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Abstract: In this paper, we develop an algorithm to solve completely the Diophantine equation F (x, y) = z2 , where the

quartic inhomogeneous polynomial F (x, y) with integer coefficients satisfies certain technical conditions. The procedure

is an extension of the version of Runge’s method given by Poulakis.
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1. Introduction

Let

G(x, y) =
k∑

i=0

n∑
j=0

cijx
iyj ∈ Z[x, y]

denote an irreducible polynomial over Q . Runge [5] showed that if the so-called Runge’s condition holds, then

the equation

G(x, y) = 0 (1)

has only finitely many solutions in x ∈ Z and y ∈ Z (for details see, for example [9]). In this case Hilliker and

Strauss [2], and later Walsh [9], gave explicit upper bounds for the size of the solutions (x, y). Unfortunately,

these bounds are usually too large to test all possible candidates for solutions of (1). Beukers and Tengely [1]

suggested a practical algorithm for finding the solutions if the coefficients and deg(G) are not too large.

The present paper is devoted to solving the Diophantine equation

F (x, y) = z2 (2)

in integers x, y , and z , where the inhomogeneous quartic polynomial

F (x, y) =
∑

i+j≤4

aijx
iyj ∈ Z[x, y] (3)

satisfies a few strict technical conditions. In order to sketch the crucial idea of the method, we first consider a

specific case of (1), given by the equation

y2 = f(x) , (4)
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where f(x) is a polynomial of degree four with integer coefficients and nonzero discriminant. Tzanakis [8]

described a procedure for computing the integer solutions to (4). His method is based on some estimates on

linear forms in elliptic logarithms. If f(x) is monic and not a perfect square, Poulakis [4] provided an elegant

method for solving (4). His algorithm was generalized by Szalay [6], [7]. Their methods use an elementary

approach for applying Runge’s method.

The present paper extends the idea of Poulakis to certain quartic Diophantine equations with three

variables and suggests an algorithm to solve them in general. Although the application of the method is limited

by the configuration (and obviously by the size) of the coefficient, there are advantages in its usage. First, it

handles non-homogeneous polynomials F (x, y) of degree four in (2). We note that only a few papers have dealt

with the non-homogeneous case. For instance, Mordell in [3] showed that the equation z2 = U2
1 +U2U3 has an

infinite number of solutions, where Ur = arx
2+hrxy+bry

2+frx+gry ∈ Z[x, y] (r = 1, 2, 3) and hr > 4arbr .

In this paper we assume that F (x, y) can be written in the form B2(x, y) + C(x, y) with B(x, y) =

U1(x, y) + j1 ∈ Q[x, y] and the linear polynomial C(x, y) ∈ Q[x, y] . Furthermore we take h2
1 < 4a1b1 .

Another advantage of our approach is that the procedure can be implemented by computer, allowing us

to get all solutions after inserting the coefficients and checking the conditions of the method.

Now we clarify the exact type of equations which can be solved by our algorithm.

2. Background

Consider the polynomial (3) again, and suppose that there exist polynomials B(x, y) = ax2 + bxy+ cy2 + dx+

ey + f ∈ Q[x, y] (a, c > 0) and C(x, y) = ux+ vy + w ∈ Q[x, y] such that

F (x, y) = B2(x, y) + C(x, y). (5)

If 4ac− b2 > 0 also holds, then we can describe an algorithm for finding all the solutions to the equation

z2 = F (x, y) (6)

with integer unknowns x , y , and z .

The algorithm depends on the following theorem. Let δ denote the smallest positive integer such that

both 2δB(x, y) and δ2C(x, y) are polynomials with integer coefficients. We define

P1(x, y) = 2δB(x, y) + 1− δ2C(x, y) and

P2(x, y) = 2δB(x, y)− 1 + δ2C(x, y).

Obviously, Pr(x, y) ∈ Z[x, y] , when r = 1, 2.

Theorem 1 If (x, y, z) ∈ Z3 is a solution of z2 = F (x, y) , then P1(x, y) > 0 and P2(x, y) > 0 implies

C(x, y) = 0 .

By Theorem 1, it is obvious that for any solution of (6) that does not satisfy C(x, y) = 0, then either

P1(x, y) ≤ 0 or P2(x, y) ≤ 0 must hold. Since 4δ2(4ac− b2) > 0, then the quadratic equation

P1(x, y) = 2δax2 + 2δbxy + 2δcy2 + (2δd− δ2u)x+ (2δe− δ2v)y + (2δf + 1− δ2w) = 0
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(with real x and y ) corresponds to an ellipse in the xy -plane with finitely many integer points inside. Similarly,

the case P2(x, y) = 0 also determines an ellipse. Thus we only need to check equation (6) for the inner points of

the ellipses. Clearly, this verification may provide some sporadic solutions besides the family of infinitely many

solutions derived from C(x, y) = 0 (see Example 1). Note that the case for C(x, y) = 0 does not always have

integer solutions since C(x, y) ∈ Q[x, y] (see Example 2).

Proof Following Poulakis’ idea in [4], we suppose that P1(x, y) > 0 and P2(x, y) > 0 hold for some integer

solution (x, y, z) of equation (6). Consequently,

−2δB(x, y) + 1 < δ2C(x, y) < 2δB(x, y) + 1,

and equivalently

δ2B2(x, y)− 2δB(x, y) + 1︸ ︷︷ ︸
(δB(x,y)−1)2

< δ2B2(x, y) + δ2C(x, y)︸ ︷︷ ︸
δ2F (x,y)

< δ2B2(x, y) + 2δB(x, y) + 1︸ ︷︷ ︸
(δB(x,y)+1)2

.

Since δ2F (x, y) = (δz)2 , the three consecutive squares imply z2 = B2(x, y), which leads immediately to

C(x, y) = 0. 2

3. Conditions

Now we determine the conditions under which it is possible to have the decomposition F (x, y) = B2(x, y) +

C(x, y). Later the algorithm must check the existence of these conditions. Therefore we compare the coefficients

of F (x, y) and B2(x, y) for the terms having degree at least two. This will provide a sufficient condition, where

the linear polynomial C(x, y) will satisfy the equality in equation (5) with F (x, y) and B2(x, y) for the terms

having degree at most one.

We first take the case with degree four. Given variables aij , the subsystem

a40 = a2, a31 = 2ab, a22 = 2ac+ b2, a13 = 2bc, a04 = c2 (7)

is usually overdetermined in a , b , and c . Thus the system (7) can specify the coefficients aij (i + j = 4) for

which F (x, y) = B2(x, y) + C(x, y) may exist. Clearly, if there are such rationals a , b and c , then a > 0 and

c > 0 are positive integers; and b is also an integer.

If system (7) is satisfied by some integers a , b , and c , then considering the terms of degree three in (5),

we need rational numbers d and e such that

a30 = 2ad, a21 = 2ae+ 2bd, a12 = 2be+ 2cd, a03 = 2ce. (8)

The first and last equation give d = a30/(2a) and e = a03/(2c), respectively. Clearly, the second and third

equation of (8) must also be fulfilled. Thus

a21 =
a

c
a03 +

b

a
a30 and a11 =

b

c
a03 +

c

a
a30 (9)

are necessarily integers. We observe that the congruences

a2 a03 + bc a30 ≡ 0 (modac), ab a03 + c2 a30 ≡ 0 (modac)
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are soluble in a03 and a30 , and therefore their solutions ensure the existence of the integers a21 and a12 having

the form given in (9).

After clarifying the coefficients aij linked to the terms of degree four and three, we turn our attention to

the last subsystem

a20 = d2 + 2af, a11 = 2de+ 2bf, a02 = e2 + 2cf. (10)

Using the middle equation, clearly f = (a11 − 2de)/(2b). Then we must check the first and last equations.

In summary, we have shown that the polynomial F (x, y) must satisfy several conditions in order to have

the decomposition described in (5).

4. Examples

We are now ready to establish the algorithm needed to solve equation (6). We verify the conditions that

determine B(x, y) and C(x, y) in (5). We establish the value for δ and obtain P1(x, y) and P2(x, y). Then

we solve C(x, y) = 0 in integers (x, y). Finally, we examine the inner points of the ellipses corresponding to

P1(x, y) = 0 and P2(x, y) = 0, respectively. The following two examples illustrate our methodology.

Example 1. Equation (6) is taken as

z2 = F (x, y) = x4 + 2x3y + 3x2y2 + 2xy3 + y4 − 4x3 − 2x2y − 2xy2 + 2y3

+8x2 + 5y2 − 88x+ 17y + 1.

Then we obtain

B(x, y) = x2 + xy + y2 − 2x+ y + 2,

C(x, y) = −80x+ 13y − 3,

δ = 1,

P1(x, y) = x2 + xy + y2 + 78x− 12y + 6,

P2(x, y) = x2 + xy + y2 − 82x+ 14y − 2.

The requirement C(x, y) = 0 provides solutions x = 18 − 13t , y = 111 − 80t (t ∈ Z). Besides this family of

infinite cardinality, there exist 23 exceptional solutions given in Table 1.

Table 1. The sporadic solutions to the equation of Example 1.

x -25 -23 -14 -8 -6 -5 -4 -3 -1 0 4 7
y 11 19 19 -5 -1 -5 11 3 -1 0 -8 -2
z 536 522 342 144 60 84 116 26 10 1 27 6

x 7 7 11 19 22 25 32 36 42 54 61
y -1 10 -21 -38 -16 10 -21 -48 0 -48 -38
z 18 216 288 1008 327 936 708 1753 1681 2473 2688

Figure 1 shows the ellipses P1(x, y) = 0, P2(x, y) = 0, the straight line C(x, y) = 0, two points (t = 1, 2)

on C(x, y) = 0, and the 23 exceptional solutions belonging to the ellipses (some of them are located on the

curve P2(x, y) = 0).

736



SZALAY/Turk J Math

C(x,y) = 0

P1(x,y) = 0

X

Y

P2(x,y) = 0

-60

60

-40

40

Figure 1. Solutions to the equation of Example 1.

Example 2. Equation (6) is taken as

z2 = F (x, y) = x4 + 4x3y + 14x2y2 + 20xy3 + 25y4 + x3 + 3x2y + 7xy2 + 5y3

+x2 + 2xy + 4y2 + 13x− 17y + 2 = 0.

Then we obtain

B(x, y) = x2 + 2xy + 5y2 +
1

2
x+

1

2
y +

3

8
,

C(x, y) =
101

8
x− 139

8
y +

119

64
,

δ = 8,

P1(x, y) = 16x2 + 32xy + 80y2 − 800x+ 1120y − 112,

P2(x, y) = 16x2 + 32xy + 80y2 + 816x− 1104y + 124.

Clearly, there is no integer solution derived from C(x, y) = 0. But there exist four exceptional solutions if one

scans the inner points of the ellipses:

(x, y, z) = (−25, 11, 673), (−13,−1, 193), (−8, 2, 48), (−3, 1, 1).
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