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1 Introduction
Consider the diophantine equation
gl =¥ fag 1z '+ .. +a (1)

in integers = and y, where ag.1,...,00, L, K € Z satisfy L = 2 and K = 2.
Although many results have dealt with elliptic and superelliptic equations,
only few of them describe practical methods for determining all the solutions
of such an equation.
By a consequence of a theorem of SIEGEL [8] the equation (1), under
some assumptions, has a finite number of solutions if L = 2. In [1] BAKER
showed that if m > 3, n > 3 then the equation

P =g+ @™+ ta, (2)

has finitely many solutions if the polynomial on the right-hand side of (2)
possesses at least two simple zeros, A similar result was proved for m = 2,
supposing three simple zeros of the polynomial. The theorems of BAKER
give effective upper bounds for the absclute values of the solutions, however
these bounds usually are huge too to solve practically equation (2).
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A method for determining all integral points on elliptic curves
E:v¥=r"+var+b (3}

was developed, among others, by GEBEL, PETHO and ZIMMER (2. The
algorithms is implemented in the computer algebraic system SIMATH [9].
In [11] TEANAKIS gives a procedure for computing the integer solutions of
the equation

v = f(z), (4)

where f(X] is a polynomial of degree four with integer coefficients and non-
#ero disriminant. His method based on some estimates on linear forms in
elliptic logarithm. Some bounds of [11] are improved by HERRMANN i4].
If f(X) is monic and not a perfect square POULAKIS [6] describes a nice
method for solving (4), moreover his algorithm was generalized by SzaLay
[10] for monic and non-square polynomial f(X) of arbitrary even degree.
Their results are elementary way of application of the Runge’s method.

More general problem was considered by Runae [7], who showed that if
the polynomial

k n
FIX.Y)=)_Y eyX'¥i € Z[X,Y] (5)
=l §mll
is irreducible in Q[X,Y] and some other conditions are fulfilled then the
equation
Flz,y) =0 (6]

inz € Z and y € Z has only finitely many solutions. GRYTCZUK and
SCHINZEL [3], further WaLSH [12] provided upper bounds for the absolute
value of the solutions of (6). In [12] WALSH took the polynomial F(X, V) =
Y&~ P(X) as a special case of |6) with deg(P) = K and proved the following
theorem,

Theorem A. Let L > 2, K = 2 be integers such that ged(L K) =p > 1.
Suppose further that P(X) = vE.aXi e Z[X] is a monic polynomial of
degree K such that YX — P(X) is irreducible in QX,Y]. Put h = max; ||
and let [ > 1 denote a divisor of p. All integer solutions of the superelliptic
equation

y" = P(z) (7)
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satisfy

{

el < % (T4 2) (4 1), )

This theorem, as well as the following result due to LE, makes it possible,
in several cases, to give all the integer solutions of (7). In [5] LE investigated
the diophantine equation

yL_—_IH-I—E;{_IIK_L+...+.|:n {9)
and showed

Theorem B. [f K = 0 (mod L), cx_,, .., ¢p not all zeros and the first
nonzero coefficient is coprime with L, then (9) has only finitely many solu-
tions (z,y). Moreover, all solution of (9) satisfy

lz| < (4Kh)E+) (10)
il < (acry (CBF+E4) (11)

where h = max; |¢].

The effective Theorem A and Theorem B provide general upper bounds
for the solutions of equations (7) and (9), respectively. Our application of
Runge's method described below gives an own interval (i.e. bounds) for the
solutions = of each equation. That is why this method gives quite bid far
bounds in certain cases, which may have great advantage if one really means
to solve such an equation. In exceptional case it can be oceurred that an
integer solution r is outside of the interval, but then = must be a root of a
polynomial C(X) € Z[X], which can easily be determined,

2 Results

The purpose of the present paper is to extend the earlier results of PouLAKIs
[6] and the author [10] for the title equation, by giving an elementary and
easily applicable method for solving equation (1), if the greatest common
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divisor of the exponents L and K is greater than one. Let ged(L, K} =p > 1,
L =lp and K = kp. It is obviously sufficient to consider the equation

kp—1 _

!J;h=1kﬂ+ﬂkp—1:r +-._.+|!'.|.|:|- {12}

There is no restriction in assuming that p is prime, but it is not necessary.
It is worth remarking that the equation

g = afr'? + akp_l:l'.!kp_l + . . 0p (13)

also leads to equation {12). Here a = —1 is also possible if p is odd. Copying
the coefficients of the right-hand side of (12) we introduce the polynomial

FiX) =X+t X" +...+ a0 (14)

Finally, suppose that F(X) ¢ GP(X) for any G(X) € Z[X], i.e. F[X) is not
a perfect p* power. For simplicity, equation (12) may be written in the form

¥ = Flz). {15)

Algorithm for determining all integer solutions of (12).

Step 1. Find polynomials B{X) = X* + b1 X* 1 + ...+ Ip € Q[X] and
C(X) € Q[X] with deg(C({X)) < kp — k — 1, such that

F(X) = BR(X) + C(X). (16)

Step £, Find the least positive integer o for which aB({X) € Z[X]. (Then we
also have o”C(X) € Z[X].)
Step §. Set

Pi{X)= - (aB{X) - 1)" + o BP(X) + oPC( X), (17)

and
B(X)=aB(X)+ 1) — of BP(X) - a”C(X). (18)

Step 4. Let H = {r € R|Py{r) =0 or Pir) = 0}. (Approximations are
allowed
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Step 5. If H # 0 then let h; = [min H] and hy = |max H|, and for each
integer element of the interval [h;, s) compute F{x). If F{z) = " satisfies
with some integer y then output: (x, ).

Step 6. Determine all integer solutions of the equation C(z) = (. If = is such

an integer then output: l,:m_,{i'jﬁ-'F[:t:]:]. (If p is even then we may use £

Remarks.
l. Step 1. gives a polynomial B(X), which is the polynomial part of the
Puiseaux expansion
(X)) =X 4. e X vgr Xt + .. (19}
of the algebraic function G(X,Y) = ¥? — F(X), i.e. B(X) = c_ X +
1 X + Co-

2 Incaseof p=2and k=1, C(X) = a¥ - "—dé is & constant polynomial
(nonzero, hence it has no any roots), @ = 2 or & = 1 depending on the parity
of ay, further

2
Pi(X)={(20)X - 1 + aq; +* (ﬂu = {IIJ) (20)
and
Py
P(X) = (20)X + 1 + an, — o (ﬂu —~ E') (21)

are linear polynomials. It is readily verified by Siep 4 and Step 5 of the

algorithm that
2| < { Washil  5¢ g0 s odd,

4 22
"’24'—:"“'& if a; is even, (22)

which is partially improve WALSH's result in {12].

It is easy to recognize that the efficiency of this method mainly depends
on the length of the interval [hy, hy]. In many cases this interval proves itself
to be unexpectedly short, and this fact enables us to use the algorithm. Of
course, if the height and the degree of the polynomial F{X} become large,
the method becomes less powerful (as well as other algorithms). To prove the
correctness of our method we need two statements, a lemma and a theorem.
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Lemma. Suppose that p = 2 and k = 1 are integers and

FIX)=X®4a, X 4 . +ay (23)

is a polynomial with integer coefficents. Then uniquely exist polynomial

B{X)=X*+ b s X ...+ b € QX (24)
and C(X) € Q[X] with deg(C(X)) < kp — k — 1 for which
F(X) = BP(X)+ C(X). (25)

Proof of Lemma. By the notation of Lemma, let F{X) = X* 4
Gipt X P o g, B(X) = XE+bp X5 1+ .. + by, further let BP(X) =

kp .
Xwi5 r:g.P_,-IkF'"- We must show that rational numbers by._y, ..., by can be

l:hunﬂézlsuch that the coefficients cyp—; and ag,—; coincide for each integer i €
{1,...,k}. Applying the Polynomial Theorem to (X*+b_ X514, +b)P,
it follows that

Chp-1 = Plie—1, (26)
and the coefficient by_; (i = 2,..., k) appears first in cg,_,. More exactly,
Crpei = Qi(Bhts o i) + 00—y (§=2,...,k) (27}
where (J; denotes certain polynomial of degree 1 in variables by _y, ..., be_ity
with positive integer coefficients (1 = 2, ..., k). Consequently if we choose
i
bpoy = =1, (28)
o
and .
byi = gt — Q{[ﬁ::,- o2 Brmig) (i=2,... k) (29)
then B(X) is established. Finally let C{X) = F{X) — BP(X), ie.
C(X) = (akp—t—t ~ Chp-k1 ) XP¥ 1 4L+ (39 — ), (30)

which has degree at most kp — k — 1. The pelynomial B(X) and C{.X) with
rational coefficients are uniquely given and satisfying all the conditions of
Lemma. m
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Theorem. Using the notations have been infroduced ahove, if (z,y) is a
solution of the equation

Y = F(x) 131)
and & & [hy, hy] then Cz) =0,

Proof of Theorem. Take the decomposition F(X) = BPX) + C(X)
guaranted by Lemma, where deg(B(X)) = k and deg(C(X)) < kp—k -
1. Determining the least positive integer o, and by (17) and (18) we get
polynomials Py(X) and Py(X) with integer coefficients. From the proof of
Lemma 1t follows that a = p” with some non-negative integer 5. If ¥ and p
are given then the least upper bound fy(p, k) of & can be determined. For
instance, fy(p,1) = 1, £o(2,2) = 3, if p > 2 then Go(p,2) = 2, 5a(3,3) = 4,
Gal5,5) = 6. Simple calculation shows that both Pi(X) and P3(X) have
pa¥~! as positive leading coefficent, moreover

deg(Py(X)) = deg(Fy(X)) = kp — k > deg(C(X). (32)
Now suppose that (x,y) is a solution of (31). Then
¥ = F(x} = B*(x) + C|z). (33)
The properties of polynomials Fi{X)} and Py(X) imply that if z ¢ [y, hol
then Pi{z) > 0 and Pyz) > 0 or in case of odd kp — k (= deg(P(X)})

Pylx) < 0 and Py(z) < 0 can even be oceurred.
A) First examine the case Pi(z) > 0 and Py(x) > 0, so that

~ (aB(X) - 1)’ + o B"(X) + o"C(X) > 0, (34)

and
(@B{X)+1)" — a?B"(X) — a"C(X) = 0. (35)

Combining (34) and (35) we have
(eB(z) — 1) < o (B®(z) + C{z)) < (aB{z) + 17, {36)
By (33) together with (36) give

(eB(z) = 1) < (ay) < (aB(z) +1)7, (37)
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and since aB{r) is an integer thanks to the maultiplier @, the terms of
inequalities (37) must be p™ power of three consecutive integers. Hence
oy = o B"(x), which together with (33} provide C(x) = 0.

B) The same conclusion can be drawn in case of odd kp — k, i.e. pis
even and k£ odd. (We would have even assumed that p is prime implying here
p=2.) Now from the inequalities

—(aB(X) - 1) + o’ B*(X) + a"C(X) < 0, (38)

and
(aB{X)+ 1) — " BP(X) — o"C(X) < 0 (39)

it follows that
(aB{z) + 1)F < o (B¥(z) + C(z)) < {aB{x) — 1)*, (40)

which means that B(z) < 0, and (40}, in the same way as above, leads to
C{x) = 0. Then Theorem is proved. m

Remark If the coeflicients ay,_y, ..., 00 and deg{F(X')) are not large too
(see Examples) then we can check for each integer element of [hy, ha] whether
equation (31} is satisfied or not. Otherwise, if a solution = does not belong to
[h1,ha] or H =@ then C{z) = 0 and we can get = simply by determining all
integer roots of C'(X). In a more precise approach we should determine all
intervals /; in R, whose real elements r satisfy the inequality P {r)-P(r) < 0,
and taking H = |J; I; instead of the interval [h;, hy], this refinement might
have an important influence on the algorithm in certain cases, but on the
grounds of experiences here we find sufficient our first (and more simple)
VETS1011.

The power of the algporithm iz demonstrated by three examples. Further
Table 1 compares bounds provided by Theorem A, Theorem B and present

paper.

3 Examples

Example 1.
=g+ a2’ 2 +32~5, {41)
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p=2 k= deg{B[}f}l} 4, kp—k = -:leg{ (X)) =4 > deg(C(X)) = 3.
.E'I:X_ll Xnt_i_ J'fj Ixi 'l E'

O(X) = % % + gl — o8

o =27,

Pi(X) = 256X* + 1024X° + 16128X? 4 49248 X — R1956,
P{X) = 256X" ~ 768X — 16192X2 — 49216X + 81936,
[hi, ha] = [—4.10], Cz) = 0 has no integer solution.

The solutions of equation (41) are (z,y) = (=2, £11), (1, £1).

Example 2.
P=c+2® -5’ — 11 - 2t e — 22— 3, (42)

p=23 k=deg(B(X)) =3, kp— k= deg(R(X)) = 6 > deg{C(X)) = 5
B(X)=X+3Xx2 - :,E:’x %H

c{xgi ““Jfﬂ S X' - G X+ N + Bt — e

& —

Fi(X) = 19683 X° — 4004064.X — 9474084 — 799713 X + 0576873 X2 +
2058210X — 1119771,

Py(X) = 19683X° + 4146552 X + 9325368 X1 + 614061 X" — 9451323X2 —
1900206.X + 1155347,

[h, hig] = [—208, 210}, C'{x) = 0 has no integer solution.

The only solution of equation (42) is (z,y) = (3, 24).

Example 3.
TR gt B L TR [43]
Z[EAE, k ;-Edfglzféffﬂ 3—;3 ";F'”kﬁzd‘iﬁ': (X l,:l} =20 > deg({C{X)) =
{= + + ik
i 155'25-

851925 11417383481 751
OX) = X + el
0y =
P X) = 208023223876953126 X2 4+ ..+ 6519257352410621 188532,
Py(X) = 298023223876953125X % — . .| — 6510257345121260531250.

[f. frg] = [—799, 801, C{x) = 0 has no integer solution.
The only solution of equation (43) is (z,y) = (1, 2).
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Table 1. (Comparison the bounds in [12], bounds in [5] and bounds in present

paper)

Let Fy(X)=X5—7XT-2X' - X 45, F(X) = XU L X4+ X+
33554434 and Fi(X) = X - 99X? — 37X% — 51X + 100.

equation | bound in [12] | bound in 5] interval [hy, ha] |

[41) 3.57 - 105 % 688 107 I - —4,10

[42) 1.60 - 107 1.53- 10T [—208, 210 |

(43) 5.92 - 10 1.98 - 107! [—799, 801/

ywf=Fy(x) || 6.34.10" 142 10T | [-59267, 59277
T = Fs(z) | 6.45-10°7 | 5.02.10°" | [—650036,650038]
° = Fg(z) | 1.09-10% .05 - 10 | [—492617, 492741]
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