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Balancing diophantine triples
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László Szalay
University of West Hungary,
Institute of Mathematics,

Sopron, Hungary
email: laszalay@emk.nyme.hu

Abstract. In this paper, we show that there are no three distinct posi-
tive integers a, b and c such that ab + 1, ac + 1, bc + 1 all are balancing
numbers.

1 Introduction

A diophantine m-tuple is a set {a1, . . . , am} of positive integers such that
aiaj + 1 is square for all 1 ≤ i < j ≤ m. Diophantus investigated first
the problem of finding rational quadruples, and he provided one example:
{1/16, 33/16, 68/16, 105/16}. The first integer quadruple, {1, 3, 8, 120} was found
by Fermat. Infinitely many diophantine quadruples of integers are known and
it is conjectured that there is no integer diophantine quintuple. This was al-
most proved by Dujella [2], who showed that there can be at most finitely
many diophantine quintuples and all of them are, at least in theory, effectively
computable.
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The following variant of the diophantine tuples problem was treated by [4].
Let A and B be two nonzero integers such that D = B2 +4A 6= 0. Let (un)∞

n=0

be a binary recursive sequence of integers satisfying the recurrence

un+2 = Aun+1 + Bun for all n ≥ 0.

It is well-known that if we write α and β for the two roots of the characteristic
equation x2 − Ax − B = 0, then there exist constants γ, δ ∈ Q [α] such that

un = γαn + δβn for all n ≥ 0.

Assume further that the sequence (un)∞
n=0 is non-degenerate which means that

γδ 6= 0 and α/β are not root of unity. We shall also make the convention that
|α| ≥ |β| .

A diophantine triple with values in the set U = {un : n ≥ 0} , is a set of three
distinct positive integers {a, b, c} , such that ab + 1, ac + 1, bc + 1 are all in
U. Note that if un = 2n + 1 for all n ≥ 0, then there are infinitely many such
triples (namely, take a, b, c to be any distinct powers of two). The main result
in [4] shows that only similar sequences can possess this property. The precise
result proved there is the following.

Theorem 1 Assume that (un)∞
n=0 is a non-degenerate binary recurrence se-

quence with D > 0, and suppose that there exist infinitely many nonnegative
integers a, b, c with 1 ≤ a < b < c, and x, y, z such that

ab + 1 = ux, ac + 1 = uy, bc + 1 = uz.

Then β ∈ {±1} , δ ∈ {±1} , α, γ ∈ Z. Furthermore, for all but finitely many
of sixtuples (a, b, c; x, y, z) as above one has δβz = δβy = 1 and one of the
followings holds:

(i) δβx = 1. In this case, one of δ or δα is a perfect square;
(ii) δβx = −1. In this case, x ∈ {0, 1}.

No finiteness result was proved for the case when D < 0.
The first definition of balancing numbers is essentially due to Finkelstein

[3], although he called them numerical centers. A positive integer n is called
balancing number if

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r)
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holds for some positive integer r. Then r is called balancer corresponding to
the balancing number n. The nth term of the sequence of balancing numbers
is denoted by Bn. The balancing numbers satisfy the recurrence relation

Bn+2 = 6Bn+1 − Bn,

where the initial conditions are B0 = 0 and B1 = 1. Let α and β denote the
roots of the characteristic polynomial b(x) = x2 − 6x + 1. Then the explicit
formula for the terms Bn is given by

Bn =
αn − βn

α − β
=

(3 + 2
√

2)n − (3 − 2
√

2)n

4
√

2
. (1)

The first few terms of the balancing sequence are

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, . . . .

Let denote the half of the associate sequence of the balancing numbers by
Cn. Clearly, Cn = (αn + βn)/2 satisfies Cn = 6Cn−1 − Cn−2. Note that the
terms Cn are odd positive integers:

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, . . . .

Although Theorem 1 guarantees that there are at most finitely many Fi-
bonacci and Lucas diophantine triples, it does not give a hint to find all of
them. Luca and Szalay described a method to determine diophantine triples
for Fibonacci numbers and Lucas numbers ([6] and [7], respectively). In this
paper, we follow their method, although some new types of problems appeared
when we proved the following theorem.

Theorem 2 There do no exist positive integers a < b < c such that

ab + 1 = Bx, ac + 1 = By, bc + 1 = Bz, (2)

where 0 < x < y < z are natural numbers and (Bn)∞
n=0 is the sequence of

balancing numbers.

The main idea in the proof of Theorem 2 coincides the principal tool of [6],
the details are different since the balancing numbers have less properties have
been known then in case of Fibonacci and Lucas numbers.
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2 Preliminary results

The proof of Theorem 2 uses the next lemma.

Lemma 1 The following identities hold.

1. Bn = 35Bn−2 − 6Bn−3;

2. If n ≥ m then (Bn − Bm) (Bn + Bm) = Bn−mBn+m, especially
(Bn − 1) (Bn + 1) = Bn−1Bn+1;

3. gcd (Bn, Bm) = Bgcd(n,m), especially gcd (Bn, Bn−1) = 1;

4. gcd(Bn, Cn) = 1;

5. Bn+m = BnCm + CnBm;

6. B2n+1 − 1 = 2BnCn+1.

Proof. The first property is a double application of the recurrence relation of
balancing numbers. The second identity is Theorem 2.4.13 in [9], the next one
is a specific case of a general statement described by [5]. The fourth feature
can be found in the proof of Theorem VII in [1], the fifth property is given in
[8]. Finally, the last one is coming easily from the explicit formulae for Bn and
Cn. ¤

Lemma 2 Any integer n ≥ 2 satisfies the relation gcd(Bn−1, Bn−2−1) ≤ 34.

Proof. Using the common tools in evaluating the greatest common divisor,
the recurrence relation of balancing numbers, and Lemma 1 the statement is
implied by the following rows. Put Q1 = gcd(Bn − 1, Bn−2 − 1). Then

Q1 = gcd(Bn − 1, Bn − Bn−2) = gcd(Bn − 1, 6Bn−1 − 2Bn−2) ≤
≤ 2 gcd(Bn − 1, 3Bn−1 − Bn−2) ≤ 2 gcd(Bn−1Bn+1, 3Bn−1 − Bn−2) ≤
≤ 2 gcd(Bn−1, 3Bn−1 − Bn−2) gcd(Bn+1, 3Bn−1 − Bn−2) =

= 2 gcd(Bn−1, Bn−2) gcd(35Bn−1 − 6Bn−2, 3Bn−1 − Bn−2) =

= 2 gcd(−Bn−1 + 6Bn−2, 3Bn−1 − Bn−2) =

= 2 gcd(−Bn−1 + 6Bn−2, 17Bn−2) ≤
≤ 34 gcd(−Bn−1 + 6Bn−2, Bn−2) = 34 gcd(−Bn−1, Bn−2) = 34.

¤
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Lemma 3 For any integer n ≥ 2 we have gcd(B2n−3 − 1, Bn − 1) ≤ 1190.

Proof. Similarly to the previous lemma, put Q2 = gcd(B2n−3 − 1, Bn − 1).
Then

Q2 = gcd(2Bn−2Cn−1, Bn − 1) ≤ 2 gcd(Bn−2, Bn − 1) gcd(Cn−1, Bn − 1) ≤
≤ 2 gcd(Bn−2, Bn−1Bn+1) gcd(Cn−1, Bn−1Bn+1) ≤
≤ 2 gcd(Bn−2, Bn−1) gcd(Bn−2, Bn+1) gcd(Cn−1, Bn−1) gcd(Cn−1, Bn+1) ≤
≤ 2 · 1 · 35 · 1 · 17 = 1190.

For explaining that gcd(Cn−1, Bn+1) ≤ 17, by Lemma 1 we write

gcd(Cn−1, Bn+1) = gcd(Cn−1, Bn−1C2 + Cn−1B2) = gcd(Cn−1, 17Bn−1) ≤ 17.

¤

Remark 1 For our purposes, it is sufficient to have upper bounds given by
Lemma 2 and Lemma 3. Without proof we state that the possible values for
Q1 are only 1, 2 and 34, while Q2 ∈ {1, 2, 5, 34}.

Lemma 4 Let u0 ≥ 3 be a positive integer. Then for all integers u ≥ u0 the
inequalities

αu−0.9831 < Bu < αu−0.983 (3)

hold.

Proof. Let c0 = 4
√

2. Since 0 < β < 1 < α then the inequalities u ≥ u0 ≥ 3

imply

Bu ≥ αu − βu0

c0
= αu

(
1 − βu0

αu

c0

)
≥ αu


1 −

(
β
α

)u0

c0


 ≥ αu−0.9831.

For any non-negative integer u,

Bu ≤ αu

c0
< αu−0.983.

¤

Lemma 5 All positive integer solutions to the system (2) satisfy z ≤ 2y − 1.
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Proof. The last two equations of the system (2) imply

c| gcd (By − 1, Bz − 1) . (4)

Obviously, Bz = bc + 1 < c2, hence
√

Bz < c. This, together with (4) gives√
Bz < By. By (3) we obtain

√
αz−0.9831 <

√
Bz < By < αy−0.983.

It leads to
αz−0.9831 < α2y−1.966,

and then z ≤ 2y − 1. ¤

3 Proof of Theorem 2

Suppose that the integers 0 < a < b < c and 0 < x < y < z satisfy (2). Thus
1 · 2 + 1 ≤ ab + 1 = Bx implies 2 ≤ x. Thus 3 ≤ y. The proof is split into two
parts.

I. z ≤ 449.

In this case, we ran an exhaustive computer search to detect all positive
integer solutions to the system (2). Observe that we have

a =

√
(Bx − 1) (By − 1)

(Bz − 1)
, 2 ≤ x < y < z ≤ 449.

Going through all the eligible values for x, y and z, and checking if the above
number a is an integer, we found no solution to the system (2).

II. z > 449.

Put Q = gcd (Bz − 1, By − 1). From the proof of Lemma 5 we know that√
Bz < Q. Applying now Lemma 1,

Q ≤ gcd (Bz−1Bz+1, By−1By+1)

≤
∏

i,j∈{±1}

gcd (Bz−i, By−j) =
∏

i,j∈{±1}

Bgcd(z−i,y−j). (5)

Let gcd (z − i, y − j) = z−i
kij

. Suppose that kij ≥ 8, for all the four possible
pairs (i, j) in (5). Then Lemma 4, together with the previous two estimates,
provides

α
z−0.9831

2 <
√

Bz < Q ≤ (
B(z−1)/8

)2 (
B(z+1)/8

)2
< α4·( z+1

8
−0.983)
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which leads to a contradiction if one compares the exponents of α.

Assume now that kij ≤ 7 fulfills for some i and j, let denote k this kij.
Suppose further that

z − i

k
=

y − j

l

holds for a suitable positive integer l coprime to k.
If l > k, then according to y < z, the relation z− i < y− j implies z = y+1.

But this is impossible since

Q = gcd(By+1 − 1, By − 1) ≤ gcd(By+2By, By+1By−1) = gcd(By+2, By−1) ≤ B3

follows in the virtue of Lemma 1. Thus

α
z−0.9831

2 <
√

Bz < Q ≤ B3 = 35

leads to a contradiction by z < 5.1.
Suppose now that k = l = 1. Now z − i = y − j can hold only if z = y + 2.

Thus, by Lemma 3, we have

Q = gcd(By+2 − 1, By − 1) ≤ 34 < B3.

Hence, as in the previous part, we arrived at a contradiction.
In the sequel, we assume l < k. First suppose 3 ≤ k. Taking any pair

(i0, j0) 6= (i, j) from the remaining three cases of (−1, −1), (−1, 1), (1,−1) and
(1, 1), we have

y − j0 =
l

k
(z − i) + j − j0 =

lz − li + kj − kj0

k
. (6)

Thus

gcd(z − i0, y − j0) = gcd
(

z − i0,
lz − li + kj − kj0

k

)

≤ gcd(lz − li0, lz − li + kj − kj0)

= gcd(lz − li0, li0 − li + kj − kj0).

Since li0 − li + kj − kj0 does not vanish, it follows that

gcd(lz − li0, li0 − li + kj − kj0) ≤ |li0 − li + kj − kj0| ≤ 2(k + l) ≤ 26.

Indeed, it is easy to see that li0 − li + kj − kj0 = 0, or equivalently l(i0 − i) =

k(j0−j) leads to a contradiction since 2 ≤ k ≤ 7 and 1 ≤ l ≤ k−1 are coprime,
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further i0 − i and j0 − j are in the set {0,±2} meanwhile at least one of them
is non-zero.

Then (5), together with Lemma 4, yields

α
z−0.9831

2 < B z+1
3
· B3

26 < α
z+1

3
−0.983

(
α25.017

)3
.

Consequently, z < 449.4. It contradicts the condition separating Case 2 and
1.

Assume now that k = kij = 2 fulfills for some eligible pair (i, j). Thus l = 1.
First suppose that gcd(z − 1, y − 1) = (z − 1)/2. It yields z = 2y − 1, and we
go back to the system

ab + 1 = Bx,

ac + 1 = By,

bc + 1 = B2y−1.

First we obtain
B2y−1

By
=

bc + 1

ac + 1
<

b

a

since 0 < a < b < c. On the other hand, by Lemma 4,

B2y−1

By
>

α2y−1−0.9831

αy−0.983
= αy−1.001

follows. Consequently,
aαy−1.001 < b,

and
a2αy−1.001 ≤ ab = Bx − 1 < Bx < αx−0.983.

Thus we arrived at a contradiction by

a2 < αx−y+0.018 ≤ α−0.982 < 0.2.

If gcd(z − 1, y + 1) = (z − 1)/2 then z = 2y + 3 contradicting Lemma 5.
Similarly, gcd(z + 1, y + 1) = (z + 1)/2 leads to z = 2y + 1. Finally, gcd(z +

1, y − 1) = (z + 1)/2 gives z = 2y − 3, which is possible. But, in this case, by
Lemma 3 we have

α
z−0.9831

2 <
√

Bz < c ≤ gcd(B2y−3 − 1, By − 1) ≤ 1190,

and it results z ≤ 9 in the virtue of Lemma 4.
The proof of Theorem 2 is completed.
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