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Universidad Nacional Autonoma de México, Mexico and University of West
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Abstract. In this paper, we show that there are no three distinct
positive integers a, b, c such that ab + 1, ac + 1, bc + 1 are all three
Fibonacci numbers.

1. Introduction

A Diophantine m-tuple is a set of {a1, . . . , am} of positive rational num-
bers or integers such that aiaj+1 is a square for all 1 ≤ i < j ≤ m. Diophantus
found the rational quadruple {1/16, 33/16, 17/4, 105/16}, while Fermat found
the integer quadruple {1, 3, 8, 120}. Infinitely many Diophantine quadruples
of integers are known and it is conjectured that there is no Diophantine quin-
tuples. This was almost proved by Dujella [5], who showed that there can
be at most finitely many Diophantine quintuples and all of them are, at least
in theory, effectively computable. In the rational case, it is not known that
the size m of the Diophantine m-tuples must be bounded and a few examples
with m = 6 are known by the work of Gibbs [8]. We also note that some
generalization of this problem for squares replaced by higher powers (of fixed,
or variable exponents) were treated by many authors (see [1, 2, 9, 13] and
[10]).

In the paper [7], the following variant of this problem was treated. Let
r and s be nonzero integers such that ∆ = r2 + 4s 6= 0. Let (un)n≥0 be a
binary recurrence sequence of integers satisfying the recurrence

un+2 = run+1 + sun for all n ≥ 0.
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It is well-known that if we write α and β for the two roots of the characteristic
equation x2 − rx − s = 0, then there exist constants γ, δ ∈ K = Q[α] such
that

(1.1) un = γαn + δβn holds for all n ≥ 0.

Assume further that the sequence (un)n≥0 is nondegenerate, which means that
γδ 6= 0 and α/β is not root of unity. We shall also make the convention that
|α| ≥ |β|.

A Diophantine triple with values in the set U = {un : n ≥ 0} is a set of
three distinct positive integers {a, b, c} such that ab + 1, ac + 1, bc + 1 are
all in U . Note that if un = 2n + 1 for all n ≥ 0, then there are infinitely
many such triples (namely, take a, b, c to be any distinct powers of two).
The main result in [7] shows that the above example is representative for
the sequences (un)n≥0 with real roots for which there exist infinitely many
Diophantine triples with values in U . The precise result proved there is the
following.

Theorem 1.1. Assume that (un)n≥0 is a nondegenerate binary recur-
rence sequence with ∆ > 0 such that there exist infinitely many sextuples of
nonnegative integers (a, b, c; x, y, z) with 1 ≤ a < b < c such that

(1.2) ab + 1 = ux, ac + 1 = uy, bc + 1 = uz.

Then β ∈ {±1}, δ ∈ {±1}, α, γ ∈ Z. Furthermore, for all but finitely many
of the sextuples (a, b, c; x, y, z) as above one has δβz = δβy = 1 and one of the
following holds:

(i) δβx = 1. In this case, one of δ or δα is a perfect square;
(ii) δβx = −1. In this case, x ∈ {0, 1}.
No finiteness result was proved for the case when ∆ < 0. The case

δβz = 1 is not hard to handle. When δβz 6= 1, results from Diophantine
approximations relying on the Subspace Theorem, as well as on the finiteness
of the number of solutions of nondegenerate unit equations with variables in
a finitely generated multiplicative group and bounds for the greatest common
divisor of values of rational functions at units points in the number fields set-
ting, allow one to reduce the problem to elementary considerations concerning
polynomials.

The Fibonacci sequence (Fn)n≥0 is the binary recurrent sequence given

by (r, s) = (1, 1), F0 = 0 and F1 = 1. It has α = (1 +
√

5)/2 and β =

(1 −
√

5)/2. According to Theorem 1.1, there should be only finitely many
triples of distinct positive integers {a, b, c} such that ab+1, ac+1, bc+1 are
all three Fibonacci numbers. Our main result here is that in fact there are no
such triples.

Theorem 1.2. There do not exist positive integers a < b < c such that

(1.3) ab + 1 = Fx, ac + 1 = Fy, bc + 1 = Fz ,
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where x < y < z are positive integers.

Let us remark that since the values n = 1, 2, 3 and 5 are the only positive
integers n such that Fn = k2 + 1 holds with some suitable integer k (see [6]),
it follows from Theorem 1.2 that all the solutions of equation (2.1) under the
more relaxed condition 0 < a ≤ b ≤ c are

(a, b, c; x, y, z) =

{

(1, 1, Ft − 1; 3, t, t), t ≥ 3;
(2, 2, (Ft − 1)/2; 5, t, t), t ≥ 4, t 6≡ 0 (mod 3);

Note also that there are at least two rational solutions 0 < a < b < c, namely

(a, b, c; x, y, z) = (2/3, 3, 18; 4, 7, 10) , (9/2, 22/3, 12; 9, 10, 11) .

It would be interesting to decide whether equation (1.3) has only finitely many
rational solutions (a, b, c; x, y, z) with 0 < a < b < c, and in the affirmative
case whether the above two are the only ones.

2. Proof of Theorem 1.2

2.1. Preliminary results. In the sequel, we suppose that 1 ≤ a < b < c and
4 ≤ x < y < z. We write (Ln)n≥0 for the companion sequence of the Fibonacci
numbers given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. It
is well-known (see, for example, Ron Knott’s excellent web-site on Fibonacci
numbers [11], or Koshy’s monograph [12]), that the formulae

Fn =
αn − βn

α − β
and Ln = αn + βn

hold for all n ≥ 0, where α = (1 +
√

5)/2 and β = (1 −
√

5)/2.
We shall need the following statements.

Lemma 2.1. The following divisibilities hold:

(i) gcd(Fu, Fv) = Fgcd(u,v);

(ii) gcd(Lu, Lv) =

{

Lgcd(u,v), if u
gcd(u,v) ≡ v

gcd(u,v) ≡ 1 (mod 2);

1 or 2, otherwise;

(iii) gcd(Fu, Lv) =

{

Lgcd(u,v), if u
gcd(u,v) 6≡ v

gcd(u,v) ≡ 1 (mod 2);

1 or 2, otherwise.

Proof. This is well-known (see, for instance [3, proof of Theorem VII.]).

Lemma 2.2. The following formulae hold:

Fu − 1 =



















Fu−1

2

L u+1

2

, if u ≡ 1 (mod 4);

Fu+1

2

L u−1

2

, if u ≡ 3 (mod 4);

Fu−2

2

L u+2

2

, if u ≡ 2 (mod 4);

Fu+2

2

L u−2

2

, if u ≡ 0 (mod 4).

Proof. This too is well-known (see, for example [14, Lemma 2]).
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Lemma 2.3. Let u0 be a positive integer. Put

εi = logα

(

1 + (−1)i−1

( |β|
α

)u0
)

, δi = logα





1 + (−1)i−1
(

|β|
α

)u0

√
5





for i = 1, 2, respectively. Here, logα is the logarithm in base α. Then for all
integers u ≥ u0, the two inequalities

(2.1) αu+ε2 ≤ Lu ≤ αu+ε1

and

(2.2) αu+δ2 ≤ Fu ≤ αu+δ1

hold.

Proof. Let c0 = 1, or
√

5, according to whether un = Ln or un = Fn,
respectively. Obviously,

Lu

Fu

}

≤ αu + |β|u0

c0
≤

αu
(

1 + |β|u0

αu

)

c0
≤ αu





1 +
(

|β|
α

)u0

c0



 ,

which proves the upper bounds from the formulae (2.1) and (2.2), respectively.
Similarly,

Lu

Fu

}

≥ αu − |β|u0

c0
≥

αu
(

1 − |β|u0

αu

)

c0
≥ αu





1 −
(

|β|
α

)u0

c0





lead to the lower bounds from the formulae (2.1) and (2.2), respectively.

Lemma 2.4. Suppose that a > 0 and b ≥ 0 are real numbers, and that u0

is a positive integer. Then for all integers u ≥ u0, the inequality

aαu + b ≤ αu+κ

holds, where κ = logα

(

a + b
αu0

)

.

Proof. This is obvious.

Lemma 2.5. Assume that a, b, z are integers. Furthermore, suppose that
all the expressions appearing inside the gcd’s below are also integers. Then
the following hold:

(i) If a 6= b, then gcd
(

z+a
2 , z+b

4

)

≤
∣

∣

a−b
2

∣

∣. Otherwise, gcd
(

z+a
2 , z+b

4

)

=
z+b
4 ;

(ii) If 3a 6= b, then gcd
(

z+a
2 , 3z+b

8

)

≤
∣

∣

3a−b
2

∣

∣. Otherwise, gcd
(

z+a
2 , 3z+b

8

)

= z+a
8 .

Proof. This is an easy application of the Euclidean algorithm.

Lemma 2.6. Assume that z ≥ 8 is an integer. Then the following hold:
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(i) If z is odd, then L z−1

2

<
√

2Fz;

(ii) If z is even, then L z−2

2

<
√

Fz.

Proof. For (i), note that

L2
z−1

2

= Lz−1 + 2(−1)z−1 ≤ Lz−1 + 2 = Fz−2 + Fz + 2,

and the right hand side above is easily seen to be smaller than 2Fz when
z ≥ 8. For (ii), we similarly have

L2
z−2

2

≤ Lz−2 + 2 = Fz−3 + Fz−1 + 2 < Fz,

where the last inequality is equivalent to Fz−3 +2 < Fz−2, or 2 < Fz−4, which
is fulfilled for z ≥ 8.

Lemma 2.7. All positive integer solutions of the system (1.3) satisfy z ≤
2y.

Proof. The last two equations of system (1.3) imply that c divides both
Fy − 1 and Fz − 1. Consequently,

(2.3) c | gcd(Fy − 1, Fz − 1).

Obviously, Fz = bc + 1 < c2; hence,
√

Fz < c. From (2.3), we obtain
√

Fz <
Fy. Clearly,

(2.4)

√

αz − 1√
5

<
√

Fz < Fy <
αy + 1√

5
.

Since y ≥ 5 entails αy + 1 < 4
√

5 αy, we get αz − 1 < α2y , which easily leads
to the conclusion that 2y ≥ z.

2.2. The Proof of Theorem 1.2. By Lemma 2.7, we have

(2.5)
√

Fz < gcd(Fz − 1, Fy − 1).

Applying Lemma 2.2, we obtain

(2.6) gcd(Fz − 1, Fy − 1) = gcd
(

F z−i
2

L z+i
2

, F y−j

2

L y+j

2

)

≤

≤ gcd
(

F z−i
2

, F y−j

2

)

gcd
(

F z−i
2

, L y+j

2

)

gcd
(

L z+i
2

, F y−j

2

)

gcd
(

L z+i
2

, L y+j

2

)

,

where i, j ∈ {±1,±2}. The values i and j depend on the residue classes of z
and y modulo 4, respectively. In what follows, we let d1, d2, d3 and d4 denote
suitable positive integers which will be defined shortly.

Lemma 2.1 yields

(2.7) m1 = Fgcd( z−i
2

,
y−j

2 ) = F z−i
2d1

.

The second factor m2 on the right hand of (2.6) can be 1, 2, or

(2.8) m2 = Lgcd( z−i
2

, y+j
2 ) = L z−i

2d2

.
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The third factor m3 is again 1, 2, or

(2.9) m3 = Lgcd( z+i
2

,
y−j

2 ) = L z+i
2d3

.

Finally, if the fourth factor m4 is neither 1 nor 2, then

(2.10) m4 = Lgcd( z+i
2

,
y+j

2 ) = L z+i
2d4

.

We now distinguish two cases.

Case 1. z ≤ 150.
In this case, we ran an exhaustive computer search to detect all positive

integer solutions of system (1.3). Observe that we have

a =

√

(Fx − 1)(Fy − 1)

Fz − 1
, 4 ≤ x < y < z ≤ 150.

Going through all the eligible values for x, y and z, and checking if the above
number a is an integer, we found no solution to system (1.3).

Case 2. z > 150.
In this case, Lemma 2.3 gives −2 < δ1 for Fz . Hence, α

z−2

2 <
√

Fz . If
dk ≥ 5 holds for all k = 1, 2, 3, 4, then the subscripts z±i

2dk
of the Fibonacci

and Lucas numbers appearing in (2.7)–(2.10) are at most z±i
10 each. Lemma

2.3 now gives that ε2 < 0.5 and δ2 < −1 hold for L z±i
10

and F z−i
10

, respectively,

because z±i
10 > 14. Now formulae (2.5)–(2.10) lead to

(2.11) α
z−2

2 <
√

Fz < α( z−i
10

−1)+( z−i
10

+0.5)+( z+i
10

+0.5)+( z+i
10

+0.5),

which implies that

z − 2

2
<

2z

5
+ 0.5,

contradicting the fact that z > 150.

From now on, we analyze those cases when at least one of the numbers
dk for k = 1, 2, 3, 4, which we will denote by d, is less than five.

First assume that d = 4. Then either z+η1i
8 = y+η2j

2 , or z+η1i
8 = y+η2j

6 ,
where η1, η2 ∈ {±1}.

If the first equality holds, then Lemma 2.7 leads to z = 4y + 4η2j − η1i ≤
2y. Thus, z ≤ 2y ≤ η1i − 4η2j ≤ 10, contradicting the fact that z > 150.

The second equality leads to y = 3z+3η1i−4η2j
4 . In this case,

(2.12)
y + η′

2j

2
=

3z + 3η1i + tj

8
,
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where t = 4(η′
2 − η2) ∈ {±8, 0} for η′

2 ∈ {±1}. Applying Lemma 2.5, we get

gcd

(

z + η′
1i

2
,
y + η′

2j

2

)

= gcd

(

z + η′
1i

2
,
3z + 3η1i + tj

8

)

≤
∣

∣

∣

∣

3(η′
1 − η1)i − tj

2

∣

∣

∣

∣

≤ 14,(2.13)

for all (η′
1, η

′
2) 6= (η1, η2) ∈ {±1}2. For the last inequality above, we used

Lemma 2.5 together with the fact that 3(η′
1 − η1) − tj 6= 0. Indeed, if 3(η1 −

η′
1) − tj = 0, then 3 | tj, and since t ∈ {±8, 0}, j ∈ {±1,±2}, we get that

t = 0, therefore η2 = η′
2. Since also 3(η1 − η′

1) = tj = 0, we get η1 = η′
1,

therefore (η′
1, η

′
2) = (η1, η2), which is not allowed.

Continuing with the case d = 4, since F14 < L14 = 843 and z±i
8 > 18, we

get that ε2 < 0.25 and δ2 < 0.25, where these values correspond to L z±i
8

and

F z±i
8

, respectively. It now follows that

α
z−2

2 < α
z±i
8

+0.25 L3
14 ≤ 8433α

z+2

8
+0.25.

Thus, z < 4 + 8 logα 843 < 116, which completes the analysis for this case.

Consider now the case d = 3. The only possibility is z+η1i
6 = y+η2j

2 for
some η1, η2 ∈ {±1}. Together with Lemma 2.7, we get z = 3y + 3η2j − η1i ≤
2y. Consequently, z

2 ≤ y ≤ η1i − 3η2j ≤ 8, which is impossible.

Assume next that d = 2. Then z+η1i
4 = y+η2j

2 for some η1, η2 ∈ {±1}.
We get that y = z+η1i−2η2j

2 . Thus,
y+η′

2j

2 = z+η1i+tj
4 with t = 2(η′

2 − η2) ∈
{±4, 0}. By Lemma 2.5, we have

gcd

(

z + η′
1i

2
,
y + η′

2j

2

)

= gcd

(

z + η′
1i

2
,
z + η1i + tj

4

)

≤ |(η′
1 − η1)i − tj| ≤ 12.

The argument works assuming that the last number above is not zero for
(η′

1, η
′
2) 6= (η1, η2) ∈ {±1}2. Assume that it is. Then (η′

1 − η1)i = tj. Clearly,
tj is always a multiple of 4. If it is zero, then t = 0, so η′

2 = η2. Then also
(η1 − η′

1)i = tj = 0, therefore η′
1 = η1. Hence, (η′

1, η
′
2) = (η1, η2), which is not

allowed. Assume now that t 6= 0. Then (η1 − η′
1)i 6= 0, so η′

1 = −η1. Also,
t 6= 0, therefore η2 = −η′

2. We get that 2η1i = −4η2j, therefore η1i = −2ηj.
Thus, i = ±1 and j = ±2. In particular, z is odd and y is even. Now
(z + η1i)/2 is divisible by a larger power of 2 than (y + η2j)/2. A quick
inspection of formulae (2.7)–(2.10) defining m1, m2, m3 and m4 together
with Lemma 2.1 (ii) and (iii), shows that the only interesting cases are when
k = 1 or 2 (since m3 | 2 and m4 | 2). Thus, (η1, η2) = (−1,−1) or (−1, 1).
Hence, (η′

1, η
′
2) = (1, 1) or (1,−1), and here we have that m3 | 2 and m4 | 2

anyway. This takes care of the case when (η′
1 − η1)i − tj = 0.
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Continuing with d = 2, since z±i
4 ≥ 37, Lemma 2.3 yields ε2, δ2 < 0.1.

We then get the estimate

α
z−2

2 < α
z±i
4

+0.1 L3
12 ≤ 3223α

z+2

4
+0.1,

leading to z < 6.4 + 12 logα 322 < 150.5, which is a contradiction.

Finally, we assume that d = 1. The equality z±i
2 = y±j

2 leads to z =
y ∓ i ± j. Obviously, here ∓i ± j must be positive, otherwise we would
get z ≤ y. Note that in the application of Lemma 2.2, both z and y are
classified according to their congruence classes modulo 4. The following table
summarizes the critical cases of d = 1. Only 6 layouts in Table 1 below need
further investigations (the sign † abbreviates a contradiction).

(z, y) (4) (i, j) possible equalities consequence

1 (1, 1) (1,−1) z−1
2

= y+1
2

z = y + 2 † : x ≡ y (mod 4)

2 (1, 2) (1,−2) z−1
2

= y+2
2

z = y + 3 † : d2 must be even
(−1,−2) z+1

2
= y+2

2
z = y + 1 † : z ≡ y − 1 (mod 4)

3 (1, 3) (1,−1) z−1
2

= y+1
2

z = y + 2 † : d1 must be even

4 (1, 0) (1,−2) z−1
2

= y+2
2

z = y + 3 † : x ≡ y + 1 (mod 4)
(−1,−2) z+1

2
= y+2

2
z = y + 1 is possible (d3 = 1)

5 (3, 1) (1,−1) z−1
2

= y+1
2

z = y + 2 is possible (d4 = 1)

6 (3, 2) (−1,−2) z+1
2

= y+2
2

z = y + 1 † : d2 must be even
(1,−2) z−1

2
= y+2

2
z = y + 3 † : x ≡ y + 1 (mod 4)

7 (3, 3) (1,−1) z−1
2

= y+1
2

z = y + 2 † : x ≡ y (mod 4)

8 (3, 0) (−1,−2) z+1
2

= y+2
2

z = y + 1 † : x ≡ y − 1 (mod 4)
(1,−2) z−1

2
= y+2

2
z = y + 3 is possible (d3 = 1)

9 (2, 1) (2, 1) z−2
2

= y−1
2

z = y + 1 † : d1 must be even
(2,−1) z−2

2
= y+1

2
z = y + 3 † : x ≡ y + 1 (mod 4)

10 (2, 2) (2,−2) z−2
2

= y+2
2

z = y + 4 † : d2 must be even

11 (2, 3) (2,−1) z−2
2

= y+1
2

z = y + 3 † : d1 must be even
(2, 1) z−2

2
= y−1

2
z = y + 1 † : x ≡ y − 1 (mod 4)

12 (2, 0) (2,−2) z−2
2

= y+2
2

z = y + 4 † : x ≡ y + 2 (mod 4)

13 (0, 1) (2, 1) z−2
2

= y−1
2

z = y + 1 † : x ≡ y − 1 (mod 4)
(2,−1) z−2

2
= y+1

2
z = y + 3 is possible (d4 = 1)

14 (0, 2) (2,−2) z−2
2

= y+2
2

z = y + 4 † : x ≡ y + 2 (mod 4)

15 (0, 3) (2,−1) z−2
2

= y+1
2

z = y + 3 † : x ≡ y + 1 (mod 4)
(2, 1) z−2

2
= y−1

2
z = y + 1 is possible (d4 = 1)

16 (0, 0) (2,−2) z−2
2

= y+2
2

z = y + 4 is possible (d3 = 1)

Table 1. The case d = 1.

In what follows, we consider separately the 6 exceptional cases. The
common treatment of all these cases is to go back to the system (1.3). In all
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exceptional cases we have z = y + s, where s ∈ {1, 2, 3, 4}. Hence,

(2.14)







ab + 1 = Fx,
ac + 1 = Fz−s,
bc + 1 = Fz ,

and, as previously, c | gcd(Fz−s − 1, Fz − 1).

Table 1, Row 4. z ≡ 1, y ≡ 0 (mod 4), z = y + 1 and

Fz−1 − 1 = F z+1

2

L z−3

2

, Fz − 1 = F z−1

2

L z+1

2

.

Clearly,

gcd
(

F z+1

2

, F z−1

2

)

= 1, gcd
(

L z−3

2

, L z+1

2

)

= 1, gcd
(

F z+1

2

, L z+1

2

)

= 1, 2,

while

gcd(L z−3

2

, F z−1

2

) =

{

Lgcd( z−3

2
, z−1

2 ) = L1 = 1

1 or 2

}

≤ 2.

Therefore c ≤ 4, and we arrived at a contradiction because Fz = bc + 1 ≤ 13
contradicts z > 150.

Table 1, Row 5. z ≡ 3, y ≡ 1 (mod 4), z = y + 2 and

Fz−2 − 1 = F z−3

2

L z−1

2

, Fz − 1 = F z+1

2

L z−1

2

.

Since

gcd
(

F z−3

2

, F z+1

2

)

= 1,

we get c | gcd(Fz−2−1, Fz−1) = L z−1

2

. Consequently, by the proof of Lemma

2.7,

L z−1

2

= c1c > c1

√

Fz.

By Lemma 2.6, we now have

c1 <
L z−1

2√
Fz

< 2.

Hence, c1 = 1, therefore c = L z−1

2

. In view of equation (2.14), we get a =

F z−3

2

, b = F z+1

2

, and so

(2.15) Fx = F z−3

2

F z+1

2

+ 1 = F 2
z−1

2

+ (−1)
z−1

2 + 1 = F 2
z−1

2

.

By the work of Cohn [4], we get that (2.15) is not possible for z > 150.

Table 1, Row 8. z ≡ 3, y ≡ 0 (mod 4), z = y + 3 and

Fz−3 − 1 = F z−1

2

L z−5

2

, Fz − 1 = F z+1

2

L z−1

2

.

It follows easily, by Lemma 2.1, that

gcd
(

F z−1

2

, F z+1

2

)

= 1, gcd
(

L z−5

2

, L z−1

2

)

= 1, gcd
(

F z−1

2

, L z−1

2

)

= 1, 2,
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and

gcd
(

L z−5

2

, F z+1

2

)

=

{

Lgcd( z+1

2
, z−5

2 ) ≤ L3 = 4

1 or 2

}

≤ 4.

Thus, c | gcd(Fz−3 − 1, Fz − 1) ≤ 8. However, the inequalities a < b < c ≤ 8
contradict the fact that z > 150.

Table 1, Row 13. z ≡ 0, y ≡ 1 (mod 4), z = y + 3 and

(2.16) Fz−3 − 1 = F z−4

2

L z−2

2

, Fz − 1 = F z+2

2

L z−2

2

.

Since

gcd
(

F z−4

2

, F z+2

2

)

= Fgcd( z−4

2
, z+2

2 ) ≤ F3 = 2,

we have c | gcd(Fz−2−1, Fz−1) = L z−1

2

, or c | gcd(Fz−2−1, Fz−1) = 2L z−1

2

.

In the first case, we get

L z−2

2

= c2c > c2

√

Fz,

and applying Lemma 2.6 we arrive at

c2 <
L z−1

2√
Fz

< 1,

which is a contradiction.
In the second case, put

2L z−2

2

= c3c > c3

√

Fz .

Again by Lemma 2.6, we obtain

c3 <
2L z−1

2√
Fz

< 2.

Thus, c3 = 1, therefore c = 2L z−1

2

. System (2.14) and relations (2.16) lead to

2a = F z−4

2

, 2b = F z+2

2

, and

Fx =
1

4
F z−4

2

F z+2

2

+ 1.

On the one hand, since z > 150, by Lemma 2.3, we get

αx−1.67 > Fx >
1

4
α

z−4

2
−1.68α

z+2

2
−1.68 > αz−1−3.36−2.89,

therefore x > z − 5.48. On the other hand, by combining Lemma 2.3 and
Lemma 2.4 with κ < 0.01, we get

αx−1.68 < Fx <
1

4
α

z−4

2
−1.67α

z+2

2
−1.67 + 1 < αz−1−3.34−2.88+0.01,

leading to x < z − 5.53. But the interval (z − 5.48, z − 5.53) does not contain
any integer, which takes care of this case.
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Table 1, Row 15. z ≡ 0, y ≡ 3 (mod 4), z = y + 1 and

Fz−1 − 1 = F z
2
L z−2

2

, Fz − 1 = F z+2

2

L z−2

2

.

Since

gcd(F z
2
, F z+2

2

) = 1,

we get c | gcd(Fz−1−1, Fz−1) = L z−2

2

. Consequently, by the proof of Lemma

2.7, it follows that

L z−2

2

= c4c > c4

√

Fz.

Now Lemma 2.6 leads to the contradiction

c4 <
L z−2

2√
Fz

< 1.

Table 1, Row 16. z ≡ 0, y ≡ 0 (mod 4), z = y + 4 and

Fz−4 − 1 = F z−2

2

L z−6

2

, Fz − 1 = F z+2

2

L z−2

2

.

Obviously,

gcd(F z−2

2

, F z+2

2

) = 1, gcd(L z−6

2

, L z−2

2

) = 1, gcd(F z−2

2

, L z−2

2

) = 1, 2,

while

gcd(L z−6

2

, F z+2

2

) =

{

Lgcd( z−6

2
, z+2

2 ) ≤ L4 = 7

1 or 2

}

≤ 7.

Thus, c ≤ 14, which leads to a contradiction with z > 150.
The proof of the Theorem 1.2 is now complete.
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