5). So, if

u 6= 0, it follows that du,n = 1, so that 5u2 + 4(−1)n = y2u,n. In particular,
y2u,n−5u2 = 4(−1)n. It is well–known that if (X,Y ) are positive integers such that
Y 2 − 5X2 = 4(−1)k for some integer k, then X = Ft for some nonnegative integer
t ≡ k (mod 2) (and the value of Y is Lk). In particular, |u| = Ft for some integer
t which is congruent to n modulo 2. The statement about v can be proved in the
same way.

We now have

ab = Fn − u = Fn − sign(u)Ft = F(n−t1)/2L(n+t1)/2,

where t1 = εu,t,nt and εu,t,n ∈ {±1} depends on the sign of u as well as on the
residue classes of n and t modulo 4. Similarly, we have

ac = Fm − v = Fm − sign(v)Fs = F(m−s1)/2L(m+s1)/2,

and s1 = εv,m,ss for some εv,m,s ∈ {±1}. Observe also that either t = 0, or t ≥ 1
and

αt−2 ≤ Ft ≤M,

so that
t ≤ 2 +

logM

logα
< 2 + 2.1 logM < 2.1 log(3M). (2.29)

The same inequality holds with t replaced by |t1|, s, |s1|. Note also that

n± t1 ≥ n− t > (41 log(3M))2 − 2.1 log(3M) > 0.

Lemma 2.15. One of the following holds:

(i) n− t1 = m− s1;

(ii) n+ t1 = m+ s1;

(iii) s = 0, m = (n− t1)/2 and b = L(n+t1)/2c.

Proof. As a warm up, we start with the case when t = 0. Then

a ≤ gcd(ab, ac) = gcd(Fn, F(m−s1)/2L(m+s1)/2)

≤ gcd(Fn, F(m−s1)/2) gcd(Fn, L(m+s1)/2)

≤ Fgcd(n,(m−s1)/2)Lgcd(n,(m+s1)/2).
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In the above argument, we used the fact that gcd(Fp, Fq) = Fgcd(p,q) and that
gcd(Fp, Lq) ≤ Lgcd(p,q) for positive integers p and q. Put

gcd(n, (m− t1)/2) = n/d1 and gcd(n, (m+ t1)/2) = n/d2.

If d1 = 1, then n | (m− t1)/2, therefore n− t1 > m− t1 ≥ 2n, or

n ≤ −t1 ≤ t < 2.1 log(3M),

contradicting inequality (2.18). A similar inequality holds if d2 = 1. So, from now
on, we assume that min{d1, d2} ≥ 2. If min{d1, d2} ≥ 10, we then have

αn/2−1 <
√
Fn < a ≤ Fn/d1Ln/d2 ≤ αn/d1+n/d2 ≤ αn/5,

giving n/2− 1 < n/5, so n ≤ 3, a contradiction.
So, we may assume that min{d1, d2} ≤ 9. Assume that max{d1, d2} ≤ 9. Write

n/d1 = (m− s1)/d3 and n/d2 = (m+ s1)/d4. If d3 ≥ d1 + 1, we then get

m− s1 =
d3n

d1
≥ n+

n

d1
> m+

n

d1
,

so
n < −d1s1 ≤ d1s ≤ 9× 2.1 log(3M) < 20 log(3M),

contradicting inequality (2.18). Thus, max{d1, d2} ≥ 10. If min{d1, d2} ≥ 3, we
then get that

αn/2−1 <
√
Fn < a ≤ Fn/d1Ln/d2 ≤ αn/d1+n/d2 ≤ αn/3+n/10,

giving n < 15, which is impossible. Thus, min{d1, d2} = 2 giving

either n/2 = gcd(n, (m− s1)/2), or n/s = gcd(n, (m+ s1)/2).

Thus, either n/2 = (m− s1)/2d3, or n/2 = (m+ s1)/2d4 for some divisors d3 or d4
of (m− s1)/2 and (m+ s1)/2, respectively. If we are in the first case and d3 > 1,
then

m− s1 = d3n ≥ 2n > m+ n

giving n < −s1 ≤ s < 2.1 log(3M), a contradiction. The same inequality is ob-
tained if n/2 = (m+ s1)/2d4 for some divisor d4 > 1 of (m+ s1)/2. The last case
is n/2 = (m− s1)/2 (or n = m− s1), or n/2 = (m+ s1)/2 (or n = m+ s1), which
is (ii) for the particular case when t = 0.

Assume next that st 6= 0. In this case,

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, F(m−s1)/2L(m+s1)/2)

≤ gcd(F(n−t1)/2, F(m−s1)/2) gcd(F(n−t1)/2, L(m+s1)/2)

× gcd(L(n+t1)/2, F(m−s1)/2) gcd(L(n+t1)/2, L(m+s1)/2)

≤ Fgcd((n−t1)/2,(m−s1)/2)Lgcd((n−t1)/2,(m+s1)/2)
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× Lgcd((n+t1)/2,(m−s1)/2)Lgcd((n+t1)/2,(m+s1)/2). (2.30)

Write

gcd

(
n− t1

2
,
m− s1

2

)
=
n− t1
2d1

;

gcd

(
n− t1

2
,
m+ s1

2

)
=
n− t1
2d2

;

gcd

(
n+ t1

2
,
m− s1

2

)
=
n+ t1
2d3

;

gcd

(
n+ t1

2
,
m+ s1

2

)
=
n+ t1
2d4

for some positive integers d1, d2, d3, d4. Assume thatmin{d1, d2, d3, d4} ≥ 10. Then

αn/2−1 <
√
Fn < a ≤ F(n−t1)/2d1L(n−t1)/2d2L(n+t1)/2d3L(n+t1)/2d4

< α(n−t1)/2d1+(n−t1)/2d2+(n+t1)/2d3+(n+t1)/2d4+2 ≤ α(n+t)/5+2,

giving

n <
10

3

(
3 +

t

5

)
< 10 +

4.2

3
log(3M) < 12 log(3M),

contradicting inequality (2.18). Suppose min{d1, d2, d3, d4} ≤ 9. Assume that
there exist i 6= j such that both di ≤ 9 and dj ≤ 9. Just to fix ideas, we assume
that i = 1, j = 3. Put

n− t1
2d1

=
m− s1
2d5

, and
n+ t1
2d3

=
m− s1
2d7

. (2.31)

Assume say that d5 ≥ d1 + 1. Then

m− s1 =
d5(n− t1)

d1
≥ n− t1 +

n− t1
d1

> m− t1 +
n− t1
d1

,

so
n ≤ t1 + d1(t1 − s1) ≤ t+ 9(s+ t) < 20max{s, t} < 42 log(3M),

contradicting inequality (2.18). A similar contradiction is obtained if one supposes
that d7 ≥ d3 + 1. Thus, we may assume that d5 ≤ d1 ≤ 9 and d7 ≤ d3 ≤ 9.
Equations (2.31) give

d5n− d1m = d5t1 − d1s1;
d7n− d3m = −d7t1 − d3s1.

One checks that the above system has a unique solution (m,n), and the same is
true for the other values of i 6= j in {1, 2, 3, 4}, not only for (i, j) = (1, 3). We solve
the system by Cramer’s rule getting

∣∣∣∣
d5 −d1
d7 −d3

∣∣∣∣n =

∣∣∣∣
d5t1 − d1s1 −d1
−d7t1 − d3s1 −d3

∣∣∣∣ .
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Thus, using Hadamard’s inequality,

n ≤
∣∣∣∣
d5t1 − d1s1 −d1
−d7t1 − d3s1 −d3

∣∣∣∣

≤
√
d21 + d23 ×

√
(d5t1 − d1s1)2 + (d7t1 + d3s1)2

≤ 9
√
2× 9× 2×

√
2max{s, t} < 700 log(3M),

which contradicts inequality (2.18). So, we may assume that there exists at most
one i ∈ {1, 2, 3, 4} such that di ≤ 9. If di ≥ 2, then

αn/2−1 <
√
Fn < a ≤ F(n−t1)/2d1L(n−t1)/2d2L(n+t1)/2d3L(n+t1)/2d4

≤ α(n−t1)/2d1+(n−t1)/2d2+(n+t1)/2d3+(n+t1)/2d4+2

≤ α(n+t)/4+3(n+t)/20+2,

which gives

n

10
< 3 +

2

5
t, therefore n < 30 + 4t < 30 + 8.4 log(3M) < 40 log(3M),

which contradicts inequality (2.18). Thus, it remains to consider the case di = 1.
Say i = 1. We then get (n− t1)/2 | (m− s1)/2. If (m− s1)/2 is a proper multiple
of (n− t1)/2, we then get that

(m− s1)/2 ≥ 2× (n− t1)/2 = n− t1 > m/2 + n/2− t1,

giving
n ≤ 2t1 − s1 ≤ 2t+ s ≤ 6.3 log(3M),

which contradicts inequality (2.18). Thus, it remains the consider n− t1 = m− s1.
This was when di = 1 and i = 1. For i = 2, 3, 4, we get that n−t1 = m+s1, n+t1 =
m − s1, n + t1 = m + s1, respectively. Let us see that not all four possibilities
occur.

Suppose say that n− t1 = m+ s1. Then, as we have seen,

gcd((n− t1)/2, (m− s1)/2) = gcd((n− t1)/2, (n− t1)/2− s1) | s1 | s,

gcd((n+ t1)/2, (m+ s1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (m− s1)/2) = gcd((n+ t1)/2, (n− t1)/2− s1) | t1 + s1.

Observe that s1 + t1 6= 0, for if s1 + t1 = 0, then since also n − t1 = m + s1, or
n = m+(s1+ t1) = m+0, we would get that n = m, a contradiction. Divisibilities
(2.30) show that

a ≤ Fgcd((n−t1)/2,(m−s1)/2) gcd(F(n−t1)/2, L(m+s1)/2)Lgcd((n+t1)/2,(m−s1)/2)
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× Lgcd((n+t1)/2,(m+s1)/2) ≤ Fs × 2× Lt+s × Lt,

where we used the fact that gcd(Fk, Lk) | 2 for all positive integers k with k =
(n− t1)/2 = (m+ s1)/2. Thus,

a ≤ 2α2s+2t+1 < α3+8.4 log(3M).

Since also a >
√
Fn > αn/2−1, we get

n

2
− 1 < 3 + 8.4 log(3M), therefore n < 25 log(3M),

contradicting inequality (2.18). A similar argument applies when n+ t1 = m− s1.
Hence, we either have n− t1 = m− s1, or m+ t1 = n+ s1, which is (i).

Finally, let’s us discuss the case s = 0. We follow the previous program. We
have

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, Fm)

≤ gcd(F(n−t1)/2, Fm) gcd(L(n+t1)/2, Fm)

≤ Fgcd((n−t1)/2,m)Lgcd((n+t1)/2,m).

As in previous arguments, put

gcd((n− t1)/2,m) = (n− t1)/2d1, and gcd((n+ t1)/2,m) = (n+ t1)/2d2.

If min{d1, d2} ≥ 5, we have

αn/2−1 < a ≤ F(n−t1)/2d1L(n+t1)/2d2 ≤ α(n−t1)/2d1+(n+t1)/2d2 ≤ α(n+t)/5,

so that
n <

10

3

(
1 +

t

5

)
< 4 +

4.2

3
log(3M) < 6 log(3M),

contradicting inequality (2.18). Assume now that both d1 ≤ 4 and d2 ≤ 4. Put d3
and d4 such that m/d3 = (n− t1)/2d1 and m/d4 = (n+ t1)/2d2. If d3 ≥ 2d1 + 1,
we then have

m =
d3
2d1

(n− t1) ≥ n− t1 +
n− t1
2d1

> m− t1 +
n− t1
2d1

,

so
n ≤ (2d1 + 1)t1 ≤ (2d1 + 1)t ≤ 9× 2.1 log(3M) < 20 log(3M),

contradicting inequality (2.18). A similar contradiction is obtained if we assume
that d4 ≥ 2d2 + 1. Thus, d3 ≤ 2d1 ≤ 8 and d4 ≤ 2d2 ≤ 8. We then get

n+ t1
n− t1

=
d2d3
d1d4

,

so that
n(d1d4 − d2d3) = −t1(d1d4 + d2d3).
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Therefore

n ≤ t(d1d4 + d2d3) ≤ 64× 2.1 log(3M) < 400 log(3M),

contradicting inequality (2.18). Assume min{d1, d2} ≤ 4 and max{d1, d2} ≥ 5. If
min{d1, d2} ≥ 2, we then get

αn/2−1 < a < α(n−t1)/2d1+(n+t1)/2d2 ≤ α(n+t)(1/4+1/10),

giving

n <
20

3

(
1 +

7

20
t

)
< 7 +

7

3
× 2.1 log(3M) < 12 log(3M),

which contradicts inequality (2.18). So, the last possibility is min{d1, d2} = 1.
Hence, we either have gcd((n − t1)/2,m) = (n − t1)/2, or gcd((n + t1)/2,m) =
(n + t1)/2. In particular, m = δ(n − t1)/2, or m = δ(n + t1)/2 for some positive
integer δ. If δ ≥ 3, we get

n > m ≥ 3(n± t1)
2

≥ 3(n− t)
2

,

giving n < 3t < 10 log(3M), a contradiction. If δ = 2, we get that m = n − t1
or m = n + t1, which is (i) because s = 0. Suppose now that δ = 1. Then either
m = (n− t1)/2, or m = (n+ t1)/2. Assume that m = (n+ t1)/2. Then

a ≤ gcd(ab, ac) = gcd(F(n−t1)/2L(n+t1)/2, F(n+t1)/2)

≤ gcd(F(n−t1)/2, F(n+t1)/2) gcd(L(n+t1)/2, F(n+t1)/2) ≤ 2Ft,

so we get that

αn/2−1 ≤ 2Ft < αt+1, therefore n < 4 + 2t < 10 log(3M),

a contradiction. Finally, in case m = (n− t1)/2, we then have

ab = F(n−t1)/2L(n+t1)/2, ac = Fm = F(n−t1)/2,

therefore
ab = (ac)L(n+t1)/2, so b = L(n+t1)/2c,

which is (iii).

We can now give a lower bound for b.

Lemma 2.16. Assume that inequality (2.18) holds. Then

b > αn/2−14 log(3M). (2.32)
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Proof. If we are in case (iii) of Lemma 2.15, then

b ≥ L(n+t1)/2 ≥ αn/2−t/2−1 ≥ αn/2−1−1.05 log(3M) ≥ αn/2−3 log(3M).

Assume next that n− t1 = m− s1 and st 6= 0. Then

gcd((n− t1)/2, (m+ s1)/2) = gcd((n− t1)/2, (n− t1)/2 + s1) | s1 | s,

gcd((n+ t1)/2, (m− s1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (m+ s1)/2) = gcd((n+ t1)/2, (n− t1)/2 + s1) | t1 − s1.

Observe that t1 − s1 6= 0 since if t1 − s1 = 0, then n−m = t1 − s1 = 0, so n = m,
which is impossible. Now relation (2.30) shows that

a ≤ F(n−t1)/2LsLtLt+s ≤ α(n+t)/2+2s+t+2

≤ αn/2+2+3.5max{s,t} < αn/2+10 log(3M). (2.33)

Since |u| ≤M < a, it follows that

αn−2 < Fn = ab+ u ≤ ab+ |u| ≤ ab+M < 2ab < 2bαn/2+10 log(3M),

giving

b > 2−1αn/2−2−10 log(3M) > αn/2−4−10 log(3M) > αn/2−14 log(3M),

which is the desired inequality. A similar argument applies when n+ t1 = m+ s1
and st 6= 0.

Assume next that t = 0. Then n = m − s1 or n = m + s1. Assume say that
n = m− s1. Then

a ≤ gcd(Fn, F(m−s1)/2L(m+s1)/2) ≤ Fgcd(n,(m−s1)/2)Lgcd(n,(m+s1)/2

= Fn/2Lgcd(n,n/2+s1) ≤ Fn/2Ls,

so
a ≤ αn/2+s ≤ αn/2+2.1 log(3M),

which is an inequality better than (2.33). In turn, we get that inequality (2.32)
holds. A similar argument applies when t = 0 and n = m+s1, and also when s = 0
and either m = n− t1 or m = n+ t1. We give no further details here.

We now write
b ≤ gcd(ab, bc) = gcd(Fn − u, F` − w).

Write, as we did in Section 2.2,

F` − w =
α−`√
5

(
α` − w1,`

) (
α` − w2,`

)
, (2.34)
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where

wk,` =

√
5w + (−1)k

√
5w2 + 4(−1)`

2
, k ∈ {1, 2}. (2.35)

As for the numbers ui,n and vj,m (see inequalities (2.9) and (2.10)), we also have
that wk,` and all its conjugates w(s)

k,` satisfy

|w(s)
k,`| < 3M.

We put = Q(
√
5, u1,n, w1,`), and use the argument from the beginning of Section

2.3, in particular an analog of inequality (2.11) to say that

bO | gcd
(
(αn − u1,n) (αn − u2,n)O,

(
α` − w1,`

) (
α` − w2,`

)
O
)

|
∏

1≤i≤2
1≤k≤2

gcd
(
(αn − ui,n)O,

(
α` − wk,`

)
O
)
. (2.36)

Put
Ii,n,k,` = gcd

(
(αn − ui,n)O, (α` − wk,`)O

)
, i, k ∈ {1, 2}.

Using Lemma 2.6, we construct coprime integers λ′, ν′ satisfying the inequalities
max{|λ′|, |ν′|} ≤ √n, |nλ′ + `ν′| ≤ 3

√
n and furthermore

αnλ
′+`ν′ − uλ′

i,nw
ν′
k,` ∈ Ii,n,k,`.

As in Section 2.3, we make the following assumption.

Assumption 2.17. Assume that the pair (λ′, ν′) satisfies

αnλ
′+`ν′ − uλ′

i,nw
ν′
k,` 6= 0 for all i, k ∈ {1, 2}.

Then the argument of Lemma 2.8 shows that

b ≤ 24(3M)8
√
n.

Combined with Lemma 2.16, we get that

αn/2−14 log(3M) < 24(3M)8
√
n,

therefore

n/2− 14 log(3M) <
log(16)

logα
+

(
8 log(3M)

logα

)√
n < 5.8 + 16.7 log(3M)

√
n,

so
n <

(
11.6√
n

+
28 log(3M)√

n
+ 16.7 log(3M)

)√
n.

Since n satisfies inequality (2.18), we have that
√
n > 41 log(3M), therefore

11.6√
n
< 2 and

28 log(3M)√
n

< 1.
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Hence, we get that
√
n < 3 + 16.7 log(3M) < 20 log(3M),

contradicting inequality (2.18). The conclusion is:

Lemma 2.18. If inequality (2.18) holds, then Assumption 2.17 cannot hold.

Thus, there exist i1, k1 ∈ {1, 2} such that

αnλ
′+`ν′

= uλ
′
i1,nw

ν′
k1,`.

Since we already know that u2i1,n ∈ Q(
√
5) (because we are in the rank one case),

it follows that w2ν′
k1,`
∈ Q(

√
5). In particular, either w = 0, or w 6= 0 but 5w2 +

4(−1)` = y2w,` holds for some positive integer `. In particular, w = ±Fr for some
nonnegative integer r which is either 0 or is congruent to ` modulo 2. Thus

bc = F` − w = F(`−r1)/2L(`+r1)/2

where r1 = ±r. Since |w| ≤M , we also have r < 2.1 log(3M).
We now show that both m and ` are large.

Lemma 2.19. Assume that inequality (2.18) holds. Then

min{`,m} > n/2− 17 log(3M). (2.37)

Proof. Since b > αn/2−14 log(3M) by Lemma 2.16, and since n satisfies inequality
(2.18), it follows that b > 2M . Indeed, this last inequality is implied by

αn/2−14 log(3M) > 2M,

or
n/2− 14 log(3M) >

log 2M

logα
,

which in turn is implied by

n/2− 14 log(3M) > 2.1 log(3M),

which in turn is implied by n > 33 log(3M), which holds when n satisfies inequality
(2.18). Hence,

α`−1 > F` = bc+ w ≥ bc−M ≥ b−M > b/2

≥ 2−1αn/2−14 log(3M) > αn/2−2−14 log(3M),

giving

`− 1 > n/2− 2− 14 log(3M), or ` > n/2− 17 log(3M).

The same argument works for m.
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We now return to Lemma 2.15 and get the following result.

Lemma 2.20. If inequality (2.18) holds, then part (iii) of Lemma 2.15 cannot
hold.

Proof. Assume that (iii) of Lemma 2.15 holds. Then

bc = L(n+t1)/2c
2 = F(`−r1)/2L(`+r1)/2.

Since n satisfies inequality (2.18), we have that

(n+ t1)/2 > (n− t)/2 > ((41 log(3M))2 − 2.1 log(3M))/2 > 12,

therefore L(n+t1)/2 has a primitive prime factor p. Its order of appearance in the
Fibonacci sequence is n + t1. Since p | F(`−r1)/2L(`+r1)/2, it follows that either
(`− r1)/2 is a multiple of n+ t1, or `+ r1 is a multiple of n+ t1. But obviously

(`+ r1)/2 < (n+ r)/2 < n− t ≤ n+ t1,

where the middle inequality holds because it is equivalent to n > 2r + t, which is
implied by (2.18) since then

n > (41 log(3M))2 > 6.3 log(3M) > r + 2t.

Thus, the only possibility is that `+ r1 is a multiple of n+ t1. Since

2(n+ t1) ≥ 2n− 2t > n+ r > `+ r ≥ `+ r1,

it follows that the only possibility is that `+ r1 = n+ t1. Hence,

L(n+t1)/2c
2 = F(`−r1)/2L(`+r1)/2 = F(`−r1)/2L(n+t1)/2,

giving F(`−r1)/2 = c2. Since the largest square in the Fibonacci sequence is F12 =
122 (see [1] for a more general result), we get that (`− r1)/2 ≤ 12, so

` ≤ 24 + r1 ≤ 24 + r < 30 log(3M). (2.38)

However, this last inequality contradicts the inequality (2.37) because n satisfies
inequality (2.18). This shows that indeed part (iii) of Lemma 2.15 cannot happen.

We now revisit the argument of Lemma 2.15 and prove in exactly the same way
the following result.

Lemma 2.21. Assume that inequality (2.18) holds. Then one of the following
holds:

(i) n− t1 = `− r1;

(ii) n+ t1 = `+ r1.
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Proof. We follow the proof of Lemma 2.15. The relevant inequality here is, instead
of (2.30),

b ≤ gcd(ab, bc) = gcd(F(n−t1)/2L(n+t1)/2, F(`−r1)/2L(`+r1)/2). (2.39)

In the proof of Lemma 2.15 we used the lower bound a > αn/2−1, whereas here we
use the lower bound b > αn/2−14 log(3M) given by Lemma 2.16. We only go through
a couple scenarios which have not been contemplated in the proof of Lemma 2.15.

One of them is when u = w = 0. Then

αn/2−14 log(3M) < b = gcd(Fn, F`) = Fgcd(n,`).

Clearly, gcd(n, `) = n/d1 for some divisor d1 > 1 of n because ` < n. If d1 ≥ 3, we
get

αn/2−14 log(3M) < Fn/d1 < αn/d1 ≤ αn/3,
or n < 84 log(3M), contradicting inequality (2.18). Hence, gcd(n, `) = n/2, and
the only possibility is ` = n/2. But then

bc = Fn/2, ab = Fn = Fn/2Ln/2, giving a = Ln/2c.

Hence,
F(m−s1)/2L(m+s1)/2 = ac = Ln/2c

2.

Since n is large, Ln/2 has primitive divisors whose order of appearance in the
Fibonacci sequence is exactly n. We deduce that n divides either (m − s1)/2 or
m + s1. Since we have (m − s1)/2 ≤ (m + s)/2 < (n + s)/2 < n and m + s1 ≤
m + s < n + s < 2n whenever n satisfies inequality (2.18), we conclude that
the only possibility is that m + s1 = n. Thus, we get the equations Ln/2c2 =
F(m−s1)/2L(m+s1)/2 = F(m−s1)/2Ln/2, so F(m+s1)/2 = c2, giving (m + s1)/2 ≤ 12.
This gives

m ≤ 24− s1 ≤ 24 + s < 24 + 2.1 log(3M),

which contradicts inequality (2.37) of Lemma 2.19 when n satisfies inequality
(2.18).

This shows that we cannot have u and w be simultaneously zero.
Next we follow along the proof of Lemma 2.15 replacing (m, s, s1) by (`, r, r1).

Everything works out until we arrive at the analogue of (iii) of Lemma 2.15, which
for us is w = r = 0, ` = (n− t1)/2 and a = L(n+t1)/2c. But in this case

L(n+t1)/2c
2 = ac = F(m−s1)/2L(m+s1)/2.

Using again the information that (n + t1)/2 is large and L(n+t1)/2 has primitive
prime divisors, we conclude that the only possible scenario is m + s1 = n + t1,
leading to F(m−s1)/2 = c2, which gives that (m − s1)/2 is small, contradicting
inequality (2.37). We give no further details.

We can now give a lower bound for c.
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Lemma 2.22. Assume that inequality (2.18) holds. Then

c > αn/2−31 log(3M). (2.40)

Proof. This is very similar to the proof of Lemma 2.16. Assume, for example, that
n− t1 = `− r1 and tr 6= 0. Then

gcd((n− t1)/2, (`+ r1)/2) = gcd((n− t1)/2, (n− t1)/2 + r1) | r1 | r,

gcd((n+ t1)/2, (`− r1)/2) = gcd((n+ t1)/2, (n− t1)/2) | t1 | t,
and

gcd((n+ t1)/2, (`+ r1)/2) = gcd((n+ t1)/2, (n− t1)/2 + r1) | t1 − r1.

Observe that t1 − r1 6= 0 since if t1 − r1 = 0, then n − ` = t1 − r1 = 0, so n = `,
which is impossible. Now relation (2.39) implies that

b ≤ F(n−t1)/2LrLtLt+r ≤ α(n+t)/2+2r+t+2

≤ αn/2+2+3.5max{r,t} < αn/2+10 log(3M). (2.41)

Since |w| ≤M < b, it follows, by inequality (2.37), that

αn/2−17 log(3M)−2 ≤ α`−2 ≤ F` = bc+ w ≤ bc+M < 2bc < 2cαn/2+10 log(3M),

giving

c > 2−1αn/2−2−27 log(3M) > αn/2−4−27 log(3M) > αn/2−31 log(3M),

which is the desired inequality. A similar argument applies when n + t1 = ` + r1
and tr 6= 0.

A similar proof works when either t = 0 or r = 0 providing better lower bounds
for c. We give no further details here.

We now revisit the argument of Lemma 2.15 and prove in exactly the same way
the following result.

Lemma 2.23. Assume that inequality (2.18) holds. Then one of the following
holds:

(i) m− s1 = `− r1;

(ii) m+ s1 = `+ r1.

Proof. This is entirely similar with the proof of Lemma 2.15, except that we use
the relation

c ≤ gcd(ac, bc) = gcd(F(m−s1)/2L(m+s1)/2, F(`−r1)/2L(`+r1)/2)

and the lower bound (2.40) on c. We give no further details.
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Finally, we prove the following result.

Lemma 2.24. Inequality (2.18) does not hold.

Proof. From Lemmas 2.15, 2.21 and 2.23, one gets easily that either n− t1 = m−
s1 = `−r1 or n+t1 = m+s1 = `+r1. Assume say that N = n−t1 = m−s1 = `+r1.
Then

ab = FNLN+2t1 , ac = FNLN+2s1 , bc = FNLN+2r1 .

If U and V denote any two of the numbers N,N + 2r1, N + 2s1, N + 2t1, then
U/2 < V < 2U because n satisfies inequality (2.18). Also, all the above four
numbers exceed 12. Using again the primitive divisor theorem, we conclude that
N + 2r1 is one of the numbers {N,N + 2s1, N + 2t1}, so r1 ∈ {0, s1, t1}. But if
r1 = s1, then since also `−r1 = m−s1, we getm = `, so ac = F(m−s1)/2L(m+s1)/2 =
F(`−r1)/2L(`+r1)/2 = bc, contradicting the fact that a > b > c ≥ 1. Thus, r1 = 0.
Similarly, we get s1 = t1 = 0, therefore n = m = `, which is not allowed. A similar
argument works when n+ t1 = m+ s1 = `+ r1.

Proof of Theorem 1.1. We are now ready to finish the proof of Theorem 1.1. In-
deed,

2a ≤ ab = Fn + u ≤ Fn +M.

So, either a ≤M , or a > M in which case a ≤ 2a−M ≤ Fn < αn giving

log a

logα
< n < (41 log(3M))2.

The above inequality implies that

logM > 41−1
√
2
√

log a > 0.034
√

log a. (2.42)

In case a ≤ M , we get logM ≥ log a > 0.034
√
log a because a ≥ 3 so log a > 1.

Hence, inequality (2.42) always holds, showing that M > exp(0.034
√
log a), which

is what we wanted to prove.

3. The proof of Corollary 1.2

The condition a < exp(415.62) (coming directly from Theorem 1.1) implies n ≤
1730 via the inequalities αn−2 < Fn < a2. It is easy to see that n ≥ 8 entails n > m,
moreover from n ≥ 8 and m ≥ 7 we conclude m ≥ `. These make it possible to
apply a computer search for checking all the candidates (n,m, `). Obviously n ≥ 5
must be fulfilled, therefore we can verify individually the cases 5 ≤ n ≤ 7. Totally
222 solutions to the system (2.4) have been found in (a, b, c, u, v, w, n,m, `), the
largest a is occurring in

(a, b, c, u, v, w, n,m, `) = (235, 11, 1,−1,−2, 2, 18, 13, 8).
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