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Congruent numbers with higher exponents

Florian Luca1 and László Szalay2

Abstract. This paper investigates the system of equations

x2 + aym = z2
1 , x2 − aym = z2

2

in positive integers x, y, z1, z2, where a and m are positive integers with m ≥ 3.
In case of m = 2 we would obtain the classical problem of congruent numbers.
We provide a procedure to solve the simultaneous equations above for a class of
the coefficient a with the condition gcd(x, z1) = gcd(x, z2) = gcd(z1, z2) = 1.
Further, under same condition, we even prove a finiteness theorem for arbitrary
nonzero a.

1. Introduction

A natural number a is called congruent if the system of equations

x2 + ay2 = z2
1 , (1)

x2 − ay2 = z2
2 (2)

is solvable in positive integers x, y, z1, z2. The history of congruent numbers dates
back to the tenth century when an anonymous Arab manuscript posed the following
problem. If c is an integer, find a square x2 such that x2 ± c both are squares.
Since then a lot of mathematicians, among others Fibonacci, Fermat, Euler,
investigated the problem of congruent numbers. For more details, see Dickson [4].

It was showed by Roberts [8] that if x2 ± ay2 = �, then ay2 is of the form
Dαβ(α − β)(α + β), where D = 1 or D = 4 depending on the parity of α and β.
Likely, this result had already been known before. Our present work also uses a
similar type of argument. In the paper [1], Alter, Curtz and Kubota proposed
the following conjecture.

Conjecture 1. If a ≡ 5, 6 or 7 (mod 8), then a is congruent number.
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Tunnell [9], applied the theory of formal power series and modular forms to
gain conditions for congruent and noncongruent numbers. His work is an important
contribution to understanding their nature. Here, we look at the following question.

Question 1. If a is a positive integer, what can one say about the positive integer
solutions (x, y, z1, z2) of the system

x2 + aym = z2
1 , (3)

x2 − aym = z2
2 , (4)

where m ≥ 3 is a fixed integer?

A primitive solution of the system of equations (3) and (4) will be just a solution
(x, y, z1, z2) in positive integers such that gcd(x, z1) = gcd(x, z2) = gcd(z1, z2) = 1.
We start with the following result.

Theorem 1. Given any integers a 6= 0 and m ≥ 3, the system of equations (3) and
(4) has only finitely many primitive positive integer solutions (x, y, z1, z2).

We now address the issue of determining all such finitely many primitive solu-
tions to the system of equations (3) and (4) once a is given. While we are unable to
determine all such solutions in general, we do so for certain values of the parameter
a, namely when a = 2u · pv with nonnegative integers u and v and an odd prime
p. Our algorithm to determine all such solutions mainly relies on results of Ribet

[7], and Darmon and Merel [3], which allow us to find all the integer solutions
of the Fermat-type Diophantine equations Xn + 2γY n = Zn. We use the method
to find all the primitive solutions of the system of equations (3) and (4) for a = 3.
We have the following result.

Theorem 2. Let the pairwise relatively prime positive integers x, z1 and z2 satisfy
the equations x2 + 3y3 = z2

1 and x2 − 3y3 = z2
2 for some positive integer y. Then,

(x, y, z1, z2) = (5, 2, 7, 1).

2. The Finiteness Theorem

Here, we prove Theorem 1. Multiplying equations (3) and (4), we get the equation

x4 − a2y2m = z2,

where z = z1z2. Since 1/2 + 1/4 + 1/2m < 1 for any fixed m ≥ 3, the fact that the
above equation has only finitely many integer solutions (x, y, z) follows immediately
from a result of Darmon and Granville from [2], which asserts that if A, B and
C are given nonzero integers and `, m and n and given positive integers with
1/`+ 1/m+ 1/n < 1, then the equation

Ax` + Bym = Czn

has only finitely many integer solutions (x, y, z) with gcd(Ax,By) = 1.
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3. Preparation for the Proof of Theorem 2

In this section, we establish the basic equations which have a crucial role in our
arguments for the proof of Theorem 2.

We start by recalling a useful result of Legendre dealing with the integer solu-
tions (x, y, z) of the Diophantine equation

ax2 + by2 + cz2 = 0. (5)

Here a, b and c are pairwise coprime square-free integers with a > 0, b < 0 and
c < 0. Under the presentation below, Lemma 1 appears [6].

Lemma 1. Assume that (x0, y0, z0) is an integer solution of equation (5) with z0 6=
0. Then, all integer solutions (x, y, z) with z 6= 0 of equation (5) are of the form

x = ±D
d

(

−ax0s
2 − 2by0rs+ bx0r

2
)

,

y = ±D
d

(

ay0s
2 − 2ax0rs− by0r

2
)

,

z = ±D
d

(

az0s
2 + bz0r

2
)

,

where s > 0 and r are coprime integers, D is a nonzero integer, and the positive
integer d divides 2a2bcz3

0.

Furthermore, the number D above is the greatest common divisor of any two
numbers from the set {x, y, z}.

Let c denote a positive integer. Consider, like in the Arab manuscript, the
system of two Diophantine’s equations

x2 + c = z2
1 , (6)

x2 − c = z2
2 , (7)

in positive integers x, z1 and z2. Equations (6) and (7) lead to

2x2 − z2
1 − z2

2 = 0. (8)

Take (x0, z10, z20) = (1, 1, 1) as a basic solution of equation (8). Then, by Lemma
1, it is possible to write any solution of equation (8) in the form

x = ±D
d

(2s2 − 2sr + r2) , z1 = ±D
d

(2s2 − 4sr + r2) , z2 = ±D
d

(2s2 − r2) , (9)

where s > 0 and r are coprime integers, D is an arbitrary positive integer, and the
positive integer d divides 8. It follows easily, from the proof of Lemma 1 in [6],
that d does not necessarily run through all the divisors of 8, but only through the
divisors of 8 of the form

d = gcd(2s2 − 2sr + r2, 2s2 − r2) = gcd(2s2 − 4sr + r2, 2s2 − r2). (10)

Thus, we must analyze (10) in order to reduce the number of possibilities for d. If
r is odd, then

d = gcd(−2sr + 2r2, 2s2 − r2) = gcd(−s+ r, 2s2 − r) = gcd(−s+ r, r2) = 1.
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If r = 2r0 is even, then s is necessarily odd, and

d = 2 gcd(−2sr0 + 2r2
0 , s

2 − 2r2
0) = 2 gcd(−s+ r0, s

2 − 2r2
0) =

= 2 gcd(−s+ r0,−r2
0) = 2.

Thus, d = 1 or 2 depending on the parity of r.

Using formulas (9), together with the fact that 2c = z2
1 − z2

2 , we get 2c =
D2/d2(−16s3r + 24s2r2 − 8sr3), and we so have

cd2

4D2
= s(−r)(s− r)(2s − r). (11)

The right hand side of the above equation is a product of four coprime numbers,
except when gcd(r, 2s− r) = 2. This happens only if r is even. Further, the right
hand side of the above equation is the product of three consecutive terms of an
arithmetic progression and the difference of the progression.

Hence, the system consisting of equations (6) and (7) is solvable for some
c, if and only if either c = 4D2s(−r)(s − r)(2s − r) (when r is odd), or c =
D2s(−r)(s − r)(2s− r) (when r is even).

The fact that the unknowns x, z1 and z2 are positive leads to the following
conditions. The left hand side of equation (11) is positive therefore either r < 0, or
s < r < 2s. Further, since 2s2 − 2sr + r2 is a positive definite quadratic form, we
see that x = D/d(2s2 − 2sr+ r2). If r < 0, then 2s2 − 4sr+ r2 > 0 for all possible
pairs (s, r), so z1 = D/d(2s2 − 4sr + r2). On the other hand, if s < r < 2s, then

z1 = D/d(−2s2 + 4sr − r2). Finally, if |r| <
√

2s, then z2 = D/d(2s2 − r2), and
otherwise z2 = D/d(−2s2 + r2).

We conclude this section by providing two examples, the first one leading to
the solution appearing in Theorem 2.

1. Let s = 2, r = 3, D = 1. Since r is odd, we get that c = 4s(−r)(s− r)(2s− r) =
24 = 3 · 23. Further, x = 5, z1 = 7 and z2 = 1. Consequently, (x, y, z1, z2) =
(5, 2, 7, 1) gives a solution of the system of equations

x2 + 3y3 = z2
1 , (12)

x2 − 3y3 = z2
2 . (13)

2. It is easy to see that for any positive integer m ≥ 3, there exists a positive
integer a such that

x2 + aym = z2
1 , (14)

x2 − aym = z2
2 . (15)

Indeed, suppose that m is fixed. Put r = −1 and s = 2b for some positive integer
b. Then d = 1, and

c = 4 · 2b(2b + 1)(2b+1 + 1) = 2b+2 · (2b + 1)(2b+1 + 1).

Taking b = m− 2, we see that the choice a = (2b + 1)(2b+1 + 1) is suitable for the
system of equations (14) and (15).
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4. The Structure of the Primitive Solutions of x2 ± 2upvym = z2
i

In this section, we give a procedure to determine all the primitive solutions of the
equation x2 ± 2upvym = z2

i in positive integers x, y, z1, z2, where p is an odd
prime, u and v are nonnegative integers, and m ≥ 3. Without loss of generality, we
may assume that the exponents u and v are less then m. Thus, in the sequel, we
suppose that 0 ≤ u, v < m. By the results from Section 3, we have D = 1, and so
we must solve the equations

2upvym = s(−r)(s − r)(2s− r), r even, (16)

and

2upvym = 4s(−r)(s− r)(2s − r), r odd, (17)

with y > 0, gcd(s, r) = 1 and s > 0.

Consider now equation (16). Let r = 2r0. Thus, s is odd, and either r0 < 0 or
0 < s/2 < r0 < s. Assume first that u = 0 or 1. In these cases, y must be even.
Put y = 2y0. We then have

2m−2+upvym
0 = r0(−s)(r0 − s)(2r0 − s). (18)

If u ≥ 2, we then simplify both sides of equation (16) by a factor of 4 and obtain

2u−2pvym = r0(−s)(r0 − s)(2r0 − s). (19)

Suppose now that r is odd. If u ∈ {0, 1} in equation (17), then y = 2y0 and we get

2m−2+upvym
0 = s(−r)(s− r)(2s − r), (20)

while in case when u ≥ 2, we get

2u−2pvym = s(−r)(s− r)(2s − r). (21)

All the above four equations are of the type

2UpvY m = S(−R)(S −R)(2S −R), (22)

where U ≥ 1, and either Y = y or Y = y0. Further, the four factors on the right
hand side of the above equation are coprime any two.

There are two possibilities for the unknowns S and R. If the equation (22) has
been derived from (16), then either S, −R, S −R, 2S −R are all are negative, or
−R < 0 and S − R < 0, while S > 0 and 2S − R > 0. Similarly, if the source of
equation (22) is (17), then either all the four factors S, −R, S − R, 2S − R are
positive, or −R < 0 and S −R < 0, while S > 0 and 2S −R > 0.

Since the factors on the right hand side of equation (22) are coprime, we get
S = ε1y

m
1 , −R = ε2y

m
2 , S − R = ε3y

m
3 , and 2S −R = ε4y

m
4 , where εi are positive

integers for i = 1, . . . , 4 with
∏4

i=1 εi = 2Upv.

Eliminating the numbers R and S from the above relations, we get

ε2y
m
2 + ε4y

m
4 = 2ε3y

m
3 , (23)

ε1y
m
1 + ε3y

m
3 = ε4y

m
4 , (24)

2ε1y
m
1 + ε2y

m
2 = ε4y

m
4 , (25)

ε1y
m
1 + ε2y

m
2 = ε3y

m
3 . (26)
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Since the factor pv can only divide exactly one of εi’s, we get that among the
previous four equations there is one for which pv does not divide any coefficient.
In such an equation, all the three coefficients are powers of 2, and so the solutions
can be determined as an easy application of the results of Ribet [7] and Darmon

and Merel [3].

All the 16 possibilities for the coefficients εi for i = 1, . . . , 4 are enumerated in
Table 1.

1 2 3 4 5 6 7 8
ε1 2Upv pv pv pv 2U 1 1 1
ε2 1 2U 1 1 pv 2Upv pv pv

ε3 1 1 2U 1 1 1 2U 1
ε4 1 1 1 2U 1 1 1 2U

9 10 11 12 13 14 15 16
ε1 2U 1 1 1 2U 1 1 1
ε2 1 2U 1 1 1 2U 1 1
ε3 pv pv 2Upv pv 1 1 2U 1
ε4 1 1 1 2U pv pv pv 2Upv

Table 1.

5. Example: Primitive Solutions of x2 ± 3y3 = z2
i

In this section, we prove Theorem 2. Thus, we must solve the equations

3y3 = s(−r)(s − r)(2s− r), r even, (27)

and

3y3 = 4s(−r)(s− r)(2s− r), r odd, (28)

where y > 0, gcd(s, r) = 1 and s > 0. Since y has to be even in both cases, we put
y = 2y0, and in the first case we also let r = 2r0. We have

6y3
0 = r0(−s)(r0 − s)(2r0 − s), where r0 < 0 or 0 < s/2 < r0 < s, (29)

and

6y3
0 = s(−r)(s− r)(2s− r), if r < 0 or 0 < s < r < 2s. (30)

Using the notations of the previous section, we have U = 1, p = 3, v = 1, m = 3
and

6Y 3 = S(−R)(S −R)(2S −R), (31)

with S = ε1y
3
1 , −R = ε2y

3
2 , S −R = ε3y

3
3 , 2S −R = ε4y

3
4 , and

∏4
i=1 εi = 6.

Clearly, if yi = 0 for some i, as in all the cases except for the fifth, seventh and
fifteenth columns of Table 1, then there is no additional solution of the equation
we are considering.

Consider now the equation 2y3
1 + y3

3 = y3
4 , which is a particular instance of

equation (24) and the fifth column of Table 1. The only nonzero integer solutions
of this equation are

(y1, y3, y4) = (1,−1, 1), (−1, 1,−1).
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The first solution gives S = 2, R = 3, and both instances (29) and (30) give y = 2,
x = 5, z1 = 7, z2 = 1. The second solution (−1, 1,−1) gives only negative values
for s if d is either 1 or 2.

In the case of the seventh column of Table 1, equation (24) is y3
1 + 2y3

3 = y3
4 .

Each one of its two possible solutions

(y1, y3, y4) = (1,−1,−1) and (−1, 1, 1)

induce the impossible result y = −2.

Finally, in the fifteenth case of Table 1, equation (26) becomes y3
1 + y3

2 = 2y3
3,

and none of its nonzero solutions

(y1, y2, y3) = (1, 1, 1), (−1,−1,−1)

leads to any additional solution of the equation we are considering.

The proof of Theorem 2 is complete.
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E-mail address: fluca@matmor.unam.mx
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