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Abstract — A major objective of our research was to survey soil biological activity and organic matter
content reduction in a Central European oak forest during treatments of various detritus inputs within the
Sikfokat DIRT (Detritus Input and Removal Treatmen®soject. Beside the control, three detritus
removal and two detritus duplication treatments were applied. Our examinations have proven that soil
organic matter content declined relatively fast in detritus removal treatments. The reduction was
especially remarkable in root detritus removal treatments, where — due to the lack of transpiration — soils
were moister during the whole year than in the other treatments. The higher moisture content, despite of
the reduction of detritus input, produced an intense soil respiration. This can be explained by the fact that
decomposing organisms have increased the use of soil organic matter. Detritus input reduction had a
significantly greater effect on soil respiration and organic matter content than detritus input duplication
of the same extent. The latter did not cause any significant change compared to the control.
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Kivonat — Az avarinput hatdsa a talaj szerves anyag tartalméara és szén-dioxid kibocsataséara egy
Kbdzép-eurdpai lombhullatd erdsben. Kutatasaink egyik fécélkitizése az volt, hogy a Sikt

DIRT (Detritus Input and Removal TreatménfBroject keretében, felmérjik egy kodzép-eurdpai
télgyerddben a kulénbdk avarinputot kapd kezelések talajainak biol6giai aktivitasat és szerves anyag
tartalom csokkenését. A kontroll mellett haromféle avarelvonasos és kétféle tobbletavart kapé kezelést
alkalmaztunk. Vizsgélataink azt bizonyitottak, hogy a cstkkentett avarinputot kap6 kezelések esetén a
talaj szerves anyag tartalma viszonylag gyorsan csokken. Kiléntsensékkenést tapasztaltunk a
gyokéravar elvonasos kezeléseknél, ahol a hidnyzé transpiracié miatt egész évben nedvesebbek a
talajok, mint a tobbi kezelésnél. A magasabb nedvesség tartalom hatasara a szerves anyag input
csokkenés ellenére is intenziv talajlégzést tapasztaltunk. Ezt azzal magyaraztuk, hogy a lebontd
szervezetek a talaj szerves anyag készletét fokozottabban hasznaljadk fel tapanyagkéhiaearkies
mennyiség helyett. Az avarinput cstkkentése szignifikansan nagyobb hatast gyakorolt a talajlégzésre
és a talaj szerves anyag tartalméra, mint az avarinput ugyanolyan iméie&lése, mely a
kontrollhoz képest nem okozott szignifikans valtozast.
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1 INTRODUCTION

A major part of carbon dioxide getting into carbzytle comes from respiration, weathering
of rocks and volcanic activity, while industrialtaties are responsible only for 5-15% of it.
Forest destruction and burning, area increase agrhdation of agricultural lands, melting of
permafrost soils and the enhancement of soil rapir also contribute to the growing carbon
dioxide emission deriving from the combustion ofdib fuels. Although the extra carbon
dioxide in the atmosphere is primarily due to thembustion of fossil fuels, a
considerable proportion is caused by soil organatten content reduction through forest
destruction and utilizing lands for agriculture @snstructions (Wild 1988). Batjes and
Sombroek (1997) estimate the organic carbon mattesoil within the upper 1 m to be
1200-1600 Gt, while Batjes (1996) thinks that ther2376—2456 Gt carbon in the upper 2 m.
According to the estimations, soil stores two amdk times more carbon as plants, and twice
as much as the atmosphere (Batjes 1998). AccorinBuringh (1984) the present saill
organic matter content is merely 75% of that befinve start of agriculture. According to
Raich and Schlesinger (1992) decomposing detritcdu@ding roots) provides about 70% of
total carbon output of soils which is 68 Gt/yeanilShemical and biological processes
influence global climate change by increasing thengty of greenhouse gases. Global
warming will supposedly influence the decompositadrsoil organic matters, thus the global
carbon cycle of the biosphere. Several researd@sssme that decomposition processes are
induced more strongly by temperature rise thanrabalic processes (Jenkinson et al. 1991,
Schimel et al. 1994; Kirschbaum 1995), which magdldo increased atmospheric carbon
dioxide content (Townsend et al. 1992; Schimel 1%@%/e and Hart 1998; Cox et al. 2000).
The enhanced soil respiration as well as the remludéh detritus production can entail the
decrease in soil organic matters, thus soil degi@ada

Several examinations have already revealed thajtehcarbon dioxide content causes
lower nitrogen concentration in plant tissues (Gitret al. 1998; Norby et al. 1999, 2000).
Beside nitrogen concentration decrease, the quanfit less decomposable secondary
(phenols, tannins and lignin) increases (Norbyle2@01). The qualitative parameters of
detritus, such as nitrogen concentration, carbtmogen ratio and lignin-nitrogen ratio,
considerably influence the composition and actiafymicrobes (Hu et al. 2001), thus the
velocity of decomposition (Swift et al., 1979; A2977). Sulzman et al. (2005) carried out
researches in an old-growter Douglas-fis¢udotsuga menzigsiorest at H. J. Andrews
DIRT Site (USA, Oregon) and found that the incregdiletritus input with a high carbon to
nitrogen ratio accelerates the decomposition df@ganic matters. So the growth of detritus
production rather entails the increase of atmosphmarbon dioxide content (Norby et al.
2002) than soil carbon supply. Pendall et al. (2@b#hk that the high carbon to nitrogen ratio
in soil increases atmospheric carbon dioxide cdntBetritus decisively influences soil
nutrient supply, microbial activity and humus caoriteThe quantitative and qualitative
changes in detritus production together with tleéfiects on soil life have already been treated
in several studies and research papers (Sayer28Q8; Pandey et al. 2007).

DIRT experiments (Detritus Input and Removal Treatis) are long-term studies of soil
organic matter formation and derived from a proj&ainched in forest and grassland
ecosystems at the University of Wisconsin in 198lson-Hole 1963). This international
project’s goal is to assess how rates and sourc@bave- and belowground plant inputs
control the accumulation and dynamics of organid¢tenaand nutrients in forest soils over
decadal time scales. The significant effects ofipulations on mineralization and respiration
suggest that microbial activity was influenced bNRD treatments (Nadelhoffer et al. 2004).
Our experimental site, Sikfut DIRT Project, is member of the DIRT intercomtimal project
organized by the ILTER (International Long-Term Ecpcal Research) network. Sékfut
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site was established by professor P. Jakucs. Our research constitutes an important part of a
long term international project that involves five more experimental sites (Nadelhoffer et al.
2004) in USA (Andrews Experimental Forest, Bousson Experimental Forest) and Germany
(Universitat Bayreuth, BITOK).

A major objective of our research was to examine soil respiration and organic matter
content during treatments of various detritus inputs, thus revealing the effects of changes in
substrate quantity available for decomposing organisms and in soil moisture content on soils.

The extent of carbon dioxide emission is an important indicator of the intensity of organic
matter decomposition and related microbial activity (Gerenyu et al. 2005). The extent of sall
respiration is influenced by several factors, such as vegetation, the quantity and quality of
plant residues, the quantity and activity of decomposing microorganisms, soil structure, soil
pH, the quantity of available nutrients, as well as soil temperature and moisture content that
are influenced by climate change to the greatest extent (Swift et al. 1979; Pantos-Derimova
1983; Rustad et al. 2000).

2 SITE DESCRIPTION

The Sikbkuat site was established in 1972 for the long-term study of forest ecosystems. The
area covering 27 ha is located in the south part of the Bikk Mountains in Northeast Hungary
at 325 m altitude. GPS coordinates are R687E 2(°28’. Annual precipitation amounts to

550 mm and annual average temperature i¥C1@®ccording to the FAO Soil Classification,

the type of soil is cambisol. Soil pH ranges between 4.85 and 5.50 depending on the plots
(Toth et al. 2007). The forest is a semi-natural st@ukfcetum petraeae-cerrmmunity)
without forest management, and since 1976 is part of the Bukk National Park.

Experimental plots were established in November 2000. Following the example of
American DIRT Sites, six treatments were set up in three replications. These 18 plots were
arranged randomly. The treatments are: Double Litter (DL), Control (C), No Litter (NL), No
Root (NR), Double Wood (DF), No Input (NI) Each plot is 7m wide and 7m long &9 m
(Fekete et al. 2007).

3 METHODS

Random soil samples were taken from five test holes at each plot. The test holes with a
diameter of 13 mm were 15 cm deep. Sampling was carried out with Oakfield auger (Oakfield
Apparatus Company, USA). Samples were homogenized and stored in a refrigerator at 4°C.
Laboratory examinations were implemented within a week after sampling.

For detecting soil temperature, an ONSET, StowAway TidbiT-type data-logger (Onset
Computer Corporation, USA) was placed into the middle of each plot at 10 cm depth. Data-
loggers were programmed to measure soil temperature every hour. Soil tempretaure was
measured continuously fron{'81arch 2001. Data were downloaded at set intervals generally
once a year. Soil moisture content was determined after drying in oven at 105°C for 24 hours.
Soil organic matter content was determined by the Tyurin method (Buzas 1988). Soil
respiration was measured by examining the carbon dioxide efflux of samples according to
Jenkinson and Powlson’s (1976) method.

Experimental data were statistically evaluated $tatistica version 7.0. We ensured
randomness of sampling and the independence of each sampling el@itmagorov — Smirnov
test helped determine the normal distribution of actual data. Homogenity of the variations was
examined byFmaxprobe One-way ANOVANndTukey's HSDest were also performed.
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4 RESULTS

The first sampling took place in April 2001, fiveonths after plot establishment. At that time
NR treatment revealed the highest organic mattetec (3.61%); however, NI (3.26%) also
surpassed the values of DL (3.19%) and C (3.08%gu¢e 1). The next sampling took place
in December 2001. Then NR was ranked second, folgpwL. In 2002 the organic matter
content of treatments involving detritus removaR(NNI, NL) decreased compared to the
other treatments. From 2003 till the end of examma the samples of detritus duplicaton
and control treatments revealed higher organic enatontents than the ones of detritus
removal treatmentd=(gure 2. Comparing the means of 2001-2002 and those @3-22006,
the following results were obtained: organic mattentent increased by 3% in DL and DW,
while decreased by 2% in C. These changes wersigwficant. However, detritus removal
treatments revealed significant decreases & (%): NL: 14%, NR: 17%, NI: 8%. The

lowest mean value was measured in NR between 202G06.

42
40t
38t
36|
34|
32t
30}
28|

26

Soil organic matter (%)

24|
22t
20t
18}

T

1

1.6
DL

Dw

C

ML

Treatments

Figure 1. Mean values of soil organic matter conigr12) in 2001 and 2002
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Figure 2. Effects of detritus manipulation on smigjanic matter content (n=15) between
2003 and 2006. Different letters indicate signifitdifferences according to Tukey’s HSD test
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Examining the organic matter content of the treatments between 2002 and 2006, ANOVA
revealed significant differences between the groupssd6.26; p<0.001). According to
Tukey's HSD test, DL revealed significantly higher values than the three detritus removal
treatments, as well as DW and C showed significantly higher values than NR (p<0.05).
Regarding soil respiration, the highest mean values were measured in the detritus duplication
treatments (DL, DW) and NR. These were followed by C and finally by the leaf litter removal
treatments (NI, NL)Kigure 3). ANOVA did not reveal any significant difference between the
groups (p=0.1) because of high variation and relatively low number of samples (N=13).
However, considerable differences were observed between the treatments. Comparing the
carbon dioxide emission of NL pairwise to the other treatments by t-test, all the treatments
revealed significantly higher values than NL, except for NI.
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Figure 3. Mean values of carbon dioxide emission between 2004 and 2007
Double Litter (DL), Control (C), No Litter (NL), No Root (NR), Double Wood (DF),
No Input (NI). Different letters indicate significant differences according to t-test

5 DISCUSSION

Carbon dioxide emission of NI surpassed that of NL, while NR exceeded both C and DW.
These results — taking into consideration the extent of detritus input in the treatments — need
further explanation.

Root respiration had no influence on carbon dioxide emission in NL, C, DW, DL, as the
soil samples did not contain any living roots. Altough roots were removed from both NR and
NI samples before the examinations, at the establishment of NR and NI plots roots had not
been removed, they were let there to decompose.

Therefore, these dead roots were able to contribute to increasing soil respiration for a
certain period of time. This effect could be observed in the case of certain enzymes’ activities
(phosphatase, phenoloxidase) and the changes in soil organic matter content (Fekete et al.
2007; Varga et al. 2008).

The higher than expected carbon dioxide emission of NR and NI can be explained
primarily with the higher soil moisture content, due to the fact that plaets regularly
removed, so there was no transpiration loss at all. Statistical analyses revealed that carbon
dioxide emission correlates strongly with soil moisture content (Kotroczé et al. 2008).
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The effects of soil moisture content and detritus input were proven by the fact that in the two
sample series showing the highest soil moisture content (above 30% in all treatments) DL, C
and DW samples revealed 32% carbon dioxide emission higher than NR and NI. This is
because DL, C and DW plots had greater nutrient supplies, which — under appropriate
circumstances, e.g. optimal moisture content for decomposing organisms — increase the
intensity of soil respiration (Wan-Luo 2003; Berryman et al. 2010). Such nutrients were root
exudates as well as organic compounds resulting from the decomposition of leaf litter. All
these or a part of them were missing from the plots of detritus removal treatments. This fact
further supports the observation that litterfall and root detritus play an important part in nutrient
and carbon cycling (Sayer 2006). A further difference was that there were no plants in NR plots,
detritus could only originate from the surrounding trees. The major part of leaf litter from the
bushes fell to the ground outside the NR plots. According to Téth et al. (2007), shrubs provide
only 9% of the total leaf litter production at the 8Kt site. Thus, the quantity of aboveground
detritus is lower in NR than in the other three detritus duplication treatments.

The effects of leaf litter manipulation was shown by the fact that €@ssion in NL
was significantly lower than in treatments of aboveground detritus input (DL, C, NR, DW).
CO, emission in aboveground input treatments was also higher than in NI; however, the
difference was not significant. This can be explaned by the higher soil moisture content. In
this experiment the effects of soil temperature were not relevant, as the examinations were
carried out in laboratory at controlled temperature. However, in field investigations soil
temperature is a crucial factor (Kotroczé et al. 2008). Comparing our results with those of the
Andrews DIRT Site, we can observe the same trend sin DL, NL, C, and DW treatments
(Sultzman et al. 2005). In both experiments C revealed the lowest ed@ssion.
Nevertheless, in the Andrews DIRT experiment there was a significant difference between
DL, DW and C, while the difference was not significant in &lt. In 2001 NR and NI
revealed higher organic matter content, which was due to the decomposing capillary roots.
Living roots constantly enrich soil with their excretions (Gregory, 2006). Organic matter
content was the highest in DL, C, DW since 2003 (Varga et al. 2008), although the increase
was slight, however the values of NR and NI decreased by 30 and 18% between 2002 and
2006. NL also revealed a decreasing trend (22.3% between 2002 and 2006), which can be
explained by the lack of leaf litter supply (Zhang et al. 2008).

This decomposition of organic matter was more intense in NR and NI, so sgil CO
emission was higher as well. However, DL revealed the highest values regarding both CO
emission and organic matter content. This can be explained by the leaf litter duplication
resulted in an extra amount of litter that could not be mineralized. It raised soil organic matter
content. Nevertheless, during the field examination C and DW showed highen@€ion
than DL (Kotroczé et al. 2008). As for enzyme activity, similar tendency was observed
(Fekete et al. 2011).

6 CONCLUSION

Our results have proven that additional detritus input influenced organic matter content in
undisturbed soils under natural vegetation to a less extent than detritus removal for several
years. The decrease in detritus input entailed the decrease in humus content relatively fast. At
the Sikbkat DIRT site detritus manipulation caused significant changes in soil organic matter
content within five years. In drier conditions the increase of moisture content entailed a more
intense soil respiration. If detritus input does not provide a sufficient amount of substrate for
decomposing organisms, the mobile components of organic matter will be used for metabolic
processes.
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