On \boldsymbol{k}-periodic binary recurrences

Nurettin Irmak ${ }^{a}$, László Szalay b
${ }^{a}$ Department of Mathematics, University of Niğde
nirmak@nigde.edu.tr
${ }^{b}$ Institute of Mathematics, University of West Hungary
laszalay@emk.nyme.hu

Submitted November 2, 2012 - Accepted November 28, 2012

Abstract

We apply a new approach, namely the fundamental theorem of homogeneous linear recursive sequences, to k-periodic binary recurrences which allows us to determine Binet's formula of the sequence if k is given. The method is illustrated in the cases $k=2$ and $k=3$ for arbitrary parameters. Thus we generalize and complete the results of Edson-Yayenie, and Yayenie linked to $k=2$ hence they gave restrictions either on the coefficients or on the initial values. At the end of the paper we solve completely the constant sequence problem of 2-periodic sequences posed by Yayenie.

Keywords: linear recurrences, k-periodic binary recurrences
MSC: 11B39, 11D61

1. Introduction

Let a, b, c, d, and q_{0}, q_{1} denote arbitrary complex numbers, and consider the following construction of the sequence $\left(q_{n}\right)$. For $n \geq 2$, the terms q_{n} are defined by

$$
q_{n}= \begin{cases}a q_{n-1}+b q_{n-2}, & \text { if } n \text { is even } \tag{1.1}\\ c q_{n-1}+d q_{n-2}, & \text { if } n \text { is odd }\end{cases}
$$

The sequence $\left(q_{n}\right)$ is called 2-periodic binary recurrence, and it was described first by Edson and Yayenie [2]. The authors discussed the specific case $q_{0}=0$, $q_{1}=1$ and $b=d=1$, gave the generating function and Binet-type formula of
$\left(q_{n}\right)$, further they proved several identities among the terms of $\left(q_{n}\right)$. In the same paper the sequence $\left(q_{n}\right)$ was investigated for arbitrary initial values q_{0} and q_{1}, but $b=d=1$ were still assumed.

Later Yayenie [6] took one more step by determining the Binet's formula for $\left(q_{n}\right)$, where b and d were arbitrary numbers, but the initial values were fixed as $q_{0}=0$ and $q_{1}=1$.

The main tool in the papers [2,6] is to work with the generating function. In this paper we suggest a new approach, namely to apply the fundamental theorem of homogeneous liner recurrences (see Theorem 1.1). This powerful method allows us to give the Binet's formula of $\left(q_{n}\right)$ for any b and d and for arbitrary initial values. Moreover, we can also handle the case when the zeros of the quadratic polynomial

$$
p_{2}(x)=x^{2}-(a c+b+d) x+b d
$$

coincide. Note, that $p_{2}(x)$ plays an important role in the aforesaid papers, but the sequence $\left(q_{n}\right)$ has not been discussed yet when $p_{2}(x)$ has a zero with multiplicity 2 . We will see that the application of the fundamental theorem of linear recurrences is very effective and it can even be used at k-periodic sequences generally. At the end of the paper we solve an open problem concerning constant subsequences (see 2.2.2 in [6]).

The k-periodic second order linear recurrence

$$
q_{n}= \begin{cases}a_{0} q_{n-1}+b_{0} q_{n-2}, & \text { if } n \equiv 0(\bmod k) \tag{1.2}\\ a_{1} q_{n-1}+b_{1} q_{n-2}, & \text { if } n \equiv 1(\bmod k) ; \\ \vdots & \vdots \\ a_{k-1} q_{n-1}+b_{k-1} q_{n-2}, & \text { if } n \equiv k-1(\bmod k)\end{cases}
$$

was introduced by Cooper in [1], where mainly the combinatorial interpretation of the coefficients A_{k} and B_{k} appearing in the recurrence relation $q_{n}=A_{k} q_{n-k}+$ $B_{k} q_{n-2 k}$ was discussed. Note that Lemma 4 of the work of Shallit [4] also describes an approach to compute the coefficients for q_{n}. Edson, Lewis and Yayenie [3] also studied the k-periodic extension, again with $q_{0}=0, q_{1}=1$ and with the restrictions $b_{0}=b_{1}=\cdots=b_{k-1}=1$.

At the end of the first section we recall the fundamental theorem of linear recurrences. A homogeneous linear recurrence $\left(G_{n}\right)_{n=0}^{\infty}$ of order $k(k \geq 1, k \in \mathbb{N})$ is defined by the recursion

$$
\begin{equation*}
G_{n}=A_{1} G_{n-1}+A_{2} G_{n-2}+\cdots+A_{k} G_{n-k} \quad(n \geq k) \tag{1.3}
\end{equation*}
$$

where the initial values G_{0}, \ldots, G_{k-1} and the coefficients A_{1}, \ldots, A_{k} are complex numbers, $A_{k} \neq 0$ and $\left|G_{0}\right|+\cdots+\left|G_{k-1}\right|>0$. The characteristic polynomial of the sequence $\left(G_{n}\right)$ is the polynomial

$$
g(x)=x^{k}-A_{1} x^{k-1}-\cdots-A_{k}
$$

Denote by $\alpha_{1}, \ldots, \alpha_{t}$ the distinct zeros of the characteristic polynomial $g(x)$, which can there be written in the form

$$
\begin{equation*}
g(x)=\left(x-\alpha_{1}\right)^{e_{1}} \cdots\left(x-\alpha_{t}\right)^{e_{t}} . \tag{1.4}
\end{equation*}
$$

The following result (see e.g. [5]) plays a basic role in the theory of recurrence sequences, and here in our approach.

Theorem 1.1. Let $\left(G_{n}\right)$ be a sequence satisfying the relation (1.3) with $A_{k} \neq 0$, and $g(x)$ its characteristic polynomial with distinct roots $\alpha_{1}, \ldots, \alpha_{t}$. Let $K=$ $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}, A_{1}, \ldots, A_{k}, G_{0}, \ldots, G_{k-1}\right)$ denote the extension of the field of rational numbers and let $g(x)$ be given in the form (1.4). Then there exist uniquely determined polynomials $g_{i}(x) \in K[x]$ of degree less than $e_{i}(i=1, \ldots, t)$ such that

$$
G_{n}=g_{1}(n) \alpha_{1}^{n}+\cdots+g_{t}(n) \alpha_{t}^{n} \quad(n \geq 0)
$$

2. k-periodic binary recurrences

Let $k \geq 2$ be an integer, further let q_{0}, q_{1} and $a_{i}, b_{i}, i=0, \ldots, k-1$ denote arbitrary complex numbers with $\left|q_{0}\right|+\left|q_{1}\right| \neq 0$ and $b_{0} b_{1} \cdots b_{k-1} \neq 0$.

Consider the sequence $\left(q_{n}\right)$ defined by (1.2). By [1] it is known that the terms of $\left(q_{n}\right)$ satisfy the recurrence relation

$$
\begin{equation*}
q_{n}=A_{k} q_{n-k}-(-1)^{k} b_{0} b_{1} \ldots b_{k-1} q_{n-2 k} \tag{2.1}
\end{equation*}
$$

of order $2 k$, where the coefficient A_{k} is also described in [1]. Put $D=A_{k}^{2}-$ $4(-1)^{k} b_{0} b_{2} \ldots b_{k-1}$, and let

$$
p_{k}(x)=x^{2}-A_{k} x+(-1)^{k} b_{0} b_{1} \cdots b_{k-1}
$$

denote the polynomial determined by the characteristic polynomial $z^{2 k}-A_{k} z^{k}+$ $(-1)^{k} b_{0} b_{1} \cdots b_{k-1}$ of the recurrence (2.1) by the substitution $x=z^{k}$. The not necessarily distinct zeros of $p_{k}(x)$ are

$$
\kappa=\frac{A_{k}+\sqrt{D}}{2} \quad \text { and } \quad \mu=\frac{A_{k}-\sqrt{D}}{2}
$$

At this point we would like to use Theorem 1.1, therefore we must distinguish two cases.

2.1. Case $D \neq 0$

If D is nonzero, then κ and μ are distinct. From Theorem 1 , we deduce that there exist complex numbers κ_{j} and $\mu_{j}(j=1, \ldots, k)$ such that

$$
\begin{equation*}
q_{n}=\underbrace{\sum_{j=1}^{k} \kappa_{j} \varepsilon^{(j-1) n} \kappa^{n / k}}_{K_{n}}+\underbrace{\sum_{j=1}^{k} \mu_{j} \varepsilon^{(j-1) n} \kappa^{n / k}}_{M_{n}} \tag{2.2}
\end{equation*}
$$

where $\varepsilon=\exp (2 \pi i / k)$ is a primitive root of unity of order k. If one claims to determine the coefficients κ_{j} and μ_{j}, it is sufficient to replace n by $0,1, \ldots, 2 k-1$ in (2.2) and, after evaluating $q_{2}, \ldots, q_{2 k-1}$ by (1.2), to solve the system of $2 k$ linear equations. Instead, we can shorten the calculations since, as we will see soon, only certain linear combinations of $\kappa_{1}, \ldots, \kappa_{k}$ and μ_{1}, \ldots, μ_{k} are needed, respectively.

Now, by (2.2), for any non-negative integer t, we have $q_{t}=K_{t}+M_{t}$. Moreover,

$$
\begin{equation*}
q_{t+k}=\sum_{j=1}^{k} \kappa_{j} \varepsilon^{(j-1)(t+k)} \kappa^{(t+k) / k}+\sum_{j=1}^{k} \mu_{j} \varepsilon^{(j-1)(t+k)} \kappa^{(t+k) / k}=\kappa K_{t}+\mu M_{t} \tag{2.3}
\end{equation*}
$$

Since the determinant $\mu-\kappa$ of the system of two linear equations

$$
\left\{\begin{align*}
K_{t}+M_{t} & =q_{t} \tag{2.4}\\
\kappa K_{t}+\mu M_{t} & =q_{t+k}
\end{align*}\right.
$$

is non-zero, therefore (2.4) possesses the unique solution

$$
K_{t}=\frac{q_{t+k}-\mu q_{t}}{\kappa-\mu}, \quad M_{t}=-\frac{q_{t+k}-\kappa q_{t}}{\kappa-\mu} .
$$

To give the explicit formula for the term of the sequence $\left(q_{n}\right)$, we use the technique described in (2.3) for $n=s k+t$ and t with $0 \leq t<k$. It is easy to see that $q_{n}=q_{s k+t}=\kappa^{s} K_{t}+\mu^{s} M_{t}$. Hence we proved the following theorem.

Theorem 2.1. In the case $D \neq 0$, the $n^{\text {th }}$ term of the sequence $\left(q_{n}\right)$ satisfies

$$
q_{n}=\frac{q_{k+(n \bmod k)}-\mu q_{n \bmod k}}{\kappa-\mu} \kappa^{\lfloor n / k\rfloor}-\frac{q_{k+(n \bmod k)}-\kappa q_{n \bmod k}}{\kappa-\mu} \mu^{\lfloor n / k\rfloor} .
$$

2.2. Case $D=0$

If D is zero, then κ and μ coincide with $A_{k} / 2$. By Theorem 1 , there exist complex numbers u_{j} and $v_{j}, j=1, \ldots, k$ such that

$$
\begin{equation*}
q_{n}=\sum_{j=1}^{k}\left(u_{j} n+v_{j}\right) \varepsilon^{(j-1) n} \kappa^{n / k}=n U_{n}+V_{n} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}=\sum_{j=1}^{k} u_{j} \varepsilon^{(j-1) n} \kappa^{n / k}, \quad V_{n}=\sum_{j=1}^{k} v_{j} \varepsilon^{(j-1) n} \kappa^{n / k} \tag{2.6}
\end{equation*}
$$

Then $q_{t}=t U_{t}+V_{t}$, together with (2.5) and (2.6) provides $q_{t+k}=\kappa\left((t+k) U_{t}+V_{t}\right)$. The unique solution of the system

$$
\left\{\begin{aligned}
t U_{t}+V_{t} & =q_{t} \\
\kappa(t+k) U_{t}+\kappa V_{t} & =q_{t+k}
\end{aligned}\right.
$$

is

$$
U_{t}=\frac{q_{t+k}-\kappa q_{t}}{\kappa k}, \quad V_{t}=-\frac{t q_{t+k}-(t+k) \kappa q_{t}}{\kappa k} .
$$

Consequently, if $n=s k+t$ with $0 \leq t<k$ then, clearly, $q_{n}=\kappa^{s}\left(U_{t} n+V_{t}\right)$, and by the notation

$$
\omega=q_{t+k}-\kappa q_{t}, \quad \nu=t q_{t+k}-(t+k) \kappa q_{t}
$$

the following theorem holds.
Theorem 2.2. If $D=0$ then

$$
q_{n}=\frac{1}{k}(\omega n+\nu) \kappa^{\lfloor n / k\rfloor-1},
$$

where $\omega=q_{k+(n \bmod k)}-\kappa q_{n \bmod k}$ and $\nu=-(n \bmod k) q_{k+(n \bmod k)}+(k+$ $(n \bmod k)) \kappa q_{n} \bmod k$.

Note, that the application of Theorems 2.1 and 2.2 results a more precise formula for the term q_{n} if k is fixed. In the next two sections, we go into details in the cases $k=2$ and $k=3$. We derive Theorem 5 in [2] as a corollary of Theorem 2.1 with $k=2$.

3. The 2 -periodic binary recurrences

Suppose that $b d \neq 0$ and $\left|q_{0}\right|+\left|q_{1}\right| \neq 0$ hold in (1.1). It is known, that the terms of the recurrence $\left(q_{n}\right)$ satisfy the recurrence relation

$$
q_{n}=(a c+b+d) q_{n-2}-b d q_{n-4}, \quad n \geq 4
$$

of order four, where the initial values are, obviously, $q_{0}, q_{1}, q_{2}=a q_{1}+b q_{0}$ and $q_{3}=(a c+d) q_{1}+b c q_{0}$. Put $D=(a c+b+d)^{2}-4 b d$. Thus the zeros of the polynomial $p_{2}(x)=x^{2}-(a c+b+d) x+b d$ are

$$
\kappa=\frac{a c+b+d+\sqrt{D}}{2} \quad \text { and } \quad \mu=\frac{a c+b+d-\sqrt{D}}{2} .
$$

3.1. Case $D \neq 0$

First assume that n is even, i.d., $t=(n \bmod 2)=0$ holds in Theorem 2.1. Thus we obtain

$$
q_{n}=\frac{q_{2}-\mu q_{0}}{\kappa-\mu} \kappa^{\lfloor n / 2\rfloor}-\frac{q_{2}-\kappa q_{0}}{\kappa-\mu} \mu^{\lfloor n / 2\rfloor} .
$$

Clearly, $q_{2}-\mu q_{0}=a q_{1}+(b-\mu) q_{0}$, further $q_{2}-\kappa q_{0}=a q_{1}+(b-\kappa) q_{0}$.
Suppose now, that n is odd, i.d., $t=1$. Now Theorem 2.1 results

$$
q_{n}=\frac{q_{3}-\mu q_{1}}{\kappa-\mu} \kappa^{\lfloor n / 2\rfloor}-\frac{q_{3}-\kappa q_{1}}{\kappa-\mu} \mu^{\lfloor n / 2\rfloor} .
$$

Obviously, $q_{3}-\mu q_{1}=(a c+d-\mu) q_{1}+(b c) q_{0}=(\kappa-b) q_{1}+(b c) q_{0}$, similarly $q_{3}-\kappa q_{1}=(\mu-b) q_{1}+(b c) q_{0}$.

To join the even and odd cases together, we introduce

$$
e_{\kappa}=a^{1-\xi(n)}(\kappa-b)^{\xi(n)} q_{1}+(b-\mu)^{1-\xi(n)}(b c)^{\xi(n)} q_{0}
$$

and

$$
e_{\mu}=a^{1-\xi(n)}(\mu-b)^{\xi(n)} q_{1}+(b-\kappa)^{1-\xi(n)}(b c)^{\xi(n)} q_{0},
$$

where $\xi(n)=(n \bmod 2)$ is the parity function. Thus

$$
\begin{equation*}
q_{n}=\frac{e_{\kappa} \kappa^{\lfloor n / 2\rfloor}-e_{\mu} \mu^{\lfloor n / 2\rfloor}}{\kappa-\mu} \tag{3.1}
\end{equation*}
$$

Observe that (3.1) returns with the explicit formula given in Theorem 5 of [2] if $b=d=1$ and $q_{0}=0, q_{1}=1$. Indeed, now $e_{\kappa}=a^{1-\xi(n)}(\kappa-1)^{\xi(n)}$, $e_{\mu}=a^{1-\xi(n)}(\mu-1)^{\xi(n)}$, which together with ack $=(\kappa-1)^{2}$ and $a c \mu=(\mu-1)^{2}$ provide

$$
\begin{equation*}
q_{n}=\frac{a^{1-\xi(n)}}{(a c)^{\lfloor n / 2\rfloor}} \frac{(\kappa-1)^{n}-(\mu-1)^{n}}{(\kappa-1)-(\mu-1)} \tag{3.2}
\end{equation*}
$$

Clearly, by $\alpha=\kappa-1$ and $\beta=\mu-1,(3.2)$ coincides with the statement of Theorem 5 in [2].

3.2. Case $D=0$

Note, that neither [2] nor [6] worked this subcase out. Observe, that $D=0$ is possible, for example, let $b=r s^{2}, d=r t^{2}$, further $a=r$ and $c=4 s t-s^{2}-t^{2}$. Clearly, $\kappa=\mu=(a c+b+d) / 2$.

Assume first that n is even, or equivalently $t=0$. Then $\omega=q_{2}-\kappa q_{0}=$ $a q_{1}+(b-\kappa) q_{0}$, while $\nu=2 \kappa q_{0}$.

Supposing $t=1$, it gives $\omega=q_{3}-\kappa q_{1}=(a c+d-\kappa) q_{1}+(b c) q_{0}=(\kappa-b) q_{1}+(b c) q_{0}$ and $\nu=-\left(q_{3}-3 \kappa q_{1}\right)=(\kappa+b) q_{1}-(b c) q_{0}$.

Henceforward,

$$
q_{n}=\frac{1}{2}(\omega n+\nu) \kappa^{\lfloor n / 2\rfloor-1}
$$

describes the general case, where $\omega=a^{1-\xi(n)}(\kappa-b)^{\xi(n)} q_{1}+(b-\kappa)^{1-\xi(n)}(b c)^{\xi(n)} q_{0}$ and $\nu=\xi(n)(\kappa+b) q_{1}+(-1)^{\xi(n)}(2 \kappa)^{1-\xi(n)}(b c)^{\xi(n)} q_{0}$.

4. The 3 -periodic binary recurrences

This section follows the structure of the previous one. Let a, b, c, d, e, f and q_{0}, q_{1} are arbitrary complex numbers with $b d f \neq 0$ and $\left|q_{0}\right|+\left|q_{1}\right| \neq 0$. For $n \geq 2$, the terms of the sequence $\left(q_{n}\right)$ are defined by

$$
q_{n}= \begin{cases}a q_{n-1}+b q_{n-2}, & \text { if } n \equiv 0(\bmod 3) ; \\ c q_{n-1}+d q_{n-2}, & \text { if } n \equiv 1(\bmod 3) ; \\ e q_{n-1}+f q_{n-2}, & \text { if } n \equiv 2(\bmod 3) .\end{cases}
$$

It is known, that recurrence $\left(q_{n}\right)$ satisfies the recurrence relation

$$
q_{n}=(a c e+b c+d e+a f) q_{n-3}+b d f q_{n-6}
$$

of order six, where the initial values are

$$
\begin{aligned}
q_{0}, q_{1}, q_{2} & =e q_{1}+f q_{0} \\
q_{3} & =(a e+b) q_{1}+a f q_{0} \\
q_{4} & =(a c e+b c+d e) q_{1}+(a c f+d f) q_{0} \\
q_{5} & =\left(a c e^{2}+b c e+d e^{2}+a e f+b f\right) q_{1}+\left(a c e f+d e f+a f^{2}\right) q_{0} .
\end{aligned}
$$

Put $D=(a c e+b c+d e+a f)^{2}+4 b d f$. Thus, the roots of the polynomial

$$
p_{3}(x)=x^{2}-(a c e+b c+d e+a f) x-b d f
$$

are

$$
\kappa=\frac{(a c e+b c+d e+a f)+\sqrt{D}}{2} \quad \text { and } \quad \mu=\frac{(a c e+b c+d e+a f)-\sqrt{D}}{2} .
$$

In the sequel, we need the sequence $\left(a_{n}\right)$ defined by $a_{n}=1$ if 3 divides n, and $a_{n}=0$ otherwise.

4.1. Case $D \neq 0$

The consequence of Theorem 2.1 is the nice formula

$$
q_{n}=\frac{e_{\kappa} \kappa^{\lfloor n / 3\rfloor}-e_{\mu} \mu^{\lfloor n / 3\rfloor}}{\kappa-\mu}
$$

where

$$
\begin{aligned}
e_{\kappa}= & (a e+b)^{a_{n}}(\kappa-a f)^{a_{n+2}}(e \kappa+f b)^{a_{n+1}} q_{1} \\
& +(a f-\mu)^{a_{n}}(f(a c+d))^{a_{n+2}}(f(\kappa-b c))^{a_{n+1}} q_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
e_{\mu}= & (a e+b)^{a_{n}}(\mu-a f)^{a_{n+2}}(e \mu+f b)^{a_{n+1}} q_{1} \\
& +(a f-\kappa)^{a_{n}}(f(a c+d))^{a_{n+2}}(f(\mu-b c))^{a_{n+1}} q_{0} .
\end{aligned}
$$

Indeed, for $t=0,1,2$

$$
q_{t+3}-\mu q_{t}= \begin{cases}(a e+b) q_{1}+(a f-\mu) q_{0}, & \text { if } t=0 \tag{4.1}\\ (\kappa-a f) q_{1}+(a c+d) f q_{0}, & \text { if } t=1 \\ (e \kappa+f b) q_{1}+(\kappa-b c) f q_{0}, & \text { if } t=2\end{cases}
$$

and $q_{t+3}-\kappa q_{t}$ can similarly be obtained from (4.1) by switching κ and μ.

4.2. Case $D=0$

When $t=0$ we obtain $\omega=(a e+b) q_{1}+(a f-\kappa) q_{0}, \nu=3 \kappa q_{0}$. Secondly, $t=1$ yields $\omega=(\kappa-a f) q_{1}+(a c+d) f q_{0}$ and $\nu=(2 \kappa+a f) q_{1}-(a c+d) f q_{0}$. Finally, $\omega=(\kappa e+b f) q_{1}+(\kappa-b c) f q_{0}$ and $\nu=(\kappa e-2 b f) q_{1}+(\kappa+2 b c) f q_{0}$ when $t=2$.

So, we obtain

$$
q_{n}=\frac{1}{3}(\omega n+\nu) \kappa^{\lfloor n / 3\rfloor-1},
$$

where

$$
\begin{aligned}
w= & (a e+b)^{a_{n}}(\kappa-a f)^{a_{n+2}}(\kappa e-b f)^{a_{n+1}} q_{1} \\
& +(a f-\kappa)^{a_{n}}((a c+d) f)^{a_{n+1}}((\kappa-b c) f)^{a_{n+2}} q_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu= & \left(1-a_{n}\right)(2 \kappa+a f)^{a_{n+2}}(\kappa e-2 b f)^{a_{n+1}} q_{1} \\
& +(3 \kappa)^{a_{n}}(-(a c+d) f)^{a_{n+2}}((\kappa+2 b c) f)^{a_{n+1}} q_{0} .
\end{aligned}
$$

5. Constant subsequences in 2-periodic binary recurrences

In the last section we solve the problem posed in 2.2 .2 of [6]. There, after pointing on few examples, the author claim a general sufficiency condition for the sequence (1.1) to be constant from a term q_{ν} (actually, $\nu=1$ was asked in [6]). The forthcoming theorem describes the complete answer.

Theorem 5.1. The sequence $\left(q_{n}\right)$ takes the constant value $q \in \mathbb{C}$ from the $\nu^{\text {th }}$ terms $(\nu \geq 0)$ if and only if one of the following cases holds.

1. $q_{0}=q_{1}=0$, further a, b, c, d are arbitrary, $(\nu=0, q=0)$,
2. $q_{0}=q_{1}=q \neq 0, a+b=1, c+d=1,(\nu=0, q \neq 0)$,
3. $q_{0} \neq 0$ is arbitrary, $q_{1}=0, b=0$, moreover a, c, d are arbitrary, $(\nu=1$, $q=0$),
4. $q_{0} \neq q$ is arbitrary and $q_{1}=q$ with $q \neq 0$, and $a=1, b=0, c+d=1$, $(\nu=1, q \neq 0)$,
5. q_{0} and $q_{1} \neq 0$ are arbitrary, b, c are arbitrary, $a=-b q_{0} / q_{1}, d=0,(\nu=2$, $q=0$),
6. q_{0} and $q_{1} \neq q$ are arbitrary with $q_{1} \neq q_{0}$ and $q=a q_{1}+b q_{0}$, where $a+b=1$, $a \neq 1, c=1, d=0,(\nu=2, q \neq 0)$,
7. q_{0} and $q_{1} \neq 0$ are arbitrary, $a \neq 0$ and c are arbitrary, $b=0, d=-a c$, $(\nu=3, q=0)$,
8. q_{0} and $q_{1} \neq c q_{0}$ are arbitrary, where $a \neq 0$ and $c \neq 0$ are arbitrary, $b=-a c$, $d=0,(\nu=4, q=0)$.

Proof. Obviously, each of the conditions appearing in Theorem 5.1 is sufficient. We are going to show that one of them is necessary. Suppose that the sequence $\left(q_{n}\right)$ takes the constant value $q \in \mathbb{C}$ from the $\nu^{t h}$ terms.
I. First assume that $\nu \geq 5$ is an integer. We introduce the notation $(u, v)=$ (a, b) and $(\check{u}, \check{v})=(c, d)$ if ν is odd, while $(u, v)=(c, d)$ and $(\breve{u}, \check{v})=(a, b)$ if ν is even. Then the equations

$$
\begin{array}{rlrl}
q_{\nu-3} & =u q_{\nu-4}+v q_{\nu-5} & q_{\nu-2} & =\check{u} q_{\nu-3}+\check{v} q_{\nu-4} \\
q_{\nu-1} & =u q_{\nu-2}+v q_{\nu-3} & q & =\check{u} q_{\nu-1}+\check{v} q_{\nu-2} \\
q & =u q+v q_{\nu-1} & q & =\check{u} q+\check{v} q \\
q & =u q+v q & &
\end{array}
$$

hold, where $q \neq q_{\nu-1}$. The last two equations in the left column imply $v\left(q_{\nu-1}-q\right)=$ 0 . Therefore $v=0$ follows, and it simplifies the whole left column.

If $q \neq 0$ then $u=1$ and $\check{u}+\check{v}=1$ fulfill. Hence $q_{\nu-1}=q_{\nu-2}$, consequently $q=\check{u} q_{\nu-1}+\check{v} q_{\nu-2}$ leads to $q=q_{\nu-1}$ and we arrived at a contradiction.

Consider now the case $q=0$. Thus $q_{\nu-1} \neq 0$, and then we have the system

$$
\begin{array}{rlrl}
q_{\nu-3} & =u q_{\nu-4} & q_{\nu-2} & =\check{u} q_{\nu-3}+\check{v} q_{\nu-4} \\
q_{\nu-1} & =u q_{\nu-2} & 0 & =\check{u} q_{\nu-1}+\check{v} q_{\nu-2}
\end{array}
$$

to examine. Clearly, $u q_{\nu-2} \neq 0$. The equalities in the second row provide $0=$ $u \check{u} q_{\nu-2}+\check{v} q_{\nu-2}$, subsequently $(u \check{u}+\check{v}) q_{\nu-2}=0$, and then $u \check{u}+\check{v}=0$. Insert it to $q_{\nu-2}=u \check{u} q_{\nu-4}+\check{v} q_{\nu-4}$ (coming from the first row), and we obtain $q_{\nu-2}=0$, which is impossible.

Hence, we have shown that if the constant subsequence of $\left(q_{n}\right)$ starts at the term q_{ν}, then necessarily $\nu \leq 4$.
II. In the second place we assume that $\nu \leq 4$ and distinguish five cases. Note, that for the subscript $k \geq \nu$ the equalities $q_{k+2}=a q_{k+1}+b q_{k}, q_{k+2}=c q_{k+1}+d q_{k}$ simplify to

$$
\begin{equation*}
q=a q+b q, \quad q=c q+d q \tag{5.1}
\end{equation*}
$$

respectively.
$\nu=0$. If $q=0$ then $q_{0}=q_{1}=0$ and, trivially, all the coefficients a, b, c and d are arbitrary. If $q \neq 0$ then $q_{0}=q_{1}=q$ and (5.1) must hold. Consequently, $a+b=1$ and $c+d=1$ follow.
$\nu=1$. Here $q_{0} \neq q$. Further, $q=a q+b q_{0}$, together with the first equality of (5.1) provides $b\left(q_{0}-q\right)=0$. Thus $b=0$.
Clearly, $q=0$ satisfies both (5.1) and $q=a q+b q_{0}$ without further restrictions on a, b and c.
If q is non-zero, then (5.1) and $b=0$ imply $a=1$ and $c+d=1$.
$\nu=2$. Besides (5.1), we also have

$$
\begin{equation*}
q=a q_{1}+b q_{0}, \quad q=c q+d q_{1} \tag{5.2}
\end{equation*}
$$

with $q_{1} \neq q$. The last equality and the second property of (5.1) give $d=0$ via $d\left(q_{1}-q\right)=0$.
Assume first $q=0$. Then, except $0=a q_{1}+b q_{0}$, all the equalities in (5.1) and (5.2) are fulfilled. Since $q_{1} \neq 0$, we can write $a=-b q_{0} / q_{1}$. Obviously b and c are arbitrary.
If $q \neq 0$ then $c=1$ and $a+b=1$ follow. The value of the constant q is $a q_{1}+b q_{0}$. Observe, that $a \neq 1$ otherwise $b=0$, and then $q_{1}=q$ would come.
$\nu=3$. Now $q_{2} \neq q$. The conditions $q_{2}=a q_{1}+b q_{0}, q=c q_{2}+d q_{1}, q=a q+b q_{2}$ and (5.1) are valid. Thus $b\left(q_{2}-q\right)$ vanish, i.e. $b=0$. Hence we obtain the system

$$
\begin{array}{rlrl}
q_{2} & =a q_{1} & q & =c q_{2}+d q_{1} \\
q & =a q & q & =c q+d q
\end{array}
$$

Suppose first that $q=0$. Then $q_{2}=a q_{1}$ and $0=c q_{2}+d q_{1}$ provide $0=$ $(a c+d) q_{1}$. Since $q_{1}=0$ would give $q_{2}=0$ therefore $a c+d$ must be zero, so $d=-a c$. Also $a \neq 0$ holds, otherwise $q_{2}=0$ leads to a contradiction. Clearly, c is arbitrary.
Assume now that q is non-zero. Thus, from the last system above, we conclude $a=1, c+d=1$ and $q_{2}=q_{1}$. Hence, the remaining equation $q=c q_{2}+d q_{1}$ becomes $q=c q_{2}+(1-c) q_{2}$, and we arrived at a contradiction by $q \neq q_{2}$. Subsequently, $q \neq 0$ does not provide a constant sequence from the third term.
$\nu=4$. The technique we apply resembles us to the previous cases. Here $q_{3} \neq q$. We have $q_{2}=a q_{1}+b q_{0}, q_{3}=c q_{2}+d q_{1}, q=a q_{3}+b q_{2}, q=c q+d q_{3}$ and (5.1). Similarly, $d\left(q_{3}-q\right)$ implies $d=0$. Thus

$$
\begin{array}{rlrl}
q_{2} & =a q_{1}+b q_{0} & q_{3} & =c q_{2} \\
q & =a q_{3}+b q_{2} & q & =c q \\
q & =a q+b q & &
\end{array}
$$

If $q=0$ then $q_{3}=c q_{2} \neq 0$, further $0=a q_{3}+b q_{2}$ and $q_{3}=c q_{2}$ yield $a c+b=0$. Clearly, $c \neq 0$. Moreover $a \neq 0$ holds, otherwise $b=0$ and $q_{2}=0$ and $q_{3}=0$ follow. Finally, $q_{1} \neq c q_{0}$ since $q_{2} \neq 0$.
The assertion $q \neq 0$, similarly to the case $\nu=3$, leads to a contradiction.

References

[1] Cooper, C., An identity for period k second order linear recurrence systems, Congr. Numer., 200 (2010), 95-106.
[2] Edson, M., Yayenie, O., A new generalization of Fibonacci sequence and extended Binet's formula, Integers, 9 (2009), 639-654.
[3] Edson, M., Lewis, S., Yayenie, O., The k-periodic Fibonacci sequence and an extended Binet's formula, Integers, 11 (2011), Paper \#A32.
[4] Shallit, J., Numeration systems, linear recurrences, and regular sets, Inform. and Comput. 113 (1994), 331-347.
[5] Shorey, T. N., Tijdeman, R., Exponential Diophantine Equations, Cambridge University Press, 1986.
[6] Yayenie, O., A note on generalized Fibonacci sequences, Appl. Math. Comp. 217 (2011), 5603-5611.

