
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003) 173–177

A NOTE ON BINOMIAL COEFFICIENTS AND
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Dedicated to the memory of Professor Péter Kiss

Abstract. The aim of this paper is to solve three diophantine equations of Pythagorean

type.

1. Introduction

In [1] Luca determined all consecutive binomial coefficients satisfying the equation
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.

His nice work leads to those Fibonacci numbers which are square or twice a square.
In this note we apply Luca’s method to find all the solutions (n, k) of
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where (a, b) = (1, 2) and (a, b) = (2, 1). Moreover, the solutions of the diophantine
equation
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are also provided. The results are the following.

Theorem 1. If n ∈ N, n ≥ 2 and k ∈ N, k ≤ n − 2 satisfy equation (1) with
(a, b) = (1, 2) then (n, k) = (14, 4).

Theorem 2. Equation (1) with (a, b) = (2, 1) has no solution in n ∈ N and k ∈ N

(n ≥ 2 , k ≤ n − 2).

Theorem 3. If n ∈ N and k ∈ N, k ≤ n satisfy equation (2) then (n, k) = (3, 1).
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Obviously, one can gain similar type of results as Theorem 1–3 if the symmetry
of Pascal triangle is considered. For the proofs we follow paper [1] and go into
details in only one case. The general case (1) seems to be more complicated. Even
if a = 1 or b = 1, though the analogous equation to (6) exists, but the corresponding
equation (11) or (12) is more difficult, where one should determine special figurate
numbers in second order recurrences.

At the end of this paper we summarize some computational results in case
1 ≤ a, b ≤ 25.

2. Proofs

Proof of Theorem 1. If (a, b) = (1, 2) then equation (1) in natural numbers n

and k leads to

(3) (y + 1)
2
(

y2 + 2x2
)

= x2 (x − 1)
2
,

where y = k + 1 and x = n − k are positive integers. Equation (3) implies that
y2 + 2x2 is a square. It is well known (see, for example, [3]), that all the solutions
of the diophantine equation y2 + 2x2 = z2 in positive integers x, y and z can be
expressed as

(4) y = d
∣

∣u2 − 2v2
∣

∣ , x = 2duv, z = d
(

u2 + 2v2
)

,

with the conditions d, u, v ∈ Z
+, gcd(u, v) = 1 and u ≡ 1 (mod 2). It is easy to

see that gcd(u2 + 2v2, 2uv) = 1. Therefore the consequence

(5)
(

d|u2 − 2v2| + 1
) (

u2 + 2v2
)

= 2uv (2duv − 1)

of equation (3) together with (4) implies that

(6) e =
2duv − 1

u2 + 2v2
=

d|u2 − 2v2| + 1

2uv

is a positive integer. The system of two linear equations

(7)
(u2 + 2v2)e − (2uv)d = −1

(2uv)e − |u2 − 2v2|d = 1

}
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in variables e and d has a unique solution, namely

(8)

{

e =
|u2 − 2v2| + 2uv

D
, d =

u2 + 2v2 + 2uv

D

}

with

D = −(u2 + 2v2)|u2 + 2v2| + 4u2v2 = ±
(

u4 − 4v4
)

+ 4u2v2.

Obviously, D is odd. If D has an odd prime divisor p then by (8) we conclude
that p divides both |u2 − 2v2| + 2uv and u2 + 2v2 + 2uv. But this is impossible
because gcd(u, v) = 1. Consequently |D| = 1. Here we must distinguish two cases.
Depending on the sign of u2 − 2v2 either

(9) 4D =
(

2u2 + 4v2
)2

− 8
(

u2
)2

= ±4,

or

(10) 4D =
(

2u2 + 4v2
)2

− 8
(

2v2
)2

= ±4.

Both cases are connected with the Pell sequence {Pn}
∞

n=0
defined by Ps = 2Ps−1 +

Ps−2, P0 = 0, P1 = 1, and its associate sequence {Rn}
∞

n=0
given by the same

recurrence relation and having initial values R0 = R1 = 2. These recurrences
provide all the solutions of the equation X2 − 8Y 2 = ±4. Therefore, by (9) or (10)
it follows that

{

Ps = u2 , Rs = 2u2 + 4v2
}

or, in the second case

{

Ps = 2v2, Rs = 2u2 + 4v2
}

.

Fortunately, the squares and twice a squares have already been determined in the
Pell sequence (see [2] and [4]):

(11)
Ps = u2 ⇔ (s, u) = (0, 0); (1, 1); (7, 13);
Ps = 2v2 ⇔ (s, v) = (0, 0); (2, 1).

}

Among them only (s, v) = (2, 1) provides a solution of the original problem,
namely (n, k) = (14, 4).



176 L. Szalay

Proof of Theorem 2. This proof is very similar to the previous one, therefore we
only indicate the crucial point of it. Equation (1) with (a, b) = (2, 1) and later by
y = k + 1 = 2duv, x = n − k = d|u2 − 2v2| implies that

D =
(

u2 + 2v2 − uv
)2

− (3uv)
2

= ±1,

which contradicts that u, v ∈ Z
+.

Proof of Theorem 3. Apply again the procedure of Luca. Equation (2) implies
that

(12) (y + 1)
2
(

y2 + x2
)

= x2 (x + 1)
2

with x = n, y = n − k. The unknowns x and y are two entries of a Pythagorean
triple, hence we have two cases. If

x = 2duv, y = d(u2 − v2)

(d, u, v ∈ Z
+, gcd(u, v) = 1, u ≥ v and u 6≡ v (mod ()2) then (12) leads to

(

4u2 + 2v2
)2

− 5
(

2u2
)2

= ±4,

otherwise, if we interchange the role of x and y in the equation x2 + y2 = z2, it
follows that

(

2u2 + 2v2 − 2uv
)2

− 5 (2uv)
2

= ±4.

As in [1], we must know the square and twice a square Fibonacci numbers. In the
first case Fs = 2u2, Ls = 4u2 + 2v2 provide the only solution (n, k) = (3, 1). From
Fs = 2uv, Ls = 2u2 + 2v2 − uv we conclude that Fs−1 = (u − v)2 and it gives no
more binomial coefficients satisfying (2) (see [1].

Computational results

If 1 ≤ a, b ≤ 25, applying a simple computer search, we found all the solutions
of equation (1) in the intervals 2 ≤ n ≤ 250, 0 ≤ k ≤ n − 2. The results are shown
in the following table.

a 1 1 1 1 1 2 3 4 4 4 4 5 7 9 9 9 9

b 1 2 7 14 23 8 24 2 5 12 21 1 2 3 6 7 19

n 62 14 43 98 173 26 64 4 19 44 83 14 7 11 6 14 53

k 26 4 10 18 28 5 9 0 4 8 13 4 1 2 0 2 8
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a 10 11 11 13 13 13 16 16 16 16 16 16 16 17 18 19

b 6 4 14 1 4 23 1 3 4 8 12 13 14 13 2 5

n 43 118 23 25 19 34 7 134 76 19 8 13 28 94 11 43

k 10 33 3 7 4 4 1 38 20 3 0 1 4 18 2 10

a 20 20 22 22 23 25 25 25 25 25 25 25

b 1 11 3 9 1 3 6 8 15 20 22 23

n 4 44 19 89 229 5 14 11 29 10 22 46

k 0 8 4 19 68 0 2 1 4 0 2 6
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