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Abstract: As forest-based climate change mitigation has become a crucial element of international
climate policy it is of increasing importance to understand the processes leading to the carbon
offsetting capacity of the sector. In our study, we assessed the climate benefits of contrasting forest
management strategies: decreasing harvest and enlarging the forest carbon stock, or increasing
harvest to increase carbon uptake, wood product carbon pools, and substitution effects. We developed
the Forest Industry Carbon Model (FICM) which is a new carbon accounting tool covering forest
biomass, dead organic matter, soil, and harvested wood product pools, as well as avoided emissions
through product and energy substitution. We modeled the carbon balance of the Hungarian forest
industry under three different scenarios. In the business as usual (BAU) scenario, we assumed no
changes in the current harvest and afforestation levels. In the extensification scenario, we assumed
that the harvest and afforestation levels drop to half, while in the intensification scenario, we assumed
an increase in afforestation, improved industrial wood assortments, and a gradual increase in
logging, reaching the highest level as per sustainability criteria by 2050. Our results show that the
intensification scenario is characterized by the largest net removals and the maximized product and
energy substitution effects. By 2050, the net forest industry carbon balance reaches −8447 kt CO2 eq
under the BAU scenario, while −7011 kt CO2 eq is reached under the extensification scenario and
−22,135 kt CO2 eq is reached under the intensification scenario. Although substitution effects are not
accounted for under the land-based (LULUCF) sector in the greenhouse gas inventory, the emission
reductions in the industry and energy sectors have beneficial effects on the national carbon balance.
Modeling results show that the 2030 LULUCF greenhouse gas removal target set by EU legislation
for Hungary is reached under the intensification scenario. To achieve this outcome, widespread
innovation is needed in the wood sector. The modeling results show that nonutilization of forests can
only be a very short-term solution; however, its favorable effects will be reversed by 2050 resulting in
additional emissions compared to the BAU scenario.

Keywords: carbon offset; forest industry; product and energy substitution; CO2; HWP; forest
management scenario

1. Introduction

Forest-based climate change mitigation has become a crucial element of the Paris
Agreement and EU climate law [1–3]. Reaching the net-zero target will be impossible
unless unavoidable emissions are offset by nature-based and technical solutions [4–6].
While forests capture carbon dioxide (CO2) from the atmosphere and provide onsite carbon
storage, long-lived harvested wood products (HWPs) are seen as an offsite carbon storage
pool and as an important means of substituting carbon-intensive products like concrete
or steel [7,8]. The substitution of fossil energy with bioenergy is also an important step
towards the EU-targeted circular bioeconomy [8,9]. This carbon capture, storage, and
substitution framework creates the total carbon offset capacity of the forest-based sector.
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Due to the important role of carbon stored as built-in timber as part of the technosphere and
that of bioenergy, the forest-based sector is often referred to as the forest industry [10,11].
In this paper, we use the notion of “forest industry” to stress the joint nature of the forestry
and wood industry. However, with this expression, we do not aim at industrializing the
natural aspects of forests, as we acknowledge that a forest is far more than a carbon sink,
pump, or stock; it is indeed the most complex terrestrial ecosystem with many functions
and benefits far beyond the sole aspect of climate change mitigation.

In order to integrate the forest carbon sink in the broader ecological and economic
context and promote business opportunities for enhancing forest industry-driven climate
mitigation, a new set of policy instruments and legislative acts have been created [8]. The
proposals for a nature restoration law [12], the new EU forest strategy for 2030 [13], and
the upcoming proposals for a new soil health law [14,15] and a new framework for forest
monitoring and strategic plans [16] together with the proposals for sustainable carbon
cycles [17], carbon removal certification [18], and LULUCF regulation [19], cover the entire
forest industry climate-mitigation framework.

However, despite the increasing political focus on forest-based mitigation, in recent
years, the EU forest sink has developed counter to the climate objectives and is now
showing a clear decreasing trend [8]. As Korosuo et al. [8] state, this trend is mainly driven
by the ongoing aging process of European forests. An analysis carried out using the Carbon
Budget Model to project the future forest sink development in the EU, shows that the
decreasing trend of forest carbon sink will remain, progressively getting off track from
the path towards the EU target for 2030 [8]. In this context, forest management can take
two approaches—either decreasing harvest to enlarge the forest carbon stock or increasing
harvest to increase carbon uptake and create HWPs for increasing long-term, offsite carbon
storage and substitution effects [20].

The above-mentioned aging process is also characteristic of Hungarian forests.
Kottek et al. [21] show increasing cutting ages in the case of most tree species. While
the yearly felling volume in Hungary has remained within the range of 7 to 8 million m3

for decades, Borovics et al. [9] found that more than 45 million m3 standing volume in
Hungarian forests is overmature. Stands are defined as overmature if their actual age is
over the cutting age prescribed by the Forest Authority. If a stand is overmature, it can
be harvested in accordance with legal requirements. However, stands with high nature
conservation value, like forest reserves, as well as stands under continuous cover forest
management and nonproduction forest management, are never regarded as overmature, as
no cutting age prescription is recorded for those stands in the National Forestry Database.
Borovics et al. [9] forecast an increasing wood mobilization potential for the 2024–2100 pe-
riod due to the increasing number of stands reaching their cutting age [9]. Király et al. [22]
show that increased harvesting and industrial wood utilization can significantly upscale
HWP carbon sink and substitution effects in Hungary.

The aim of our study is to analyze the overall climate benefits of three contrasting
forest industry strategies in Hungary. These strategies are (1) extensive conservation to
enlarge onsite forest carbon stocks by nonutilization; (2) intensive forest management
with increased harvest together with intensive afforestation and the establishment of
new woody plantations, supplemented by the intensification of the Hungarian wood
processing industry with new innovations; and (3) business as usual (BaU). We assess
the net carbon benefits associated with the three strategies using the Forest Industry
Carbon Model [21,23,24] and data from the National Forestry Database (NFD), the National
Environmental Information System [25], and the Central Statistical Office [26].

2. Materials and Methods
2.1. Forest Data

In this study, we used the data of the NFD, which is the official database of the Forest
Authority in Hungary and contains detailed dendrometrical data on each forest stand in the
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country. A thorough description of the database can be found in Tobisch and Kottek [27],
Borovics et al. [9], and Kottek et al. [21].

The modeling covers the entire forest area of Hungary. The forest area of Hungary
amounts to 2,072,186 hectares, representing 21% of the country’s total area. Over 40%
of the country’s forests are characterized by a plantation-like composition of nonnative
tree species. The forest land of the country consists predominantly of deciduous tree
species, comprising 90.5%, and generally displays mixed-forest communities. State-owned
Hungarian forests amount to 55%, with management responsibilities distributed among
21 state forestry companies. Private forests in Hungary are owned by 450,000 private
persons, and administered by almost 32,000 private forest managers, typically dealing with
small, disconnected areas [9].

2.2. Modeling Framework

The modeling of the carbon sequestration, storage, and emissions of the forest and
HWP system under the three scenarios was performed using the Forest Industry Carbon
Model (FICM, Figure 1), which is a substantially newly developed version of the spatially
explicit DAS forest model [21,23] supplemented with soil and dead organic matter (DOM)
submodules, and HWP plus substitution submodules [22,24]. The FICM model is a for-
est stand-based model suitable for projecting standing volume, increment, harvest, and
carbon balance on the stand, regional, or country levels. Utilizing NFD data, including
geospatial information, the model operates at the forest subcompartment scale and projects
dendrometric parameters using country-specific yield tables. HWP carbon stock and de-
cay projection is based on IPCC methodology [28–30], while wood waste management
projections are drawn from the National Environmental Information System [25] and the
Hungarian Greenhouse Gas Inventory [31]. Product and energy substitution effects are
modeled in accordance with Leskinen et al. [32] as described by Király et al. [22]. The FICM
model underwent validation against historical NFD data covering the period 2006–2015
and exhibiting a deviation of 1.1% from the historical volume stock data at the country
level [23].

We developed three scenarios. The extensification (EXT) scenario is characterized by
decreased harvest, minimal intervention management, and increased nature conservation
ambitions (Figure 2). The intensification scenario (INT) is marked by intensive forest
management with gradually increased harvest levels and intensive afforestation. We also
assumed that new short-rotation industrial woody plantations would be established. The
other main assumption in this scenario is the fast intensification of the Hungarian wood
processing industry. We assumed that no timber would be exported from the country;
instead, all raw material would be processed domestically, and the production of high-
quality, durable HWPs would increase. For this the modeled assortment composition
was also changed in a way that industrial wood assortments were increased (Table 1).
Harvest levels in the INT scenario are based on the projection of Borovics et al. [9], and no
stand is harvested before reaching the cutting age specified by the Forest Act [33] for the
respective tree species. Under the third scenario (BAU), we assumed no changes in current
forestry practices and management. In this scenario, we assume that the current assortment
structure and wood processing capacities remain stable in the study period up to 2050. The
used main model parameters are listed in Table 2. As regards harvesting patterns in the
three modeled scenarios, it is important to underline that the modeling framework assures
that forest reserves, as well as stands with high nature conservation value and stands under
nonproduction forest management are excluded from harvesting. This guarantees that
old-growth forests and areas of significant ecological importance are not disturbed in any of
the modeled scenarios, thereby ensuring habitat preservation. Furthermore, soil protection
and water management primary functions of stands are also considered, as forests having
these primary functions are typically under nonproduction management in Hungary.
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Figure 2. Annual area of afforestation and new forest plantations (left) and the annual amount of
harvested timber (right) as used in the three examined scenarios.

During the modeling exercise we also examined whether the 2030 land-based sector
(LULUCF) target set by the EU for Hungary (i.e., −5724 kt CO2 eq) is reached. For this, we
considered only the forest and HWP carbon balance, as product and energy substitution are
not part of the LULUCF accounting [20]. Although the LULUCF target is to be reached by
the entire LULUCF sector, including croplands, grasslands, wetlands, settlements, forests
and HWPs, we examined only the forest and HWP net emissions against the target value.
This simplification was used as, currently, the only LULUCF sink in Hungary is the forest-
based sector, thus, it is most likely that when the forest-based sector does not reach the
target, it will not be reached at all.
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Table 1. Wood industry and waste management-related scenario parametrization. (For the year 2024
BAU parameters were used in all scenarios. In the intensification scenario, the parameters were
gradually changed between 2024 and 2050).

BAU, 2050 EXT, 2050 INT, 2050

HWP Production Average of the Last
Five Historic Years

Half of the Last
Five Historic Years

Increased Production Due
to Increased Harvest

and Increased Industrial
Wood Assortment

Half-life sawnwood 35 35 50

Half-life wood panels 25 25 35

Half-life paper and paperboard 2 2 2

Landfilled wood % 6 6 2

Landfilled paper % 10 10 2

Recycled sawnwood % 25 25 60

Recycled wood panel % 25 25 60

Recycled paper and paperboard % 71 71 90

Methane recovery % 7 7 60

Substitution factor for wood products 1.2 1.2 1.2

Substitution factor for bioenergy 0.67 0.67 0.67

Table 2. Wood assortments under the three examined scenarios. BAU and EXT assortments are
based on the 2017–2021 average wood assortment [26], while INT assortments are based on expert
judgment.
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BAU and EXT

Sawlog 25% 2% 23% 2% 10% 10% 55% 38% 11% 20% 26%

Pulpwood for boards 6% 4% 16% 10% 10% 8% 31% 23% 54% 14% 39%

Pulpwood for paper 0% 1% 1% 0% 0% 0% 5% 20% 2% 1% 21%

Firewood 69% 93% 59% 88% 80% 82% 8% 18% 33% 65% 14%

INT

Sawlog 50% 40% 40% 20% 40% 30% 50% 50% 20% 40% 40%

Pulpwood for boards 20% 20% 30% 30% 10% 30% 40% 30% 60% 30% 40%

Pulpwood for paper 5% 5% 5% 5% 0% 5% 5% 5% 5% 5% 10%

Firewood 25% 35% 25% 45% 50% 35% 5% 15% 15% 25% 10%

3. Results

According to our results, the age class structure develops differently under the three
scenarios (Figure 3). In the BAU scenario, the ongoing aging process continues unchanged,
while in the EXT scenario, the average age of Hungarian forests increases radically, from
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the current 45.5 years, it goes up to 66.1 years by 2050. On the other hand, under the INT
scenario, the aging process is reversed, and the average age of forests would decrease to
39.5 years by 2050.
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As regards the carbon balance of the three scenarios, we observed that in the BAU
and EXT scenarios, the most important carbon sink is the living forest biomass (above-
and below-ground), while in the INT scenario, in addition to the living biomass, HWPs
represent a sink of the same order of magnitude (Figures 4–6). Under the BAU scenario,
substitution effects are of comparable magnitude to the forest carbon sink (Figure 4). Under
the EXT scenario, substitution effects are less pronounced (Figure 5), while under the INT
scenario, substitution effects represent the largest carbon benefit (Figure 6).
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Figure 4. Historic and projected carbon balance of the living biomass, DOM, soil, and HWP pools, as
well as product and energy substitution effects under the BAU scenario. (Historic forest and HWP net
emission values are taken from the Hungarian Greenhouse Gas Inventory [31]. Negative numbers
indicate carbon sequestration according to the IPCC conventions).

Figure 7 represents the net forest plus HWP carbon sink performance of the three
scenarios as compared to the 2030 LULUCF target of Hungary (i.e., −5724 kt CO2 eq).
Under the BAU scenario, the 2030 net carbon removal of the forest-based sector is −3659 kt
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CO2 eq, which means that the target will not be reached unless extensive carbon removals
occur in the cropland, grassland, settlement, or wetland subsectors. Under the EXT scenario,
the modeled 2030 carbon sink reaches −7121 kt CO2 eq, while under the INT scenario, the
2030 removal is projected to be −5754 kt CO2 eq, meaning that the target is reached in
both scenarios.
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Figure 6. Historic and projected carbon balance of the living biomass, DOM, soil, and HWP pools, as
well as product and energy substitution effects under the INT scenario. (Historic forest and HWP net
emission values are taken from the Hungarian Greenhouse Gas Inventory [31]. Negative numbers
indicate carbon sequestration according to the IPCC conventions).

We assessed the climate change mitigation potential of the INT and EXT scenarios
compared to the BAU net emission levels (Figure 8). From 2024 to 2030, the projected
average annual mitigation potential of the EXT scenario is 1347 kt CO2 eq, while under the
INT scenario, it reaches 5520 kt CO2 eq. In the 2031–2050 period, the EXT scenario performs
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a negative average mitigation potential of −206 kt CO2 eq, which means that compared to
the BAU scenario, additional emissions occur in the EXT scenario. In the same period under
the INT scenario, the intensified forest industry reaches a mitigation potential of 10,606 kt
CO2 eq compared to BAU net emission levels. In the EXT scenario, in both periods, HWPs
and substitution effects produce additional emissions compared to BAU, while forests
perform extra sink. On the other hand, in the INT scenario in 2024–2031, forests sequester
less carbon than under the BAU scenario, while HWPs and substitution effects generate
additional sinks. In the 2031–2050 period, all carbon pools as well as substitution, perform
additional removals under the INT scenario.
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values are taken from the Hungarian Greenhouse Gas Inventory [31]. Negative numbers indicate
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4. Discussion

Under the BAU scenario, assuming the continuation of current Hungarian forest
management practices and harvest levels, our projection shows a decreasing forest-based
carbon sink, with constant product and energy substitution benefits. This is most likely
attributable to the age class structure of Hungarian forests leading to a decreasing gross
annual increment over time. This result is significant as it stresses the fact that without
urgent further action, the 2030 LULUCF target set for Hungary is not likely to be reached.

The results of the climate benefit assessment of the INT scenario underline that in
Hungary, the amount of harvested timber can be increased reaching net climate benefits.
This is in line with the findings of Köhl and Martes [7], who state that the forest-based
sector can make a much greater contribution to climate neutrality by harvesting their
wood and supplying it to low-emission processing operations, and by long-term carbon
storage in HWPs. Moreau et al. [34] used the spatially explicit forest landscape model
LANDIS-II and its extension Forest Carbon Succession, in conjunction with the Carbon
Budget Model for harvested wood products framework to model the carbon balance
of a northern temperate forest. They found that the productivity of the area was mainly
stimulated by forest harvesting, with the most intensive management scenarios showing the
highest net growth, net ecosystem productivity, net primary productivity, and net carbon
sequestration. These findings are in line with our results; however, we note that in the case
of their study, substitution effects were negligible, while according to our modeling results,
substitution effects give a major part of the climate mitigation potential projected under the
INT scenario. Our results align with the conclusions drawn by Fiorese and Guariso [35],
who conducted a regional analysis of carbon balance within Italy’s forest-based sector.
They determined that maximizing harvest proved to be the optimal scenario for three
out of four forest macrocategories. In contrast, Heinonen et al. [36] demonstrated in the
context of Finland that the overall cumulative carbon balance of the forest-based sector
was the most favorable when applying low cutting levels. However, they also emphasized
that scenarios with higher cutting targets displayed better HWP carbon balance values
due to enhanced substitution effects and increased carbon accumulation in wood-based
products. Pukkala [37] also highlights that integrating substitution effects into carbon
balance modeling significantly boosts the carbon offset capacity of the forest-based sector.

As regards the EXT scenario, our projection shows that after a rapid and significant
increase in the forest carbon sink, the projected net biomass carbon sequestration shows a
decreasing trend, which will be reduced almost to the BAU level by 2050. This tendency is
worsened by the fact that under the EXT scenario, substitution effects are much lower than
under the other two scenarios due to decreased harvest levels. Martes and Köhl [20] used
the BEKLIFUH model to assess six management scenarios in the Hamburg Metropolitan
Area. In line with our results, they found that while conservation led to a higher above-
ground carbon pool, including HWPs, and material and energy substitution resulted in
more carbon offsets under management scenarios with increased timber harvesting.

The significant aging of Hungarian forests under the EXT scenario, with the average
age reaching more than 66 years up to 2050, anticipates that these overmature forests
may become more vulnerable and severely exposed to natural disturbances. In view of
the ongoing climate change, this may cause a significant problem and extensive forest
damage. In our modeling framework, we did not consider the effects of climate change
due to the related high uncertainty, the short projection period, and the current limitations
of the used model. Nevertheless, it is forecast that many tree species will see reductions
in their suitable ranges in Hungary [38], especially populations near their xeric limit are
likely to be affected [39]. Following all this, it is likely that net forest carbon sink would
decrease in all scenarios under increasing climate forcing. Still, forest management can
have a significant role in adapting the land to its future characteristics [40,41]. For example,
under an intensified management scenario, harvest operations could target stands that are
most susceptible to insect outbreaks, fire, or productivity decline, thus reducing the impacts
of such events while maintaining the harvest level [34,42,43] and allowing for regeneration
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of stands. The regeneration period is crucial in climate change adaptation as it gives space
to adaptation via natural genetic diversity as well as via using preadapted propagation
material and tree species replacements [9]. Postponing harvesting and regeneration slows
down the adaptation process and increases the risk of carbon emissions caused by natural
disturbances. Under an intensified management scenario, foresters could actively manage
species composition to increase forest resilience and sustainability in the face of a changing
climate [34].

The harvest level in Hungary has remained stable at approximately 7.5 million m3

for decades. Our results show that the harvested amount could be significantly increased
without having negative impacts on climate change mitigation and without harvesting
stands younger than the cutting age prescribed. However, significant investments and
innovation are needed in the wood industry sector to enable the processing of an extra
2–4 million m3 of timber. Excess availability of timber from drought-tolerant species like
Turkey oak (Quercus cerris) and indigenous poplars (Populus alba, Populus × canescens,
Populus tremula) is expected in Hungary in the forthcoming decades [9]. Thus, it is ad-
visable to design novel product types and establish innovative production processes to
effectively utilize the available timber from these tree species currently underutilized for
industrial purposes. One of the primary challenges for the Hungarian forest industry
in the forthcoming decades will be the mobilization of the unused wood stock reserve
and the optimal utilization of additional harvesting possibilities. To unlock harvesting
potential, there is a need for professional integration and technical support provided to
forest managers and wood industry enterprises through GIS applications. Accurate and
geographically explicit data regarding the quantity and value of harvestable wood stocks
could serve as a foundation for fostering a novel entrepreneurial culture and devising
innovative approaches for offering forest-related services [9].

The limitation of our study is the fact that the effects of climate change on future
carbon sinks are not modeled. We plan to develop our model in the framework of the
ongoing ForestLab project and include processes that allow us to carry out model runs
under different projected scenarios of climate forcing up to 2100.

5. Conclusions

Based on our findings, we conclude that a significant part of the forest industry-related
climate change mitigation potential is inherent in HWP carbon storage and product and
energy substitution effects. Thus, increasing or sustaining forest carbon stocks by nonuti-
lization for climate change mitigation is a misconception that arises from missing a crucial
element of the forest industry by not considering processes occurring offsite in the techno-
sphere. A comprehensive and coherent understanding of forestry and the wood industry,
as well as innovations in wood processing of underutilized tree species, are essential to
achieving the most favorable carbon trajectory. Climate neutrality can be reached through
the joint implementation of forest-based climate mitigation actions and active adaptation
combined with wood industry innovations and intensification. Deadwood accumulated
in unmanaged forests or forests managed with a decreased harvesting intensity is decom-
posed by microorganisms. During this slow-burning, the same amount of carbon dioxide
is released to the atmosphere as if timber was used as firewood to substitute fossil fuels.
Sustainable forest management channels the captured carbon into wood products, not
letting it be decomposed by microorganisms, and leaves only the necessary amount of
deadwood in forests for biodiversity protection. Postponed harvests and extended rotation
cycles reduce atmospheric carbon dioxide concentrations only temporarily in the short
term, meanwhile hindering adaptation actions such as tree species replacements, the use of
preadapted propagation material in forest regenerations and enrichment plantings, and
the implementation of precommercial harvests, which could form a less dense stand struc-
ture leading to decreased water demand. Thus, decreased timber utilization can lead to
increased carbon sequestration only in the short term, undermining long-term mitigation
and adaptation goals and compromising forest productivity, vitality, and regeneration
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capacity. Mobilizing the unused wood stock reserve leads to increased carbon sequestration
in wood products and an increased level of avoided emissions resulting from product and
energy substitutions. Forest industry intensification, together with new wood processing
innovations, can produce higher carbon sequestration levels up to 2050. To achieve this, the
introduction of new economic instruments for green investments is essential. In addition,
broad social consultation and the development of training and communication materials
are needed to facilitate the effective presentation of the process leading to the successful
achievement of climate change mitigation objectives. In the meantime, recognizing the
diverse and unique ecosystem of forests, along with their various functions and services
beyond carbon sequestration, is also indispensable.
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