A note on the products of the terms of linear recurrences

LÁSZLÓ SZALAY

Abstract. For an integer $\nu>1$ let $G^{(i)}(i=1, \ldots, \nu)$ be linear recurrences defined by

$$
G_{n}^{(i)}=A_{1}^{(i)} G_{n-1}^{(i)}+\cdots+A_{k_{i}}^{(i)} G_{n-k_{i}} \quad\left(n \geq k_{i}\right) .
$$

In the paper we show that the equation

$$
d G_{x_{1}}^{(1)} \ldots G_{x_{\nu}}^{(\nu)}=s w^{q},
$$

where d, s, w, q, x_{i} are positive integers satisfying some conditions, implies the inequality $q<q_{0}$ with some effectively computable constant q_{0}. This result generalizes some earlier results of Kiss, Pethő, Shorey and Stewart.

1. Introduction

Let $G^{(i)}=\left\{G_{n}^{(i)}\right\}_{n=0}^{\infty}(i=1,2, \ldots, \nu)$ be linear recurrences of order k_{i} $\left(k_{i} \geq 2\right)$ defined by

$$
\begin{equation*}
G_{n}^{(i)}=A_{1}^{(i)} G_{n-1}^{(i)}+\cdots+A_{k_{i}}^{(i)} G_{n-k_{i}}^{(i)} \quad\left(n \geq k_{i}\right) \tag{1}
\end{equation*}
$$

where the initial values $G_{j}^{(i)}\left(j=0,1, \ldots, k_{i}-1\right)$ and the coefficients $A_{l}^{(i)}$ $\left(l=1,2, \ldots, k_{i}\right)$ of the sequences are rational integers. We suppose, that $A_{k_{i}}^{(i)} \neq 0$ and there is at least one non-zero initial value for any recurrences.

By $\alpha_{1}^{(i)}=\gamma_{i}, \alpha_{2}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)}$ we denote the distinct roots of the characteristic polynomial

$$
p_{i}(x)=x^{k_{i}}-A_{1}^{(i)} x^{k_{i}-1}-\cdots-A_{k_{i}}^{(i)}
$$

of the sequence $G^{(i)}$, and we assume that $t_{i}>1$ and $\left|\gamma_{i}\right|>\left|\alpha_{j}^{(i)}\right|$ for $j>1$. Consequently $\left|\gamma_{i}\right|>1$. Suppose that the multiplicity of the roots γ_{i} are 1 . Then the terms of the sequences $G^{(i)}(i=1,2, \ldots, \nu)$ can be written in the form

$$
\begin{equation*}
G_{n}^{(i)}=a_{i} \gamma_{i}^{n}+p_{2}^{(i)}(n)\left(\alpha_{2}^{(i)}\right)^{n}+\cdots+p_{t_{i}}^{(i)}(n)\left(\alpha_{t_{i}}^{(i)}\right)^{n} \quad(n \geq 0) \tag{2}
\end{equation*}
$$

where $a_{i} \neq 0$ are fixed numbers and $p_{j}^{(i)}\left(j=1,2 \ldots, t_{i}\right)$ are polynomials of

$$
\mathbf{Q}\left(\gamma_{i}, \alpha_{2}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)}\right)[x]
$$

(see e.g. [8]).
A. Pethő $[4,5,6]$, T. N. Shorey and C. L. Stewart [7] showed that a sequence $G\left(=G^{(i)}\right)$ does not contain q-th powers if q is large enough. Similar result was obtained by P. Kiss in [2]. In [3] we investigated the equation

$$
\begin{equation*}
G_{x} H_{y}=w^{q} \tag{3}
\end{equation*}
$$

where G and H are linear recurrences satisfying some condititons, and showed that if x and y are not too far from each other then q is (effectively computable) upper bounded: $q<q_{0}$.

2. Theorem

Now we shall investigate the generalization of equation (3). Let $d \in \mathbf{Z}$ be a fixed non-zero rational integer, and let p_{1}, \ldots, p_{t} be given rational primes. Denote by S the set of all rational integers composed of p_{1}, \ldots, p_{t} :

$$
\begin{equation*}
S=\left\{s \in \mathbf{Z}: s= \pm p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}, e_{i} \in \mathbf{N}\right\} \tag{4}
\end{equation*}
$$

In particular $1 \in S\left(e_{1}=\cdots=e_{t}=0\right)$. Let

$$
\begin{equation*}
\mathcal{G}\left(x_{1}, \ldots, x_{\nu}\right)=G_{x_{1}}^{(1)} \ldots G_{x_{\nu}}^{(\nu)} \tag{5}
\end{equation*}
$$

be a function defined on the set \mathbf{N}^{ν}. By the definitions of the sequences $G^{(i)}$'s \mathcal{G} takes integer values. With a given d let us consider the equation

$$
d \mathcal{G}\left(x_{1}, \ldots, x_{\nu}\right)=s w^{q}
$$

in positive integers $w>1, q, x_{i}(i=1,2, \ldots, \nu)$ and $s \in S$. We will show under some conditions for \mathcal{G} that $q<q_{0}$ is also fulfilled if q satisfies the equation above. Exactly, using the Baker-method, we will prove the following

Theorem. Let $\mathcal{G}\left(x_{1}, \ldots, x_{\nu}\right)$ be the function defined in (5). Futher let $0 \neq d \in \mathbf{Z}$ be a fixed integer, and let δ be a real number with $0<\delta<1$. Assume that $G\left(x_{1}, \ldots, x_{\nu}\right) \neq \prod_{i=1}^{\nu} a_{i} \gamma_{i}^{x_{i}}$ if $x_{i}>n_{0}(i=1,2, \ldots, \nu)$. Then the equation

$$
\begin{equation*}
d \mathcal{G}\left(x_{1}, \ldots, x_{\nu}\right)=s w^{q} \tag{6}
\end{equation*}
$$

in positive integers $w>1, q, x_{1}, \ldots, x_{\nu}$ and $s \in S$ for which $x_{j}>$ $\delta \max _{i}\left\{x_{i}\right\}(j=1,2, \ldots, \nu)$, implies that $q<q_{0}$, where q_{0} is an effectively computable number depending on $n_{0}, \delta, G^{(1)}, \ldots, G^{(\nu)}$.

3. Lemmas

In the proof of our Theorem we need a result due to A. Baker [1].
Lemma 1. Let $\pi_{1}, \pi_{2}, \ldots, \pi_{r}$ be non-zero algebraic numbers of heights not exceeding $M_{1}, M_{2}, \ldots, M_{r}$ respectively ($M_{r} \geq 4$). Further let b_{1}, b_{2}, \ldots, b_{r-1} be rational integers with absolute values at most B and let b_{r} be a non-zero rational integer with absolute value at most $B^{\prime}\left(B^{\prime} \geq 3\right)$. Suppose, that $\sum_{i=1}^{r} b_{i} \log \pi_{i} \neq 0$. Then there exists an effectively computable constant $C=C\left(r, M_{1}, \ldots, M_{r-1}, \pi_{1}, \ldots, \pi_{r}\right)$ such that

$$
\begin{equation*}
\left|\sum_{i=1}^{r} b_{i} \log \pi_{i}\right|>e^{-C\left(\log M_{r} \log B^{\prime}+\frac{B}{B^{\prime}}\right)}, \tag{7}
\end{equation*}
$$

where logarithms have their principal values.
We need the following auxiliary result.
Lemma 2. Let c_{1}, \ldots, c_{k} be positive real numbers and $0<\delta<1$ be an arbitrary real number. Further let x_{1}, \ldots, x_{k} be natural numbers with maximum value $x_{m}=\max _{i}\left\{x_{i}\right\} \quad(m \in\{1, \ldots, k\})$. If $x_{j}>\delta x_{m}(j=$ $1, \ldots, k)$ and $x_{m}>x_{0}$ then there exists a real number $c>0$, which depends on $k, \delta, \max _{i}\left\{c_{i}\right\}$ and x_{0}, for which

$$
\begin{equation*}
\sum_{i=1}^{k} e^{-c_{i} x_{i}}<e^{-c\left(x_{1}+\cdots+x_{k}\right)}=e^{-c x}, \tag{8}
\end{equation*}
$$

where $x=x_{1}+\cdots+x_{k}$.
Proof of Lemma 2. Using the conditions of the lemma we have

$$
\sum_{i=1}^{k} e^{-c_{i} x_{i}}<\sum_{i=1}^{k} e^{-c_{i} \delta x_{m}}=\sum_{i=1}^{k} e^{-d_{i} x_{m}}
$$

where $d_{i}=\delta c_{i}$. If $d_{m}=\min _{i}\left\{d_{i}\right\}$ then

$$
\sum_{i=1}^{k} e^{-d_{i} x_{m}} \leq k e^{-d_{m} x_{m}}=e^{\log k-d_{m} x_{m}}
$$

Since $x_{m} \geq x_{0}$, it follows that

$$
e^{\log k-d_{m} x_{m}} \leq e^{-d_{m}^{\star} x_{m}}=e^{-c k x_{m}} \leq e^{-c x}
$$

with a suitable constant d_{m}^{\star} and $c=\frac{d_{m}^{\star}}{k}$.

4. Proof of the Theorem

By c_{1}, c_{2}, \ldots we denote positive real numbers which are effectively computable. We may assert, without loss of generality, that the terms of the recurrences $G^{(i)}$ are positive, $d>0, s>0$ and the inequality

$$
\begin{equation*}
\left|\gamma_{1}\right| \geq\left|\gamma_{2}\right| \geq \cdots \geq\left|\gamma_{\nu}\right| \tag{9}
\end{equation*}
$$

also holds.
Let us observe that it is sufficient to consider the case $x_{i}>n_{0}(i=$ $1,2, \ldots, \nu)$. Otherwise, if we suppose that some $x_{j} \leq n_{0}(j \in\{1,2, \ldots, \nu\})$ then $x_{m}=\max _{i}\left\{x_{i}\right\}$ cannot be arbitrary large because of the assertion $x_{j}>\delta x_{m}$. It means that we have finitely many possibilities to choose the ν-tuples $\left(x_{1}, \ldots, x_{\nu}\right)$, and the range of $\mathcal{G}\left(x_{1}, \ldots, x_{\nu}\right)$ is finite. So with a fixed d, if inequality (6) is satisfied then q must be bounded.

In the sequel we suppose that $x_{i}>n_{0}(i=1,2, \ldots, \nu)$. Let x_{1}, \ldots, x_{ν}, w, q and $s \in S$ be integers satisfying (6). We may assume that if

$$
\begin{equation*}
s=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}} \tag{10}
\end{equation*}
$$

then $e_{j}<q$, else a part of s can be joined to w^{q}. Using (2), from (6) we have

$$
\begin{equation*}
s w^{q}=d \prod_{i=1}^{\nu} a_{i}\left(\gamma_{i}\right)^{x_{i}}\left(1+\frac{p_{2}^{(i)}\left(x_{i}\right)}{a_{i}}\left(\frac{\alpha_{2}^{(i)}}{\gamma_{i}}\right)^{x_{i}}+\cdots\right) . \tag{11}
\end{equation*}
$$

A consequence of the assumptions $\left|\gamma_{i}\right|>\left|\alpha_{j}^{(i)}\right|\left(1<j \leq t_{i}\right)$ is that

$$
\begin{equation*}
\left(1+\frac{p_{2}^{(i)}\left(x_{i}\right)}{a_{i}}\left(\frac{\alpha_{2}^{(i)}}{\gamma_{i}}\right)^{x_{i}}+\cdots\right) \longrightarrow 1 \quad \text { whenever } \quad x_{i} \longrightarrow \infty . \tag{12}
\end{equation*}
$$

Hence there exist real constants $0<\varepsilon_{1}, \ldots, \varepsilon_{\nu}<1$ such that

$$
d \prod_{i=1}^{\nu}\left|a_{i}\right|\left|\gamma_{i}\right|^{x_{i}}\left(1-\varepsilon_{i}\right)<s w^{q}<d \prod_{i=1}^{\nu}\left|a_{i}\right|\left|\gamma_{i}\right|^{x_{i}}\left(1+\varepsilon_{i}\right)
$$

and

$$
c_{1} \prod_{i=1}^{\nu}\left|\gamma_{i}\right|^{x_{i}}<s w^{q}<c_{2} \prod_{i=1}^{\nu}\left|\gamma_{i}\right|^{x_{i}}
$$

As before, let $x=x_{1}+\cdots+x_{\nu}$ and applying (9) we may write

$$
\log c_{1}+x \log \left|\gamma_{\nu}\right|<\log s+q \log w<\log c_{2}+x \log \left|\gamma_{1}\right|
$$

Since $\log s \geq 0$, we have

$$
\begin{equation*}
\log c_{3}+x \log \left|\gamma_{\nu}\right|<q \log w<\log c_{2}+x \log \left|\gamma_{1}\right| \tag{13}
\end{equation*}
$$

with $c_{3}=\frac{c_{1}}{s}$. From (13) it follows that

$$
\begin{equation*}
c_{4} \frac{x}{q}<\log w<c_{5} \frac{x}{q} \tag{14}
\end{equation*}
$$

with some positive constants c_{4}, c_{5}. Ordering the equality (11) and taking logarithms, by the definition of ε_{i} we obtain

$$
\begin{gathered}
Q=\left|\log \frac{s w^{q}}{d \prod_{i=1}^{\nu}\left|a_{i}\right|\left|\gamma_{i}\right|^{x_{i}}}\right|=\left|\log \prod_{i=1}^{\nu}\right| 1+\frac{p_{2}^{(i)}\left(x_{i}\right)}{a_{i}}\left(\frac{\alpha_{2}^{(i)}}{\gamma_{i}}\right)^{x_{i}}+\cdots| |< \\
<\sum_{i=1}^{\nu} \log \left|1+\varepsilon_{i}\right| \leq \sum_{i=1}^{\nu} e^{-c_{i}^{\star} x_{i}}
\end{gathered}
$$

where $Q \neq 0$ if we assume, that $x_{i}>n_{0}$ for every $i=1,2, \ldots, \nu$, and c_{i}^{\star} is a suitable positive constant $(i=1,2, \ldots, \nu)$. Applying Lemma 2 and using the notation $x=x_{1}+\cdots+x_{\nu}$, it yields that

$$
\begin{equation*}
Q<e^{-c_{6}\left(x_{1}+\cdots+x_{\nu}\right)}=e^{-c_{6} x} \tag{15}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
Q=\left|\log s+q \log w-\log d-\log \prod_{i=1}^{\nu}\right| a_{i}\left|-x_{1} \log \right| \gamma_{1}\left|-\cdots-x_{\nu} \log \right| \gamma_{\nu}| | \tag{16}
\end{equation*}
$$

where $\log s=e_{1} \log p_{1}+\cdots+e_{t} \log p_{t}($ see $(10))$. Now we may use Lemma 1 with $\pi_{r}=w=M_{r}$, since the ordinary heights of $p_{j}(j=1,2, \ldots, t), d$, $\prod_{i=1}^{\nu}\left|a_{i}\right|$ and $\left|\gamma_{i}\right|(i=1,2, \ldots, \nu)$ are constants. So $B^{\prime}=q$. In comparison
the absolute values of the integer coefficients of the logarithms in (16), we can choose B as $B=x$. So by (16) and Lemma 1 it follows that

$$
\begin{equation*}
Q>e^{-c_{7}\left(\log w \log q+\frac{x}{q}\right)} \tag{17}
\end{equation*}
$$

Combining (15) and (17) it yields the following inequality:

$$
\begin{equation*}
c_{6} x<c_{7}\left(\log w \log q+\frac{x}{q}\right) \tag{18}
\end{equation*}
$$

and by (14) it follows that

$$
\begin{equation*}
c_{6} x<c_{7}\left(\log w \log q+\frac{1}{c_{4}} \log w\right)<c_{8} \log w \log q \tag{19}
\end{equation*}
$$

with some $c_{8}>0$. Applying (14) again, we conclude that $\frac{1}{c_{5}} q \log w<x$ and so by (19)

$$
\begin{equation*}
c_{9} q<\log q \tag{20}
\end{equation*}
$$

follows. But (20) implies that $q<q_{0}$, which proves the theorem.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II., Acta Arith. 24 (1973), 33-36.
[2] P. Kiss, Pure powers and power classes in the recurrence sequences, Math. Slovaca 44 (1994), No. 5, 525-529.
[3] K. Liptai, L. Szalay, On products of the terms of linear recurrences, to appear.
[4] A. Pethõ, Perfect powers in second order linear recurrences, J. Num. Theory 15 (1982), 5-13.
[5] A. Pethö, Perfect powers in second order linear recurrences, Topics in Classical Number Theory, Proceedings of the Conference in Budapest 1981, Colloq. Math. Soc. János Bolyai 34, North Holland, Amsterdam, 1217-1227.
[6] A. Pethó, On the solution of the diophantine equation $G_{n}=p^{z}$, Proceedings of EUROCAL '85, Linz, Lecture Notes in Computer Science 204, Springer-Verlag, Berlin, 503-512.
[7] T. N. Shorey, C. L. Stewart, On the Diophantine equation $a x^{2 t}+b x^{t} y+$ $c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand. 52 (1987), 324-352.
[8] T. N. Shorey, R. Tijdeman, Exponential diophantine equations, Cambridge, 1986.

László Szalay
University of Sopron
Institute of Mathematics
Sopron, Ady u. 5.
H-9400, Hungary
E-mail: laszalay@efe.hu

