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Abstract
Solution of various combinatorial problems often requires vector recurrences of higher order (i.e., the order is larger than
1). Assume that there are given matrices A1,A2, . . . ,As, all from Ck×k. These matrices allow us to define the vector
recurrence v̄n = A1v̄n−1 +A2v̄n−2 + · · ·+Asv̄n−s for the vectors v̄n ∈ Ck, n ≥ s. The paramount result of this paper is that
we could separate the component sequences of the vectors and find a common linear recurrence relation to describe them.
The principal advantage of our approach is a uniform treatment and the possibility of automatism. We could apply the main
result to answer a problem that arose concerning the rows of the modified hyperbolic Pascal triangle with parameters {4, 5}.
We also verified two other statements from the literature in order to illustrate the power of the method.

Keywords: linear recurrence; vector recurrence; hyperbolic Pascal triangle; bounded anchored permutation; Fibonacci
sequence.
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1. Introduction

The theory of linear recurrences often plays an important role in combinatorics and number theory. This paper describes
a method to handle the problem of vector recurrences in general. We use this approach to solve a new question related
to hyperbolic Pascal triangles (in short, HPT). Moreover, we illustrate the applicability of the method by checking the
solutions of two problems appearing in the literature. The first one is associated with the number of bounded anchored
permutations and the second one deals with combined Fibonacci sequences.

Vector recurrences

Let s ≥ 1 and k ≥ 2 denote two positive integers. Assume that there are given the matrices At = [a
(t)
i,j ] ∈ Ck×k for

t = 1, 2, . . . , s. We define the vector recurrence

v̄n = A1v̄n−1 + A2v̄n−2 + · · ·+ Asv̄n−s, n ≥ s (1)

with initial column vectors v̄t = [v
(t)
1 , v

(t)
2 , . . . , v

(t)
k ]> ∈ Ck, t = 0, 1, . . . , s− 1.

We have developed a procedure in order to separate the component sequences (v
(t)
i )t≥0 for i = 1, 2, . . . , k, and to give

their own common recursive relation. First, we needed this method to solve a problem associated with the HPT given by
the parameters {4, 5}, but later it turned out that this approach might be very useful in the resolution of other questions.
A fast search revealed a couple of problems related to (1), and later we chose two of them for demonstration.

The simplest version of (1) is
v̄n = A1v̄n−1, (2)

when we have only one matrix, i.e., the order of vector recurrence is 1. Hence, the combination of component recurrences
goes back only to one term. In this case, the characteristic polynomial of the matrix A1 implies a recurrence rule of order
k valid for any of the separated component sequences of the vectors v̄n (see, for example, [5, Lemma 2.1], or [4]). (Note that
the basic field in [5, Lemma 2.1] is R, but the statement can be extended without changes for the field C as well.) If one finds
the zeros of the characteristic polynomial, then the zeros, together with the initial values, can provide an explicit form for
each component sequence. The difficulty that may arise in practice is finding the zeros precisely. For the non-homogeneous
version of (2), see [2] (with two sequences) and [5] (generally).
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Figure 1.1: Hyperbolic Pascal triangle with parameters p = 4 and q = 5.

The crucial point of our approach is to transform (1) in order to obtain a corresponding vector recurrence in the form
(2) (which will be given later in (6)). Section 2 is devoted to describing and clarifying the details.

A combinatorial problem in modified HPT{4, 5}

The notion of the hyperbolic Pascal triangle (see [2]) was introduced a few years ago as a variation of Pascal’s arithmetic
triangle. The novelty was to extend the link between the infinite graph corresponding to the regular square Euclidean
mosaic and classical Pascal’s triangle to the hyperbolic plane, which contains infinitely many types of regular mosaics. A
hyperbolic Pascal triangle is characterized by the Schäfli’s symbol {p, q} according to the type of the regular mosaic in the
hyperbolic plane. Now let p = 4, q = 5, which means that the regular polygon in the mosaic is square, and exactly 5 squares
meet at each vertex. As an illustration, Figure 1.1 shows the first few rows of HPT{4, 5}, which can also be considered as
a digraph.

In each row of this graph, apart from the leftmost and rightmost vertices (said to be wingers) there are two types of
vertices. Some of the vertices (called type A for convenience, figured by red circles) have 2 ascendants and 3 descendants,
the others (types B, illustrated by cyan rhombuses) have 1 ascendant and 4 descendants. The value of a vertex is the sum
of the values of the ascendants. It gives the number of the shortest paths to the vertex from the basic vertex 1 located on
the top of the figure.

Belbachir et al. [2] discovered several properties of HPT’s, we recall here only one result. The sum of the elements in
row n gives the number of shortest paths νn from the base vertex to row n. We found that sequence (νn)n≥0 satisfies the
ternary recurrence relation

νn = 5νn−1 − 6νn−2 + 2νn−3, n ≥ 3,

the initial values are ν0 = 1, ν1 = 2, and ν2 = 4. This is sequence A087161 in [7]. In fact, we presented a more general
statement in [2] associated with HPT{4, q}.

Now we modify HPT{4, 5} as follows.

• Insert a new edge with double length from each vertex V having type A of row n to each accessible vertex (in the
digraph, from V ) of type B in row (n+ 2). (These edges are indicated by blue arrows in Figure 1.2.)

• Insert a new edge with double length from each vertex V having type B of row n to each accessible vertex (in the
digraph, from V ) of type A in row (n+ 2). (These edges are indicated by green dashed arrows in Figure 1.2. )

Recall that these new edges have double length. Now we ask for the number of shortest paths from the base vertex 1 to
row n.

Clearly, the brief answer is the sum of the values of the vertices located in row n. We denote it by sn. After studying
the properties of vector recurrences, we will answer the above question more precisely.

2. Inhomogeneous vector recurrence

We will show how vector recurrence (1) leads equivalently to a vector recurrence of order 1 having type (2). Replacing A1

by M formally in (2), we will see that M has size sk × sk, and we will construct M itself.
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Figure 1.2: Modified hyperbolic Pascal triangle with parameters p = 4 and q = 5.

The ith (i = 1, 2, . . . , k) component sequence (v
(t)
i )t≥0 can be given recursively from (1) by the formula

v
(n)
i =

k∑
j=1

a
(1)
i,j v

(n−1)
j +

k∑
j=1

a
(2)
i,j v

(n−2)
j + · · ·+

k∑
j=1

a
(s)
i,j v

(n−s)
j =

s∑
t=1

k∑
j=1

a
(t)
i,jv

(n−t)
j . (3)

The crucial point is to consider the vectors v̄n−1, v̄n−2, . . . , v̄n−s in (1) as the (n− 1)th terms (i.e., vectors) of certain new
vector sequences. More precisely, for t = 1, 2, . . . , s put

v̄
[t−1]
n−1 := v̄n−t,

where the symbol [t− 1] indicates the [t− 1]th new vector sequence. In particular, t = 1 returns with v̄[0]n−1 = v̄n−1. For the
new component sequences, we introduce the notation

v
[t−1,n−1]
i := v

(n−t)
i (4)

for all i = 1, 2, . . . k and for all t = 1, 2, . . . , s. Applying it (3) becomes

v
(n)
i = v

[0,n]
i =

s∑
t=1

k∑
j=1

a
(t)
i,jv

[t−1,n−1]
j .

Observe that we have
v
[t−1,n]
j = vn−t+1

j = v
[t−2,n−1]
j . (5)

These arguments and the notation above lead to the vector recurrence

V̄n = MV̄n−1 (6)

analogous to (2), where

V̄n =
[
v
[0,n]
1 , . . . , v

[0,n]
k ; v

[1,n]
1 , . . . , v

[1,n]
k ; . . . ; v

[s−1,n]
1 , . . . , v

[s−1,n]
k

]>
∈ Csk.

Furthermore, by equalities (4) and (5) matrix M can be given in the block matrix form

M =



A1 A2 · · · As−2 As−1 As

Ik O · · · O O O
O Ik · · · O O O
...

... . . . ...
...

...
O O · · · Ik O O
O O · · · O Ik O


∈ Csk×sk,

52



B. Faye, L. Németh, and L. Szalay / Discrete Math. Lett. 13 (2024) 50–57 53

where O is the k × k zero matrix, Ik is the k × k identity matrix. According to the results of [5, Lemma 2.1] we need to
determine the characteristic polynomial

cM(x) = det(xIsk −M) = (−1)sk det(M− xIsk) (7)

of matrix M in order to obtain usual recurrence rule for the sequences (v
[t,n]
i )n.

Obviously,

det(M− xIsk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 − xIk A2 · · · As−2 As−1 As

Ik −xIk · · · O O O
O Ik · · · O O O
...

... . . . ...
...

...
O O · · · Ik −xIk O
O O · · · O Ik −xIk

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using (s−1)k suitable elementary column transformations as follows, one obtains an equivalent determinant whose value
is easy to find. Taking the columns one by one from the first column to the (s− 1)kth we execute the transformations

columnnew
k+j = columnold

k+j + x · columnactual
j

step by step for j = 1, 2, . . . , (s− 1)k in this order. This sequence of transformations results the equivalent determinant

det(M− xIsk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A?
1 A?

2 · · · A?
s−2 A?

s−1 A?
s

Ik O · · · O O O
O Ik · · · O O O
...

... . . . ...
...

...
O O · · · Ik O O
O O · · · O Ik O

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where
A?

1 = A1 − xIk, A?
2 = A2 + xA?

1, . . . , A
?
s = As + xA?

s−1. (8)

The consecutive application of Laplace expansions for the rows k + 1, k + 2, . . . , sk provides

det(M− xIsk) =
(
(−1)k

)(s−1)k
det(A?

s). (9)

On the other hand, it follows from (8) that

A?
s = As + xAs−1 + x2As−2 + · · ·+ xs−1A1 − xsIk.

Combining it with (7) and (9), finally we have just proved the following result:

Theorem 2.1. The characteristic polynomial of matrix M is

cM(x) = (−1)sk
2+sk−k2

det
(
As + xAs−1 + x2As−2 + · · ·+ xs−1A1 − xsIk

)
.

Note that the coefficient (−1)sk
2+sk−k2 equals 1 if k is even; otherwise, it takes −1. But it has no influence on the zeros

of the characteristic polynomial or on the recursive relations related to the component sequences (v
[t,n]
i )n≥0.

In practice, besides the initial values, we will need the zeros of cM(x) in order to give explicit form for the component
sequences, but this method is well known.

3. Solution to the modified HPT{4, 5} problem

Let an and bn denote the sum of elements in row n having type A and B, respectively. Clearly, sn = an + bn + 2 holds for
n ≥ 1. Similarly to the proof of [2, Theorem 2], but according to the new edges we have

an = 2an−1 + 2bn−1 + 5bn−2 + 2,

bn = an−1 + 2bn−1 + 4an−2

if n ≥ 3. Indeed, a vertex of type A has 4 descendants having type B two rows below, and an element of type B has 5
descendants having type A two rows below (see Figure 1.2). Put

A1 =

[
2 2
1 2

]
, A2 =

[
0 5
4 0

]
, w̄ =

[
2
0

]
.
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n 1 2 3 4 5 6
an 0 2 6 18 84 416
bn 0 0 2 18 78 312
sn 2 4 10 38 164 730

Table 1: Initial values of sequences (an), (bn), and (sn).

Thus, [
an
bn

]
= A1

[
an−1
bn−1

]
+ A2

[
an−2
bn−2

]
+ w̄, (10)

which is a specific inhomogenous version of (1). Decreasing all the subscripts by 1 in (10), and taking the difference of the
two equalities, it leads to [

an
bn

]
= (A1 + I2)

[
an−1
bn−1

]
+ (A2 −A1)

[
an−2
bn−2

]
+ (−A2)

[
an−3
bn−3

]
.

This is exactly a vector recurrence of type (1) with k = 2, and s = 3. Now apply the method we described in the previous
section. The characteristic polynomial of matrix M is

cM(x) = x6 − 6x5 + 11x4 − 21x3 + 8x2 + 27x− 20

= (x+ 1)(x− 1)2(x3 − 5x2 + 7x− 20).

Hence the two sequences (an) and (bn) both satisfy the recurrence relation

xn = 6xn−1 − 11xn−2 + 21xn−3 − 8xn−4 − 27xn−5 + 20xn−6, n ≥ 7

of order 6. The initial values given in Table 1 can be found by Figure 1.2.
But this is not a minimal recurrence! The Berlekamp-Massey algorithm would provide that (see, for example, [8, p. 29-

30]), but here we use a ”natural” way as follows. To find the minimal recurrence relation, we need an upper bound ` on
its order, which is now clearly ` = 6. Then the minimal recursion is uniquely determined by the first 2` elements of the
sequence because we need to get ` equations to solve for the unknown coefficients. The investigation returns with the
minimal recursion

xn = 5xn−1 − 6xn−2 + 15xn−3 + 7xn−4 − 20xn−5, (11)

which is valid for both (an) and (bn). Note that it corresponds the polynomial cM(x)/(x− 1).
Finally, we show that the sum of elements sequence (sn) also satisfies (11). We easily have

sn = an + bn + 2

= 5(an−1 + bn−1 + 2− 2)− 6(an−2 + bn−2 + 2− 2) + · · · − 20(an−5 + bn−5 + 2− 2) + 2

= 5sn−1 − 6sn−2 + 15sn−3 + 7sn−4 − 20sn−5.

Hence, we proved the following result:

Theorem 3.1. The sum of the element sequence (sn) in the modified HPT{4, 5} triangle satisfies the following linear recur-
rence of order 5, which is minimal:

sn = 5sn−1 − 6sn−2 + 15sn−3 + 7sn−4 − 20sn−5, n ≥ 6.

At the end of this section, we remark that we could use our approach analogously for the modified HPT{4, q}, where
q ≥ 5 is an integer.

We also note that the explicit solution for the characteristic polynomial of matrix M can be obtained if the size of the
matrices At is k = 2, see [6].

4. Examples

There exist combinatorial problems in the literature whose solution requires two or more combined simultaneous linear
recurrences. Here we choose two solved questions with different flavors.
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a0 a1 a2 a3 a4 a5 a6 an-4 an-3 an-2 an-1 an

Figure 4.1: Graph G associated with 3-bounded anchored permutation problem.

1st example: 3-bounded anchored permutations
Sequence A249665 in The On-Line Encyclopedia of Integer Sequences [7] has the interpretation ”The number of permuta-
tions p of {1, ..., n} such that p(1) = 1, p(n) = n, and |p(i)−p(i+1)| is in {1, 2, 3} for all i from 1 to n−1.” The encyclopedia gives
the following formula. Let A249665 be denoted by an. Moreover, let a1 = 1, g1 = h1 = 0. For all n < 1, let an = gn = hn = 0.
Then,

an = an−1 + gn−1 + hn−1,

gn = an−2 + an−3 + an−4 − an−6 + gn−2 + gn−4 + hn−2,

hn = 2an−3 + 2an−4 + an−5 − an−7 + gn−3 + gn−5 + hn−3.

The authors in [3], among many valuable arguments, for example, to find the previous system of equalities itself, gave the
solution for the sequence (an) as a linear recurrence of order 8 in the form

an = 2an−1 − an−2 + 2an−3 + an−4 + an−5 − an−7 − an−8.

Their method is based on the generating function technology, and on some specific observations linked to the sequences.
The main advantage of our method is the automatism, and we present it now briefly.

Obviously, there exist matrices A1,A2, . . . ,A7 ∈ R3×3 such that the vector recurrence an
gn
hn

 = A1

 an−1
gn−1
hn−1

+ A2

 an−2
gn−2
hn−2

+ · · ·+ A7

 an−7
gn−7
hn−7


holds. For instance,

A1 =

 1 1 1
0 0 0
0 0 0

 , A2 =

 0 0 0
1 1 1
0 0 0

 , etc.

The matrix M has characteristic polynomial

cM(x) =

∣∣∣∣∣∣
−x7 + x6 x6 x6

x5 + x4 + x3 − x −x7 + x5 + x3 x5

2x4 + 2x3 + x2 − 1 x4 + x2 −x7 + x4

∣∣∣∣∣∣
= −x12(x+ 1)(x8 − 2x7 + x6 − 2x5 − x4 − x3 + x+ 1).

Clearly, the factor −x12 does not count. We focus again on the unique minimal recursion. Both the ”natural” method and
Berlekamp-Massey algorithm provide that it follows from the factor x8 − 2x7 + x6 − 2x5 − x4 − x3 + x+ 1, which coincides
to the result of [3].

Consider a simple graph G with vertex set {1, 2, . . . , n} such that there is an edge between u and v if and only if |u−v| ≤ 3

(see Figure 4.1).
The problem of 3-bounded anchored permutations is equivalent to finding the number of Hamiltonian paths in this

graph from 1 to n. There is an amazing isomorphic spatial illustration of graph G as faces of regular tetrahedrons are
glued consecutively together. This is called the Boerdijk-Coxeter tetrahelix graph given in Figure 4.2.

2nd example: combined Fibonacci sequences
Atanassov et al. wrote a couple of papers on the so-called combined Fibonacci sequences (see [1] and the references therein).
Our method offers a standard procedure to handle problems having similarity to the question of [1].
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a0

a1

a2

a3

a4

a5

a6

a7

an-4

an-3

an-2

an-1

an

Figure 4.2: Boerdijk-Coxeter tetrahelix graph associated with 3-bounded anchored permutation problem.

Figure 4.3: Graph illustration of Atanassov’s combined Fibonacci problem.

Although the example is from [1], here we use our own notation. Let a, b, c, d, e, f be arbitrary real numbers. There are
given two initial vectors and the coefficient matrices

v̄0 =

 2a
b
2c

 , v̄1 =

 2d
e

2f

 , A1 =

 0 1 0
1/2 0 1/2
0 1 0

 , A2 =

 0 0 1
0 1 0
1 0 0

 ,
respectively. Now k = 3, s = 2, and

v̄n = A1v̄n−1 + A2v̄n−2, n ≥ 2. (12)

Note that the original sequence-wise description can be found in [1], where Figure 1 (of [1]) is understandable but not
accurate enough in a graph-theoretical sense. Therefore we enclose Figure 4.3 in order to visualize the connections of the
three sequences. The left-hand side of the figure shows the complete situation. Observe this graph is not connected, it is
a union of two connected planar graphs (see the right side of the figure). (The weight of arrows is 1 apart from the dashed
arrows having weight 1/2. The three colors symbolize the three sequences.)

By Theorem 2.1 we gain

det
(
A2 + xA1 − x2I2

)
=

∣∣∣∣∣∣∣∣∣∣∣

−x2 x 1

1

2
x −x2 + 1

1

2
x

1 x −x2

∣∣∣∣∣∣∣∣∣∣∣
= −(x6 − 2x4 − 2x2 + 1),

which is factorized as −(x2 +1)(x2−x−1)(x2 +x−1). Since the zeros of this polynomial are α = (1+
√

5)/2, β = (1−
√

5)/2,
−α, −β, i, −i therefore we have the formula

ωn = c1α
n + c2β

n + c3(−α)n + c4(−β)n + c5i
n + c6(−i)n, n ≥ 0, (13)

where (ωn) means any of the three component sequences of order six. Here the coefficients ci are unknowns, but we can
find them using the initial values ω0, ω1, . . . , ω5.
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Assume that we deal only with the first component sequence (it is denoted by (αn) in [1]). Beside ω0 = 2a, ω1 = 2d we
determine ω2 = 2c + e, ω3 = b + d + 3f , ω4 = 3a + c + 3e, and ω5 = 3b + 6d + 4f via (12). The system of 6 linear equations
coming from (13) for n = 0, 1, . . . , 5 has the solution

c1 =
1

2
√

5

(
a+ b+ c

α
+ (d+ e+ f)

)
, c2 = − 1

2
√

5

(
a+ b+ c

β
+ (d+ e+ f)

)
,

c3 =
1

2
√

5

(
a− b+ c

α
− (d− e+ f)

)
, c4 = − 1

2
√

5

(
a− b+ c

β
− (d− e+ f)

)
,

c5 =
1

2
((a− c)− (d− f)i) , c6 =

1

2
((a− c) + (d− f)i) .

We now have the explicit form for ωn, but it has a favorable version if we eliminate the coefficients of a, b, . . . , f , respectively.
Here we consider only a, the other cases are left to the reader (for checking, see [1]). In (13), parameter a (via c1, c2, . . . , c6)
has the coefficient

1

2

(
αn−1 − βn−1 + (−1)nαn−1 − (−1)nβn−1

√
5

+ in + (−i)n
)

=
1

2
(Fn−1 + (−1)nFn−1 + in + (−i)n) .

This is zero if n is odd, and Fn−1 ± 1 otherwise. Note that it coincides perfectly with the result provided in [1]. Clearly, we
could find similarly the coefficients of other parameters b, c, . . . , f , too.
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