A note on the products of the terms of linear recurrences

LÁSZLÓ SZALAY

Abstract. For an integer $\nu > 1$ let $G^{(i)}$ $(i=1,...,\nu)$ be linear recurrences defined by

$$G_n^{(i)} = A_1^{(i)} G_{n-1}^{(i)} + \dots + A_{k_i}^{(i)} G_{n-k_i} \quad (n \ge k_i).$$

In the paper we show that the equation

$$dG_{x_1}^{(1)} \cdots G_{x_\nu}^{(\nu)} = sw^q,$$

where d, s, w, q, x_i are positive integers satisfying some conditions, implies the inequality $q < q_0$ with some effectively computable constant q_0 . This result generalizes some earlier results of Kiss, Pethő, Shorey and Stewart.

1. Introduction

Let $G^{(i)} = \{G_n^{(i)}\}_{n=0}^{\infty}$ $(i = 1, 2, ..., \nu)$ be linear recurrences of order k_i $(k_i \ge 2)$ defined by

(1)
$$G_n^{(i)} = A_1^{(i)} G_{n-1}^{(i)} + \dots + A_{k_i}^{(i)} G_{n-k_i}^{(i)} \quad (n \ge k_i),$$

where the initial values $G_j^{(i)}$ $(j = 0, 1, ..., k_i - 1)$ and the coefficients $A_l^{(i)}$ $(l = 1, 2, ..., k_i)$ of the sequences are rational integers. We suppose, that $A_{k_i}^{(i)} \neq 0$ and there is at least one non-zero initial value for any recurrences.

By $\alpha_1^{(i)} = \gamma_i, \alpha_2^{(i)}, \dots, \alpha_{t_i}^{(i)}$ we denote the distinct roots of the characteristic polynomial

$$p_i(x) = x^{k_i} - A_1^{(i)} x^{k_i - 1} - \dots - A_{k_i}^{(i)}$$

of the sequence $G^{(i)}$, and we assume that $t_i > 1$ and $|\gamma_i| > |\alpha_j^{(i)}|$ for j > 1. Consequently $|\gamma_i| > 1$. Suppose that the multiplicity of the roots γ_i are 1. Then the terms of the sequences $G^{(i)}$ $(i = 1, 2, ..., \nu)$ can be written in the form

(2)
$$G_n^{(i)} = a_i \gamma_i^n + p_2^{(i)}(n) \left(\alpha_2^{(i)}\right)^n + \dots + p_{t_i}^{(i)}(n) \left(\alpha_{t_i}^{(i)}\right)^n \quad (n \ge 0),$$

where $a_i \neq 0$ are fixed numbers and $p_j^{(i)}$ $(j = 1, 2..., t_i)$ are polynomials of

$$\mathbf{Q}(\gamma_i, \alpha_2^{(i)}, \dots, \alpha_{t_i}^{(i)})[x]$$

(see e.g. [8]).

A. Pethő [4,5,6], T. N. Shorey and C. L. Stewart [7] showed that a sequence $G(=G^{(i)})$ does not contain q-th powers if q is large enough. Similar result was obtained by P. Kiss in [2]. In [3] we investigated the equation

(3)
$$G_x H_y = w^q$$

where G and H are linear recurrences satisfying some conditions, and showed that if x and y are not too far from each other then q is (effectively computable) upper bounded: $q < q_0$.

2. Theorem

Now we shall investigate the generalization of equation (3). Let $d \in \mathbf{Z}$ be a fixed non-zero rational integer, and let p_1, \ldots, p_t be given rational primes. Denote by S the set of all rational integers composed of p_1, \ldots, p_t :

(4)
$$S = \{ s \in \mathbf{Z} : s = \pm p_1^{e_1} \cdots p_t^{e_t}, \ e_i \in \mathbf{N} \}.$$

In particular $1 \in S$ $(e_1 = \cdots = e_t = 0)$. Let

(5)
$$\mathcal{G}(x_1, \dots, x_{\nu}) = G_{x_1}^{(1)} \dots G_{x_{\nu}}^{(\nu)}$$

be a function defined on the set \mathbf{N}^{ν} . By the definitions of the sequences $G^{(i)}$'s \mathcal{G} takes integer values. With a given d let us consider the equation

$$d\mathcal{G}(x_1,\ldots,x_\nu)=sw^q$$

in positive integers w > 1, q, x_i $(i = 1, 2, ..., \nu)$ and $s \in S$. We will show under some conditions for \mathcal{G} that $q < q_0$ is also fulfilled if q satisfies the equation above. Exactly, using the Baker-method, we will prove the following

Theorem. Let $\mathcal{G}(x_1, \ldots, x_{\nu})$ be the function defined in (5). Further let $0 \neq d \in \mathbb{Z}$ be a fixed integer, and let δ be a real number with $0 < \delta < 1$. Assume that $G(x_1, \ldots, x_{\nu}) \neq \prod_{i=1}^{\nu} a_i \gamma_i^{x_i}$ if $x_i > n_0$ $(i = 1, 2, \ldots, \nu)$. Then the equation

(6)
$$d\mathcal{G}(x_1,\ldots,x_\nu) = sw^q$$

in positive integers w > 1, q, x_1, \ldots, x_{ν} and $s \in S$ for which $x_j > \delta \max_i \{x_i\}$ $(j = 1, 2, \ldots, \nu)$, implies that $q < q_0$, where q_0 is an effectively computable number depending on $n_0, \delta, G^{(1)}, \ldots, G^{(\nu)}$.

3. Lemmas

In the proof of our Theorem we need a result due to A. Baker [1].

Lemma 1. Let $\pi_1, \pi_2, \ldots, \pi_r$ be non-zero algebraic numbers of heights not exceeding M_1, M_2, \ldots, M_r respectively $(M_r \ge 4)$. Further let $b_1, b_2, \ldots, b_{r-1}$ be rational integers with absolute values at most B and let b_r be a non-zero rational integer with absolute value at most B' $(B' \ge 3)$. Suppose, that $\sum_{i=1}^r b_i \log \pi_i \neq 0$. Then there exists an effectively computable constant $C = C(r, M_1, \ldots, M_{r-1}, \pi_1, \ldots, \pi_r)$ such that

(7)
$$\left|\sum_{i=1}^{r} b_i \log \pi_i\right| > e^{-C\left(\log M_r \log B' + \frac{B}{B'}\right)},$$

where logarithms have their principal values.

We need the following auxiliary result.

Lemma 2. Let c_1, \ldots, c_k be positive real numbers and $0 < \delta < 1$ be an arbitrary real number. Further let x_1, \ldots, x_k be natural numbers with maximum value $x_m = \max_i \{x_i\}$ $(m \in \{1, \ldots, k\})$. If $x_j > \delta x_m$ $(j = 1, \ldots, k)$ and $x_m > x_0$ then there exists a real number c > 0, which depends on $k, \delta, \max_i \{c_i\}$ and x_0 , for which

(8)
$$\sum_{i=1}^{k} e^{-c_i x_i} < e^{-c(x_1 + \dots + x_k)} = e^{-cx},$$

where $x = x_1 + \cdots + x_k$.

Proof of Lemma 2. Using the conditions of the lemma we have

$$\sum_{i=1}^{k} e^{-c_i x_i} < \sum_{i=1}^{k} e^{-c_i \delta x_m} = \sum_{i=1}^{k} e^{-d_i x_m},$$

where $d_i = \delta c_i$. If $d_m = \min_i \{d_i\}$ then

$$\sum_{i=1}^{k} e^{-d_i x_m} \le k e^{-d_m x_m} = e^{\log k - d_m x_m}.$$

Since $x_m \ge x_0$, it follows that

 $e^{\log k - d_m x_m} \le e^{-d_m^* x_m} = e^{-ckx_m} \le e^{-cx}$

with a suitable constant d_m^{\star} and $c = \frac{d_m^{\star}}{k}$.

4. Proof of the Theorem

By c_1, c_2, \ldots we denote positive real numbers which are effectively computable. We may assert, without loss of generality, that the terms of the recurrences $G^{(i)}$ are positive, d > 0, s > 0 and the inequality

(9)
$$|\gamma_1| \ge |\gamma_2| \ge \dots \ge |\gamma_\nu|$$

also holds.

Let us observe that it is sufficient to consider the case $x_i > n_0$ $(i = 1, 2, ..., \nu)$. Otherwise, if we suppose that some $x_j \leq n_0$ $(j \in \{1, 2, ..., \nu\})$ then $x_m = \max_i \{x_i\}$ cannot be arbitrary large because of the assertion $x_j > \delta x_m$. It means that we have finitely many possibilities to choose the ν -tuples (x_1, \ldots, x_{ν}) , and the range of $\mathcal{G}(x_1, \ldots, x_{\nu})$ is finite. So with a fixed d, if inequality (6) is satisfied then q must be bounded.

In the sequel we suppose that $x_i > n_0$ $(i = 1, 2, ..., \nu)$. Let $x_1, ..., x_{\nu}$, w, q and $s \in S$ be integers satisfying (6). We may assume that if

$$(10) s = p_1^{e_1} \cdots p_t^{e_t}$$

then $e_j < q$, else a part of s can be joined to w^q . Using (2), from (6) we have

(11)
$$sw^{q} = d\prod_{i=1}^{\nu} a_{i} (\gamma_{i})^{x_{i}} \left(1 + \frac{p_{2}^{(i)}(x_{i})}{a_{i}} \left(\frac{\alpha_{2}^{(i)}}{\gamma_{i}}\right)^{x_{i}} + \cdots\right).$$

A consequence of the assumptions $|\gamma_i| > |\alpha_j^{(i)}|$ $(1 < j \le t_i)$ is that

(12)
$$\left(1 + \frac{p_2^{(i)}(x_i)}{a_i} \left(\frac{\alpha_2^{(i)}}{\gamma_i}\right)^{x_i} + \cdots\right) \longrightarrow 1 \text{ whenever } x_i \longrightarrow \infty.$$

Hence there exist real constants $0 < \varepsilon_1, \ldots, \varepsilon_{\nu} < 1$ such that

$$d\prod_{i=1}^{\nu} |a_i| |\gamma_i|^{x_i} (1-\varepsilon_i) < sw^q < d\prod_{i=1}^{\nu} |a_i| |\gamma_i|^{x_i} (1+\varepsilon_i),$$

and

$$c_1 \prod_{i=1}^{\nu} |\gamma_i|^{x_i} < sw^q < c_2 \prod_{i=1}^{\nu} |\gamma_i|^{x_i}$$

As before, let $x = x_1 + \cdots + x_{\nu}$ and applying (9) we may write

$$\log c_1 + x \log |\gamma_\nu| < \log s + q \log w < \log c_2 + x \log |\gamma_1|.$$

Since $\log s \ge 0$, we have

(13)
$$\log c_3 + x \log |\gamma_{\nu}| < q \log w < \log c_2 + x \log |\gamma_1|$$

with $c_3 = \frac{c_1}{s}$. From (13) it follows that

(14)
$$c_4 \frac{x}{q} < \log w < c_5 \frac{x}{q}$$

with some positive constants c_4 , c_5 . Ordering the equality (11) and taking logarithms, by the definition of ε_i we obtain

$$Q = \left| \log \frac{sw^{q}}{d \prod_{i=1}^{\nu} |a_{i}| |\gamma_{i}|^{x_{i}}} \right| = \left| \log \prod_{i=1}^{\nu} \left| 1 + \frac{p_{2}^{(i)}(x_{i})}{a_{i}} \left(\frac{\alpha_{2}^{(i)}}{\gamma_{i}} \right)^{x_{i}} + \cdots \right| \right| < \sum_{i=1}^{\nu} \log |1 + \varepsilon_{i}| \le \sum_{i=1}^{\nu} e^{-c_{i}^{\star} x_{i}},$$

where $Q \neq 0$ if we assume, that $x_i > n_0$ for every $i = 1, 2, ..., \nu$, and c_i^* is a suitable positive constant $(i = 1, 2, ..., \nu)$. Applying Lemma 2 and using the notation $x = x_1 + \cdots + x_{\nu}$, it yields that

(15)
$$Q < e^{-c_6(x_1 + \dots + x_\nu)} = e^{-c_6 x}.$$

On the other hand

(16)
$$Q = \left| \log s + q \log w - \log d - \log \prod_{i=1}^{\nu} |a_i| - x_1 \log |\gamma_1| - \dots - x_{\nu} \log |\gamma_{\nu}| \right|,$$

where $\log s = e_1 \log p_1 + \cdots + e_t \log p_t$ (see (10)). Now we may use Lemma 1 with $\pi_r = w = M_r$, since the ordinary heights of p_j $(j = 1, 2, \ldots, t)$, d, $\prod_{i=1}^{\nu} |a_i|$ and $|\gamma_i|$ $(i = 1, 2, \ldots, \nu)$ are constants. So B' = q. In comparison

the absolute values of the integer coefficients of the logarithms in (16), we can choose B as B = x. So by (16) and Lemma 1 it follows that

(17)
$$Q > e^{-c_7 \left(\log w \log q + \frac{x}{q}\right)}.$$

Combining (15) and (17) it yields the following inequality:

(18)
$$c_6 x < c_7 \left(\log w \log q + \frac{x}{q} \right),$$

and by (14) it follows that

(19)
$$c_6 x < c_7 \left(\log w \log q + \frac{1}{c_4} \log w \right) < c_8 \log w \log q$$

with some $c_8 > 0$. Applying (14) again, we conclude that $\frac{1}{c_5}q \log w < x$ and so by (19)

(20)
$$c_9 q < \log q$$

follows. But (20) implies that $q < q_0$, which proves the theorem.

References

- A. BAKER, A sharpening of the bounds for linear forms in logarithms II., Acta Arith. 24 (1973), 33–36.
- [2] P. Kiss, Pure powers and power classes in the recurrence sequences, Math. Slovaca 44 (1994), No. 5, 525–529.
- [3] K. LIPTAI, L. SZALAY, On products of the terms of linear recurrences, to appear.
- [4] A. PETHŐ, Perfect powers in second order linear recurrences, J. Num. Theory 15 (1982), 5–13.
- [5] A. PETHŌ, Perfect powers in second order linear recurrences, Topics in Classical Number Theory, Proceedings of the Conference in Budapest 1981, Colloq. Math. Soc. János Bolyai 34, North Holland, Amsterdam, 1217–1227.

- [6] A. PETHŐ, On the solution of the diophantine equation $G_n = p^z$, Proceedings of EUROCAL '85, Linz, Lecture Notes in Computer Science **204**, Springer-Verlag, Berlin, 503–512.
- [7] T. N. SHOREY, C. L. STEWART, On the Diophantine equation $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrence sequences, *Math. Scand.* **52** (1987), 324–352.
- [8] T. N. SHOREY, R. TIJDEMAN, Exponential diophantine equations, Cambridge, 1986.

László Szalay University of Sopron Institute of Mathematics Sopron, Ady u. 5. H-9400, Hungary E-mail: laszalay@efe.hu