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Abstract: Clear-cutting is the most robust intervention in a forest ecosystem, causing marked changes
in ecosystem processes. Although the effects of forest harvesting have been widely investigated, com-
parative studies can provide vital supplementary information concerning specific fields, including
changes in soil microbiota structure and functioning. Our study examined the soil bacterial com-
munity composition, diversity, and activity of a mixed pedunculate oak stand over three years after
clear-cutting based on 16S rRNA sequencing and substrate-induced respiration data. In addition, we
conducted a yearly comparison with a control oak stand already in the regeneration phase. According
to our results, the forest harvest caused only limited changes in the diversity, structure, and activity
of the soil bacterial community of the oak stand, suggesting that soil parameters influence the soil
bacterial community structure and functioning more significantly than the cessation of forest cover.

Keywords: 16S rRNA gene amplicon sequencing; substrate-induced respiration; soil microbiota;
pedunculate oak; clear-cutting

1. Introduction

Forest harvesting markedly disturbs the natural environment, affecting forest animal
and plant communities [1–3]. Furthermore, the change in forest structure (timber removal)
and soil disturbance caused by harvesting negatively affects the nutrient content and C
storage of soils [4–6] and can induce a marked change in the structure of soil meso- and
macrofaunal communities [7–9] and soil microbiota composition and functioning [10,11].

Soil microbiota actively participates in numerous soil processes, such as producing and
consuming atmospheric gases, mediating nutrient cycling, influencing soil physicochemical
properties (pH), and regulating carbon dynamics [12]. However, edaphic parameters, such
as pH, nutrient content, and soil moisture, markedly influence soil microbiota community
composition and functioning [13–15]. In addition, vegetation interferes with this complex
soil–microbiota relationship and can also be considered an essential factor. Indeed, habitats
with different vegetation types (e.g., grassland versus forest) or vegetation structures
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(different species composition) often show soil microbiota community composition and
activity diversions [16–19]. Therefore, natural and/or artificial development or decline in
forests implies changes in the soil microbiota.

Clear-cutting is an intensive harvest method that affects soil life considerably; however,
the extent of change depends heavily on the prevailing environmental parameters, the
harvesting technique used (level of organic horizon damage), or the time between the
process and the observation. Through the organic-matter-removal effect, clear-cutting gen-
erally alters microbiota communities’ composition, decreasing their capability for biomass
degradation [20]. At the same time, the alterations in microbial community structures
that occur through forest harvesting can influence the soil’s nutrient cycling. Clear-cutting
negatively impacts the quantity of nitrogen-oxidizing bacteria, implying marked changes
in soil nitrogen, nitrate, and nitrite content [21,22]. However, the soil fungal community
changes triggered by clear-cutting also play an essential role in forming the composition of
soil bacterial communities. The disappearance of living trees increases the ratio of sapro-
trophs against ectomycorrhizal fungi [23,24], and the decrease in symbiont fungi could
enhance the number of bacteria consuming labile C sources [25]. Although the alterations
in the bacterial microbiome structure after the clear-cutting generally occurred due to the
changed substrate quantity [26], they also can be influenced by the different environmental
tolerances of the bacterial taxa [27]. Even though soil bacterial communities show higher
resistance than fungi against environmental changes caused by clear-cutting [23], investi-
gating their reaction in structure and activity under different site conditions can provide
valuable information about the effect of forest harvesting. Their role in nutrient cycling
can make some bacterial taxa suitable for the soil bioindicators of nutrient availability in
the future [21]. Thus, all studies on changes in nutrient content and microbial commu-
nity composition can contribute to the development of the microbial-based qualifying of
soil fertility.

We studied the effect of clear-cutting on the soil bacterial community composition and
activity of a mixed pedunculate oak forest. The study lasted over four vegetation periods,
beginning before forest harvesting and continuing over three years after the disturbance.
To separate the harvest-based changes of the bacterial community structure and activity
from its periodic variations, we performed a yearly comparison with a control oak stand
with a similar species composition already in the regeneration phase. The main oak stand
was clear-cut in the winter of 2018–2019, while the control forest was clear-cut in 2016.
The soil samplings occurred during four vegetation periods between 2018 and 2021. The
relative abundance of bacterial taxa was investigated using amplicon sequence analysis,
while bacterial community activity was evaluated using substrate-induced respiration
measurements. The central question of the research was to what extent clear-cutting
changes the forest soil bacterial community diversity, structure, and activity.

We hypothesized as follows: (1) that the soil microbial diversity, structure, and ac-
tivity of the oak stand significantly change after the harvest compared to the initial state;
(2) given that the main and the control stands are planted in former agricultural sites, are
located close to each other, and are constituted of the same tree species, we also assumed
that all of their studied soil microbial characteristics would become similar shortly after the
disturbance (the harvest of the main stand) and that this similarity would be maintained
throughout the study period; (3) summarily, we hypothesized that clear-cutting affects soil
microbial life more robustly than soil characteristics, at least in the short term.

2. Materials and Methods
2.1. Study Sites

The study area is on the Mezőség Loess Ridge in Central Hungary, 150 m ASL. Experi-
mental plots were designated in two forest compartments that are part of an 80.6-hectare
forest block at Ráckeresztúr, afforested on former arable land during the 1930s. The area
has a typical temperate climate, referred to as the Pannonian 2 environmental zone of
Europe [28], and its soil type is chernozem developed on calcareous loess parental material.
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The study involved two privately owned mixed pedunculate oak (Quercus robur L.)
forests. The control stand (T1, 47◦18′32.40′′ N; 18◦49′33.60′′ E) had an extent of 5.71 hectares
and was in the regeneration phase at the beginning of the study in 2018. Its former forest
was composed of pedunculate oak (57%) and Turkey oak (Quercus cerris L.) individuals
(43%) and was harvested in 2016. At the beginning of the study, one-year-old pedunculate
and Turkey oak stump sprouts and seedlings constituted the forest area, with zero canopy
closure. The main stand (T2, 47◦18′43.20′′ N; 18◦49′51.60′′ E) was a mature, 82-year-old
mixed oak stand containing pedunculate oak (40%), Turkey oak (20%), and European ash
(Fraxinus excelsior L., 40%) and, according to the forestry registration, had a 92% canopy
closure in 2018. This forest has an area of 5.04 hectares. The regeneration of the T2 stand
started in the winter of 2018–2019 with clear-cutting. The natural regeneration of this stand
is based on the stump sprouts and seedlings that appeared naturally in the forest area, with
a species constitution similar to the former stand. After the harvest (from the spring of
2019), a continuously developing young forest association constituted the area of T2 with
zero canopy closure (forest data are demonstrated in Table S1).

2.2. Soil Sampling

Soil samples were collected five times in 2018 and 2019 and three times in 2020 and
2021, during spring, summer, and autumn months every year (accurate sampling times are
detailed in Table S2). Study plots of 100 m2 (10 × 10 m) were marked on a homogeneous
and typical part of both stands before the first sampling to ensure minimal disturbance
in the private forests. During each sampling, 1-1 kg of soil samples was collected from
two topsoil depths (0–10 cm, layer A; 10–40 cm, layer B) at three randomly chosen points in
the study plots. The sampling points were always marked to avoid later re-sampling. The
spade and the sampler spatulas were sterilized with 80% ethanol before excavating pits and
collecting soil samples. After sampling, the soil samples were stored in disposable plastic
bags and kept under low-temperature conditions (4 ◦C) until laboratory processing. The
sample collection adhered to the following scheme at each sampling time: twelve samples
(two plots, three sampling points, and two layers) were collected for soil physical, chemical,
and substrate-induced respiration activity analyses. Furthermore, four composite samples
were created to perform DNA isolation and metagenome analyses by accurately blending
soil samples derived from the same layers in each plot (two plots and two layers). Soil
samples were not separated into rhizosphere and bulk soils, so all samples represented the
whole soil of the given layer and its microbiome.

2.3. DNA Extraction and High-Throughput Sequencing

The DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) was used to extract community
DNA from 0.25 g of soil samples, following the manufacturer’s instructions. After DNA
extraction, the V3-V4 region containing the 16S rRNA gene was amplified using the 341F
and 805R universal bacteria-specific primers with Illumina adapter overhang sequences
added to their 5′ ends (Bakt_341F: 5′-CCTACGGGNGGCWGCAG-3′ and Bakt_805R: 5′-
GACTACNVGGGTATCTAATCC-3′) [29]. All composite soil samples were amplified in
triplicate to avert inter-sample variability.

The amplicon PCR mix contained the following components: 7.5 µL 2× Phusion Flash
PCR Master Mix (Thermo Fischer Scientific, Waltham, MA, USA), 3 µL of each primer
(1 µM) (Merck, Feltham, UK), and 1.5 µL template DNA. The following steps were used
to construct the amplicon PCR according to Illumina protocol [30]: initial denaturation
at 95 ◦C for 3 min; 25 cycles of denaturation (at 95 ◦C for 30 s), annealing (at 55 ◦C for
30 s), and elongation (at 72 ◦C for 30 s); and final extension at 72 ◦C for 5 min. Plates
were stored in the PCR machine at 4 ◦C after completion of the program. Agencourt
AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA) were used to purify the PCR
products. The quality of the amplification was checked with a Qiagen QIAxcel Advanced
System (Qiagen, Hilden, Germany) using a DNA Screening Cartridge (Qiagen, Hilden,
Germany). Triplicate PCR products from the same samples were pooled and mixed in
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one tube. A second PCR was used for amplicon indexing according to the manufacturer’s
instructions using the dual indices of the Illumina Nextera XT Index Kit. After subsequent
normalization using the Qubit 4.0 fluorometer (Invitrogen, Thermo Fischer Scientific,
Waltham, MA, USA), libraries were pooled in equimolar ratios and sequenced using the
Illumina MiSeq platform (Illumina, San Diego, CA, USA) with the MiSeq Reagent Kit
v2 (2 × 250 bp) run configuration at the Centre for Agricultural Research, Agricultural
Institute, Martonvásár, Hungary. The Illumina 16S metagenomic protocol was followed
during the sequencing reaction preparation. The raw 16S rRNA gene sequencing data
revealed during high-throughput sequencing are available at the NCBI Sequence Read
Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra, accessed on 31 January 2023) under
accession number PRJNA929690 [SAMN32968875-32968894, SAMN35536186-35536232].

2.4. Environmental Analyses

Roots and other visible plant residues were removed to prepare the soil samples for
physicochemical analyses, and then the samples were air-dried, ground, and sieved (mesh
size 0.63 mm). Soil moisture content (SM) was determined based on weight differences
between fresh and at 105 ◦C until weight stability dried soil samples [31]. The pH value
(pHH2O) of the soil samples was measured at a soil:solvent ratio of 1:2.5 (w/v) using a pH
meter with a glass electrode [32]. The total carbon (TC), total organic carbon (TOC), and total
inorganic carbon (TIC) contents were analyzed by dry combustion [33] in an RC612 analyzer
(LECO, St. Joseph, MI, USA). A dry combustion method [34] was also used to determine the
total nitrogen (TN) content using a CN628 analyzer (LECO, St. Joseph, MI, USA). Calcium
carbonate (CaCO3) content was determined using a Scheibler-type calcimeter [32]. Plant-
available phosphorous (AL-P2O5) and nitrate nitrogen (NO3-N) contents were measured
spectrophotometrically using a Shimadzu UV-1601 spectrophotometer (Shimadzu, Kyoto,
Japan) following ammonium lactate and potassium chloride extraction [35]. Finally, the
available potassium (AL-K2O), calcium (AL-Ca), magnesium (AL-Mg), and sodium (AL-
Na) contents were determined following ammonium lactate (AL) extraction [35] using an
Agilent 5110 ICP-OES analyzer (Agilent Technologies, Santa Clara, CA, USA).

Average daily mean temperatures were calculated for five-day periods (ADT5) before
the sampling dates to include temperature as a variable in the environment–bacteria
community structure and environment–microbe activity analyses. Average temperatures
were calculated from the daily measurements of the closest automatic climate station
in Martonvásár.

2.5. Bioinformatic Analysis of Sequence Data

Sequence reads were subjected to a series of processing steps using mothur v1.47 [36]
following the MiSeq SOP pipeline (www.mothur.org, accessed on 20 January 2023). First,
the reads were checked for ambiguous bases, sequence length (min length = 400 and max
length = 500), and homopolymers. Sequences were then aligned to the ARB-SILVA SSU Ref
NR 138 reference database (http://www.arb-silva.de/, accessed on 20 January 2023) using
default settings and the Needleman-Wunsch pairwise alignment method [37]. Alignment
gaps (terminal and vertical) were removed, and sequences were clustered based on their
abundance using the pseudo-single linkage algorithm developed by [38].

We used the vsearch program included in the mothur installer to identify chimeric
sequences [39]. Singleton sequences with extremely low abundance were eliminated by
abundance-based filtering [40]. Classification of abundant sequences was performed using
the Wang approach, with a minimum bootstrap confidence of 80% [41]. In addition, OTUs
belonging to taxa other than bacteria were excluded from subsequent downstream analyses.

To assign sample sequences to OTUs, we used the OptiClust method [42]. For this,
a distance matrix was constructed between all unique sequences, retaining only those
with more than three counts in the entire dataset [40]. Sequences were then clustered
using default settings (cutoff = 0.03). Each OTU’s number and relative abundance were
determined within each sample using mothur. Several diversity indices, including observed
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OTUs (Sobs), Chao1, Ace, inverse Simpson, and Shannon, were calculated using mothur for
the smallest dataset.

Nonmetric multidimensional scaling (NMDS) was performed using the Bray-Curtis
distance matrix implemented in mothur to investigate the bacterial community structure
based on OTU composition. The NMDS scores for each axis were analyzed using R
Statistical Software version 4.2.0 [43].

2.6. MicroResp Substrate-Induced Catabolic Activity Analysis

The MicroResp™ system, a method based on colorimetric detection of CO2 emit-
ted from the soil after adding carbon substrates [44], was used to evaluate the catabolic
activity pattern of the bacterial community of soil samples. During the carbon source
preference analysis of bacteria, 23 different carbon sources were used in four replicates
and were distributed into adequate 96-well plates (ultrapure distilled water was used as a
control). The carbon sources (substrates) were the following: L-glutamic acid (Glu), L-3,4-
dihydroxybenzoic acid (Dhb), and L-arginine (Arg) in 12 mg mL−1; L-asparagine mono-
hydrate (Asp) and L-glutamine (Gln) in 20 mg mL−1; DL-malic acid (Mal), Na-succinate
(Suc), citric acid (Cit), D-gluconic acid-potassium salt (Gla), L-lysine (Lys), L-alanine (Ala),
and L-serine (Ser) in 40 mg mL−1; and L-arabinose (Ara), D-xylose (Xyl), D-galactose (Gal),
D-glucose (Glc), D-fructose (Fru), L-rhamnose (Rha), D-mannose (Man), trehalose (Tre),
Myo-inositol (Ino), D-mannitol (Mat), and D-sorbitol (Sor) in 80 mg mL−1 concentration.
All substrate solutions were adjusted to pH 6.5 by adding 1 M NaOH or 1 M HCl. An
Anthos 2010 photometer (Biochrom, Cambridge, UK) was used to detect the CO2 release-
induced color changes of the indicator gel at 570 nm photometrically at two different times:
at the beginning (0 h) and after 6 h of incubation. Respiration data (µg CO2-C g soil−1

h−1) were calculated from the normalized and cumulative CO2 data for the 6 h incubation
period and were standardized by the average respiration rate for each plate. The whole
protocol of MicroResp™ catabolic respiration analysis, including soil sample preparation,
is described by Campbell et al. [44]. In addition to the absolute respiration values, standard-
ized substrate utilization was calculated for each carbon source by dividing the absolute
respiration data by the mean value of the sampling dataset.

2.7. Data Preparation, Illustration, and Descriptive Statistics

All statistical analyses on physicochemical, bacterial community and respiration
activity datasets were performed in the R statistical environment [43]. The ‘dplyr’ package
version 1.1.2 [45] was used to calculate basic statistics. For testing data normality, the
Shapiro-Wilk normality test [46,47] was used; the variance of the data showing a normal
distribution was evaluated via one-way ANOVA [48], and the datasets with a non-normal
distribution were analyzed by the Kruskal-Wallis rank sum test [49] using package ‘stats’
version 4.2.0. [43]. A linear model was fitted on the dataset using the ‘stats’ package when
the variance tests revealed significant differences between groups. Furthermore, estimated
marginal means (least-squares means) were calculated, and compact letter displays were
created with the packages ‘emmeans’ version 1.8.6 [50] and ‘multcomp’ version 1.4-23 [51].
T2/T1 ratios were calculated for each soil parameter in each observation to reveal the effect
of forest harvesting on soil physicochemical parameters, and the variance of ratios was
analyzed. The relationship between environmental parameters and bacterial community
data (relative abundance and substrate-induced respiration data) was analyzed by pairwise
calculating the Pearson correlation coefficient [52] using the package ‘stats’. Redundancy
analysis (RDA) was performed using the packages ‘vegan’ version 2.6-2 [53] and ‘packfor’
version 0.0-8 [54] to determine the correlation between different variables and reveal the
most determinant variables on the total variance, as well as the environmental parameters
that are the best predictors. The change in bacterial community structure between years
was modeled by nonmetric multidimensional scaling analysis (NMDS) [55] using the
package ‘vegan’. Packages of ‘ggplot2’ (version version 3.3.6) [56] and ComplexHeatmap
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(version 2.13.2) [57] were used to visualize the results. All the figures made with R packages
were post-edited using the image and photo editing software Paint.NET version 5.0.13 [58].

3. Results
3.1. Site Characteristics

The most considerable soil physicochemical difference between the forest stands
appeared in the CaCO3 content; both layers of the T1 stand were markedly carbonate (the
lime content ranged between 4.92 and 7.02% in the upper and between 7.80 and 10.60%
in the under layer). By contrast, the soil of T2 contained lime only in small amounts (the
lime content was 0.00%–0.82% and 0.00%–1.41% in layers A and B, respectively). The
remarkable deviation in CaCO3 content was reflected in the values of other lime-related
parameters, such as TIC, TC, AL–Ca content, and soil pH, among which the TIC content
and pH showed the most significant differences in the pairwise comparison of the forest
stands in both layers. As for the soil organic carbon and nutrient content (TOC, TN, NO3–N,
AL–P2O5, and AL–K2O), no remarkable differences were revealed between the stands.

Considering the control (T1) related change in physicochemical parameters, three
variables showed notable deviations after 2018, which suggests a considerable influence
of the clear-cutting on them (Figure S1). The relative SM and AL–P2O5 content increased
remarkably in T2 after the harvest in both layers (the changes of the former parameter were
statistically significant at p = 0.05 in layer A), while the relative AL–K2O content increased
in layer A and decreased in layer B samples after the harvest (the changes in potassium
content were significant at p = 0.05 in layer B). Table 1 presents the soil physicochemi-
cal analysis results, while Table S3 presents the average daily temperatures counted for
five-day periods.

3.2. Bacterial Community Diversity and Composition

The five diversity indices (Sobs, Chao1, ACE, Shannon, Inverse Simpson) detected no
remarkable effect of forest harvesting on the soil bacterial community structure in the T2
forest (the stand differences in the year-to-year comparison were not significant at p = 0.05
in any year, and this was valid for both layers; Figures S2 and S3 illustrate the diversity
indices values, while Figure S4 and Table S4 present sequence data). However, compared
to T1, a slight relative increase in diversity in layer A and a slight decrease in layer B were
observed in the T2 forest after the harvest.

The most abundant phyla (mean relative abundance > 5%) were Acidobacteriota
(27.97%), Proteobacteria (17.36%), Actinobacteriota (14.61%), Verrucomicrobiota (10.77%),
and Bacteroidota (7.40%). Furthermore, although the mean relative abundance of Gem-
matimonadota lagged the 5% threshold, this phylum was the only one among the less
abundant phyla whose relative abundance reached 10% in some layer B samples (2018:
T1—August, T1—October; 2019: T1—April, T2—April; 2020: T1—April; 2021: T1—July)
(Figure S5 illustrates the relative abundances of all bacterial taxa evaluated).

Considering the six main taxa, the main differences between the stands’ soil bacterial
community structures appeared primarily in the layer B samples. Acidobacteriota and
Verrucomicrobiota showed markedly higher, while Gemmatimonadota had lower mean
relative abundance values in T2 stand samples compared to T1 in the deeper layer (it should
be noted that even if the differences mentioned above were considerable, a statistically
significant difference between the stands was only revealed with Verrucomicrobiota in
2018). Alone among the six main taxa, Verrucomicrobiota showed a significant change
(decrease) in relative abundance after the forest harvest in the T2 stand (layer A samples,
Figure 1). In addition, a gradual and intensive but statistically insignificant increase in the
relative abundance of Acidobacteriota was observed in layer B after 2018, while a temporary
and not significant increase was identified in the relative abundance of Actinobacteriota
and Gemmatimonadota in the under-layer in 2019.



Forests 2024, 15, 1284 7 of 22

Table 1. Average soil physical and chemical properties of the samples collected in the forest stands. Abbreviations: T1: T1 oak forest, T2: T2 oak forest, A: 0–10 cm, B:
10–40 cm, SM: soil moisture, CaCO3: calcium carbonate, TN: total nitrogen, TC: total carbon, TOC: total organic carbon, TIC: total inorganic carbon, AL–P2O5:
ammonium lactate soluble phosphorous, AL–K2O: ammonium lactate soluble potassium, AL–Na: ammonium lactate soluble sodium, AL–Mg: ammonium lactate
soluble magnesium, AL–Ca: ammonium lactate soluble calcium, NO3–N: nitrate nitrogen. Significant differences at p = 0.05 are marked with bold characters, while
homologous groups with the letters a, b, c and d. Compact letter displays are always relative to a given layer and soil parameter combination.

Layer Stand Year
Soil Moisture pHH2O

CaCO3 TN TC TOC TIC
% % % % % %

A

T1

2018 17.10 ± 6.67 a 7.17 ± 0.09 b 5.41 ± 1.15 b 0.20 ± 0.01 ab 3.65 ± 0.19 bc 2.44 ± 0.13 ab 1.17 ± 0.19 b

2019 17.0 ± 2.59 a 7.31 ± 0.10 b 7.02 ± 1.41 b 0.26 ± 0.03 bc 4.08 ± 0.28 cd 2.80 ± 0.36 abc 1.28 ± 0.22 b

2020 16.1 ± 3.29 a 7.24 ± 0.04 b 5.30 ± 2.10 b 0.27 ± 0.01 bc 4.45 ± 0.58 cd 2.98 ± 0.34 bc 1.47 ± 0.42 b

2021 23.1 ± 1.84 a 7.59 ± 0.15 b 4.92 ± 0.42 b 0.31 ± 0.03 c 4.68 ± 0.15 d 3.26 ± 0.07 c 1.42 ± 0.08 b

T2

2018 15.5 ± 5.74 a 5.82 ± 0.6 a 0 ± 0 a 0.16 ± 0.02 a 2.38 ± 0.25 a 2.22 ± 0.20 a 0.17 ± 0.06 a

2019 18.5 ± 3.90 a 5.76 ± 0.87 a 0.22 ± 0.49 a 0.22 ± 0.05 ab 2.90 ± 0.53 ab 2.58 ± 0.41 abc 0.32 ± 0.16 a

2020 18.6 ± 7.08 a 5.50 ± 0.61 a 0 ± 0 a 0.23 ± 0.06 abc 3.19 ± 0.28 ab 2.86 ± 0.21 abc 0.33 ± 0.07 a

2021 20.1 ± 3.63 a 6.44 ± 0.38 ab 0.82 ± 1.42 a 0.25 ± 0.05 bc 3.53 ± 0.17 bc 3.02 ± 0.25 bc 0.51 ± 0.19 a

Layer Stand Year
AL-P2O5 AL-K2O AL-Na AL-Mg AL-Ca NO3-N

mg 100 g−1 mg 100 g−1 mg kg−1 mg g−1 mg g−1 mg kg−1

A

T1

2018 10.4 ± 3.21 a 21.8 ± 1.86 a 80.4 ± 21.7 c 1.05 ± 0.53 abc 25.0 ± 19.7 bcd 2.81 ± 2.53 a

2019 10.0 ± 2.96 a 29.2 ± 2.22 bc 74.5 ± 15.1 bc 1.20 ± 0.16 c 30.9 ± 5.89 d 0.92 ± 0.44 a

2020 6.74 ± 4.96 a 29.2 ± 3.42 abc 61.2 ± 7.04 abc 1.27 ± 0.07 c 30.6 ± 14.2 cd 1.55 ± 2.02 a

2021 7.69 ± 0.98 a 23.4 ± 0.69 ab 60.6 ± 1.24 abc 1.17 ± 0.03 bc 25.7 ± 3.47 abcd 4.41 ± 2.18 a

T2

2018 8.74 ± 2.18 a 22.9 ± 2.32 ab 42.6 ± 9.10 a 0.51 ± 0.06 a 2.43 ± 0.741 a 1.29 ± 1.94 a

2019 12.7 ± 3.17 a 35.5 ± 5.03 c 49.0 ± 0.59 ab 0.56 ± 0.15 ab 3.26 ± 2.70 a 1.18 ± 1.48 a

2020 8.64 ± 4.84 a 35.6 ± 3.67 c 50.3 ± 3.09 abc 0.55 ± 0.11 ab 2.28 ± 0.53 ab 0.78 ± 1.35 a

2021 8.86 ± 0.76 a 32.7 ± 0.31 c 49.3 ± 8.53 abc 0.71 ± 0.18 abc 5.88 ± 5.61 abc 4.59 ± 2.06 a

Layer Stand Year
Soil Moisture pHH2O

CaCO3 TN TC TOC TIC
% % % % % %

B

T1

2018 14.80 ± 5.69 a 7.54 ± 0.16 b 10.6 ± 2.39 b 0.13 ± 0.01 a 3.45 ± 0.34 b 1.62 ± 0.14 ab 1.81 ± 0.44 b

2019 15.1 ± 3.22 a 7.73 ± 0.08 b 9.83 ± 2.06 b 0.14 ± 0.02 a 3.15 ± 0.12 b 1.42 ± 0.14 a 1.73 ± 0.24 b

2020 12.4 ± 1.21 a 7.60 ± 0.09 b 8.70 ± 0.57 b 0.15 ± 0.02 a 3.30 ± 0.18 b 1.49 ± 0.15 ab 1.80 ± 0.22 b

2021 17.1 ± 1.07 a 8.03 ± 0.18 b 7.80 ± 1.47 b 0.17 ± 0.02 a 3.16 ± 0.14 b 1.58 ± 0.19 ab 1.58 ± 0.19 b

T2

2018 14.00 ± 4.48 a 6.37 ± 0.41 a 0 ± 0 a 0.15 ± 0.01 a 2.22 ± 0.15 a 2.06 ± 0.08 c 0.20 ± 0.08 a

2019 17.9 ± 3.76 a 6.03 ± 0.96 a 1.41 ± 3.15 a 0.16 ± 0.01 a 2.26 ± 0.50 a 1.80 ± 0.28 bc 0.47 ± 0.63 a

2020 17.5 ± 2.81 a 5.33 ± 0.28 a 0 ± 0 a 0.16 ± 0.05 a 2.02 ± 0.13 a 1.84 ± 0.11 bc 0.18 ± 0.02 a

2021 17.2 ± 1.54 a 5.86 ± 0.48 a 0 ± 0 a 0.16 ± 0.01 a 2.00 ± 0.14 a 1.81 ± 0.11 abc 0.19 ± 0.03 a
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Table 1. Cont.

Layer Stand Year
AL-P2O5 AL-K2O AL-Na AL-Mg AL-Ca NO3-N

mg 100 g−1 mg 100 g−1 mg kg−1 mg g−1 mg g−1 mg kg−1

B

T1

2018 8.72 ± 3.30 a 16.6 ± 2.15 a 83.2 ± 22.0 bc 1.22 ± 0.41 bc 34.5 ± 20.1 cd 0.75 ± 1.30 a

2019 7.64 ± 3.39 a 21.3 ± 2.05 b 85.5 ± 10.9 c 1.35 ± 0.16 c 47.6 ± 7.31 d 1.70 ± 1.82 a

2020 3.91 ± 4.96 a 23.0 ± 2.12 bc 65.8 ± 17.4 abc 1.49 ± 0.08 c 43.3 ± 14.3 d 0.64 ± 0.67 a

2021 4.26 ± 0.80 a 19.1 ± 1.79 ab 69.0 ± 4.61 abc 1.24 ± 0.01 bc 37.5 ± 4.55 bcd 2.75 ± 1.61 a

T2

2018 8.41 ± 3.47 a 22.1 ± 1.19 bc 50.8 ± 7.16 a 0.48 ± 0.04 a 3.09 ± 0.81 a 0.09 ± 0.19 a

2019 10.4 ± 2.75 a 25.8 ± 2.83 c 55.8 ± 12.7 ab 0.66 ± 0.45 ab 10.8 ± 19.0 abc 0.81 ± 1.38 a

2020 5.37 ± 4.41 a 23.9 ± 1.81 bc 56.5 ± 4.75 abc 0.47 ± 0.06 a 2.28 ± 0.12 ab 0.17 ± 0.23 a

2021 5.62 ± 1.76 a 22.2 ± 0.28 bc 47.0 ± 1.99 a 0.49 ± 0.01 a 2.33 ± 0.12 ab 2.51 ± 0.76 a
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Figure 1. Mean relative abundance values of the six primary phyla. Homologous groups are
indicated with the letters a, b, and c; similar letters demonstrate no significant differences. Significant
connections should be interpreted at layers. Abbreviations: T1: T1 oak forest, T2: T2 oak forest;
A: 0–10 cm soil layer, B: 10–40 cm soil layer. Thick black lines represent medians, while dark grey
squares represent mean values.
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3.3. Bacterial Community Composition Shift

Contrary to the species richness and diversity indices, NMDS and RDA analyses based
on the phylum’s relative abundance data showed a firm but not durable change in bacterial
community structure after the clear-cutting in the T2 stand. As Figures 2 and 3 show, the
polygons of the two oak stands separated very clearly in 2018. This situation changed in
2019, when the stands overlapped remarkably, while in 2020 and 2021, the stands separated
firmly again. These changes in the polygon locations suggest that the composition of the
soil bacterial communities of the stands turned very similar after the harvest of the T2
stand, but this situation was only temporary.

The redundancy (RDA) and forward selection analysis results showed that pH played
the most remarkable role in forming bacterial communities in forest soils (Figure 3, Table S5).
The effect of pH on the inter-stand variability was less in 2019 when TN, SM and AL–
K2O were determinant environmental factors influencing bacterial community structure
(Table S5). As for the most abundant phyla, Acidobacteriota and Actinobacteriota occupied
the most remarkable role in maintaining the variability between the bacterial communities
in 2019 (Figure 3). The connections between these phyla and the most determinant environ-
mental factors were different: Acidobacteriota correlated significantly negatively with pH
and TN in layer A and significantly negatively with pH in layer B, while Actinobacteriota
showed a significant negative correlation with SM content in both layers (Figure S6).
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0–10 cm soil layer, B: 10–40 cm soil layer.
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Figure 3. Redundancy analysis correlation biplot of phylum relative abundances and soil parameter
values. Arrow length refers to the extent of the contribution of variables to the total variance. The
angle between arrows corresponds to the correlation between variables (an angle of 90◦ represents
zero correlation, while an angle of 0◦ or 180◦ represents maximal positive or negative correlation,
respectively). The biplot illustrates taxa (blue letters) with the highest variation among the samples.
Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil layer.
Abbreviations of physicochemical parameters are shown in Table 1.

3.4. Microbial Respiration Activity

The mean substrate-induced bacterial respiration was higher in the main stand com-
pared to the control area each year and layer and reached a paramount value in 2020 in
layer A. The year after the harvest, a remarkable change in the mean substrate utiliza-
tion occurred only in the deeper layer, but this change was not statistically significant
(Figure S7). Considering the whole dataset, the five most utilized carbon substrates were
Mal, Glc, Fru, Xyl, and Suc in layer A and Mal, Cit, Glc, Fru, and Suc in layer B (the average
respiration values of all carbon sources are presented by stands and layers in Table S6).
As for the comparison of the two forest stands, a very similar substrate utilization pattern
was observed in the case of the primary substrates in both layers (Figure S8). Generally, in
layer A, the substrate utilization increased firmly between 2018 and 2021 (the utilizations
reached their peaks in 2020 in more cases), while in layer B, the substrate consumption was
more balanced, without marked elevation in the study period. The only exception was Cit,
whose utilization showed a different pattern: Cit utilization was generally balanced in both
stands and layers and was markedly higher in T2 in all years.

Furthermore, only Cit consumption showed a statistically significant change directly
after the clear-cutting in the T2 stand; this year, utilization decreased remarkably in layer B.
Conversely, considering the standardized respiration data, the deeper layer was character-
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ized by Cit overutilization in 2019, especially in the summer months (Figure 4). In addition,
Cit overutilization was observed in the deeper layer in all years, and in the upper layer
in 2018.
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2021 in layer A), TN (in 2018 in layer A), CaCO3 (in 2018 in layer A), SM (in 2019 in layer 
A), and AL-K2O (in 2021 in layer A samples) were proven to be good predictors (R2 and p 
values of predictor variables are demonstrated in Table S7). As for the connection between 
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the six most utilized carbon substrates can be classified into two groups, consistently with 
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Figure 4. Standardized substrate-induced respiration (upper) and Pearson correlation coefficient
(lower) heatmaps. Diagrams illustrate average standardized respiration values determined at each
site and the correlation between respiration data and environmental parameters. Asterisks indicate
significant differences at a significance level of 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), and p ≤ 0.001
(***), while empty cells indicate no significant differences (in the upper diagrams only). Abbreviations:
T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil layer; ADT5: average daily
temperature of five days before sampling (including sampling day). Abbreviations of carbon sources
are shown in Section 2.6. Abbreviations of physicochemical parameters are shown in Table 1.

3.5. The Effects of Environmental Factors on Microbial Respiration

Like the bacterial community structure examination results, the forward selection
analysis revealed pH as the best explanatory variable for the stands’ respiration patterns.
This parameter was determinable in 2018 and 2019 in layer A and 2018, 2019, and 2020 in
layer B samples. Furthermore, TC (in 2019, 2020, and 2021 in layer B), AL-Mg (in 2020 and
2021 in layer A), TN (in 2018 in layer A), CaCO3 (in 2018 in layer A), SM (in 2019 in layer
A), and AL-K2O (in 2021 in layer A samples) were proven to be good predictors (R2 and
p values of predictor variables are demonstrated in Table S7). As for the connection between
pH and substrate utilization, according to the results of the Pearson correlation analysis,
the six most utilized carbon substrates can be classified into two groups, consistently with
their types. The carboxyl acids (Mal, Suc, and Cit) negatively correlated with pH, TC, TIC,
and CaCO3 content, while sugars (Glc, Fru, and Xyl) positively correlated with them in
both layers.
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RDA highlighted the remarkable role of Cit in forming interstand variability in almost
all years and layers. The effect on the variability of this carboxyl acid was outstanding in
2018 in layer A and in all years in layer B samples (Figure 5). Of the most abundant carbon
substrates, Glc (in 2019 and 2021 in layer A), Mal (in 2018 and 2021 in layer A and 2020 in
layer B), and Suc (in 2020 and 2021 in layer A and 2018, 2020, and 2021 in layer B) had a
substantial effect on the variability.
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Figure 5. Redundancy analysis correlation biplot of substrate utilization and soil parameter values.
Arrow length refers to the extent of the contribution of variables to the total variance. The angle
between arrows corresponds to the correlation between variables (an angle of 90◦ represents zero
correlation, while an angle of 0◦ or 180◦ represents maximal positive or negative correlation, respec-
tively). The biplot illustrates carbon substrates (blue letters) with the highest variation among the
samples. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil
layer. Abbreviations of carbon sources are shown in Section 2.6. Abbreviations of physicochemical
parameters are shown in Table 1.

4. Discussion
4.1. Changes in Bacterial Community Diversity

Our results on bacterial diversity analysis suggest that clear-cutting the T2 forest
resulted in a mild relative diversity increase in the upper soil layer and a slight decrease in
the deeper layer. The alteration of diversity in a positive direction after harvesting (clear-
cutting or thinning) is not unprecedented; similar results were achieved by other studies,
suggesting a change in rhizodeposition [59] or in the relative abundance of rare taxa as a
cause [23]. The change in rhizodeposition may also have played a vital role in our case. The
T2 stand was a highly closed forest before harvesting (92% canopy closure), having rare
herbaceous vegetation. This state changed after the spring of 2019, when herbaceous plants
colonized the area, probably forming a denser rhizosphere in layer A. Stefanowicz et al. [60]
found a positive connection between herbaceous plant cover and soil microbial community
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composition in their comparative study, suggesting a prominent role of the rhizodeposition
of plant roots in that process. Furthermore, Henneron et al. [61] proved a difference in
rhizodeposition between herbaceous plants with different strategies: acquisitive species
show higher photosynthesis and rhizodeposition activity than conservative species. The
former group is more competitive and was likely to play a remarkable role in coloniz-
ing the freshly harvested area, contributing to increased bacterial diversity in the upper
soil layer.

The opposite trend in bacterial diversity after the clear-cutting in the deeper layer
of the T2 stand may also be related to the changes in the fine root system. Forest dis-
turbances trigger a decrease in fine root biomass, production, and turnover [62,63], and
the termination of root functioning changes the composition of the fungal and bacterial
communities, favoring the microbes participating in root decomposition [24,64]. According
to our assumption, the effect of the developing herbaceous roots was not determinant and
could not compensate for the impact of root decomposition processes in this layer. These
changes resulted in rather oligotrophic conditions, which caused a slight bacterial diversity
loss. However, forest harvesting affects soil fungal communities more significantly than
bacterial communities [10,64], and, in the case of bacteria, the functioning is more exposed
to change than the community structure [11].

4.2. Soil Bacterial Community Compositions Changes after Forest Harvest

Considering the year-to-year comparison of stands, only slight changes were ob-
servable in the relative abundances of bacterial phyla, suggesting a less intense effect of
harvesting on soil bacterial composition restructuring in the T2 stand; among the most
abundant phyla, only Acidobacteriota (in layer B) and Verrucomicrobiota (in layer A)
showed definite signs of harvesting-related changes. As for Acidobacteriota, the change
of its relative abundance strictly followed the change in soil acidity, which was most pro-
nounced in the deeper layer of the T2 stand (the strong negative relationship between the
relative abundance of Acidobacteriota and soil pH was already observed in the case of the
phylum’s more subdivisions by other studies [65,66]). This observation supposes that an
acidification could happen in the deeper layer after the clear-cutting. However, although
Achat et al. [67] reported that the increasing intensity of harvest (stem-only harvest com-
pared to branch, foliage, or stump removal amendments) decreases soil pH, the cessation
of root exudate production could also be a reason for acidification. Both Gramss et al. and
Evangelou et al. [68,69] observed that the microbial degradation of sugars or organic acids
increases soil pH; therefore, it is likely that the sudden termination of fresh root exudate
release slowed the degradation processes, making possible a kind of reacidification of the
soil after 2018. The decreased microbial activity in layer B of the T2 stand supports this
theory: the average substrate-induced microbial respiration suddenly decreased after the
clear-cutting. It approximated the preharvest level only in 2020 and 2021 again.

The member taxa of Verrucomicrobiota occupy diverse ecological niches and different
horizons (depths) of soils [70] and show different ecological attributes; although Verrucomi-
crobiota is mainly considered oligotroph [71,72], between certain ecological circumstances,
verrucomicrobial taxa can behave as copiotroph [73]. In our case, the sharp decrease in its
relative abundance after the clear-cutting in the topsoil layer in the T2 stand suggests the
former habit for Verrucomicrobiota. The emerged SM and TOC content likely favored the
growth of more competitive bacteria, like Bacteroidota, and decreased the relative abun-
dance of Verrucomicrobiota. Our results may strengthen the statement of Fierer et al. [74],
namely, that verrucomicrobial taxa can thrive under nutrient-poor circumstances and are
less competitive in soils well-supplied with nutrients.

The rise in the relative abundance of Actinobacteriota and Gemmatimonadota in 2019
in the layer B samples probably resulted from their ecological attributes. Both taxa seemed
to behave in our study as oligotroph bacteria (they showed rather negative correlations
with nutrients and TOC), suggesting that they were more competitive under nutrient-poor
circumstances, like what arose in the deeper layer after clear-cutting (the TOC content



Forests 2024, 15, 1284 15 of 22

decreased definitely from 2018 to 2019 in the deeper layer). However, Venture et al. [75] refer
to more actinobacterial taxa as saprophytes, and some studies refer to Gemmatimonadota
rather as copiotrophic bacteria [76,77].

Both NMDS and RDA analyses revealed a temporary similarity in bacterial community
composition between the oak stands in 2019. As already known, soil pH is one of the
most important parameters that form soil bacterial community structure [78,79]. Our
forward selection analysis results strengthened this statement; namely, soil pH was the
most relevant environmental factor that shaped the bacterial community structures of the
stands (Table S5). The only year when other factors, namely, TN, SM (layer A), and AL-K2O
(layer B), had a higher or similar effect on the community than pH or pH-related factors
was 2019. This result suggests that the changes in pH, SM, TN, and AL-K2O in the T2
stand’s soil after the clear-cutting were commonly responsible for those edaphic alterations
that temporarily made the stands’ soil bacterial community structures similar.

4.3. The Effect of Forest Harvesting on Substrate-Induced Respiration

Forest harvesting negatively affects soil microbial respiration [11,80], which is more
pronounced in the mineral soil layer [11]. Our substrate-induced respiration data showed
no changes in the upper layer but an evident decline in the deeper layer in the T2 forest
in the first vegetation period after harvesting (2019), corresponding with the results of
the studies cited above. After 2019, the microbial respiration of the T2 stand samples
elevated and reached a higher level in layer A and a similar level in layer B than in
2018. This respiration elevation after 2019 was observable in the case of all highly utilized
carbon substrates, which suggested a general and substantial microbial activity growth,
especially in the organic layer. The enhanced microbial respiration under herbaceous
plants and communities compared to bare soils is well known [81–84]; therefore, the
appearance of herbaceous vegetation on the harvested area could partly explain the rapid
expansion in respiration in the T2 stand after 2019. According to our hypothesis, the rapidly
altered environmental conditions limited microbial activity (respiration) in 2019 when the
colonization of the harvested area by herbaceous species was only in the initial phase.
Considering that the colonization of harvested areas generally occurs gradually [85,86],
the herbaceous vegetation reached a higher cover in the following years and, through its
well-developed rhizosphere, created suitable conditions for higher microbial activity again.

As from the reviews of Nguyen, Jones et al., and Dennis et al. [87–89], ascertainable,
as labile C sources, root exudates substantially contribute to enhancing microbial activ-
ity, among which sugars, amino acids, and carboxyl (organic) acids are the primary low
molecular weight compounds. We have found that sugars and carboxyl acids were the
most utilized compounds to a similar extent, followed by amino acids and sugar alcohols.
However, the extent of sugar and carboxyl acid utilization changed with depth: sugar
consumption was higher in layer A, while carboxyl acid utilization was higher in layer B
samples. A radical decrease in sugar utilization with depth and a more balanced carboxyl
acid utilization in the soil horizons were observed by Struecker and Joergensen [90], who
highlighted the role of soil organic carbon content as a factor that primarily controls micro-
bial growth and emphasized that the respiration rate of the different carbon compounds
depends on their entry into the metabolic cycle (difference in substrate preference for
anabolic utilization [91]).

According to our study, soil pH and TC were the most determinant factors in mi-
crobial respiration, while AL-Mg, TN, SM, and AL-K2O also proved to be good predic-
tive factors in some years and layers. A strong connection between microbial respira-
tion and pH, carbon, and nitrogen content was also observed in more studies [13,16,92],
while Bongiorno et al. [93] found a significant correlation between Mg and K and multiple
substrate-induced respiration investigating ten European agricultural long-term field exper-
iments. SM greatly influences microbial community functioning [94]; in our study, the effect
of SM on substrate-induced respiration was remarkable only in the upper layer in 2019
(the year after the harvest). Since citrate utilization showed a strong positive correlation
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with AL–K2O content in the layer B samples, further investigation of this connection needs
more attention.

4.4. The Significance of Citrate in Bacterial Respiration

In our study, citrate proved to have the highest contribution to the between-stand
variance of respiration (its effect was more expressed in both layers in 2018 and in layer
B samples between 2019 and 2021). Based on the standardized data, citrate was a mostly
underutilized compound in T1 and an overutilized compound in T2 before harvesting
(2018) in both layers. One possible reason for this could be the difference in the necessity for
phosphorous between the stands. Phosphorous deficiency enhances root citrate exudation,
and the enhanced citrate content promotes phosphorous mobilization [95–97]. Although
there were no consistent and significant differences in the AL-P2O5 content between the
samples in 2018, it is conceivable that the highest need for phosphorous that arose from the
differences in forest structure (mature trees versus trunk sprouts and seedlings) caused a
higher citrate efflux in the rhizosphere to mobilize more phosphorous under the T2 stand
(albeit, it should be noted that citrate did not show a significant correlation with AL-P2O5
in any layers). Therefore, it is assumed that a surplus caused by an enhanced efflux was
responsible for the higher consumption of citrate in the T2 forest.

The relative utilization of citrate reached the highest level in the deeper soil layer
after the harvest of the T2 stand. The reason for this significant overutilization of citrate
compared to the other substrates, especially carboxyl acids, is unknown. One possible
explanation for the enhanced citrate utilization could be a reaction by the microbes against
the ecological stress that occurred through clear-cutting (changed solar radiation circum-
stances, terminated root exudate production). Citrate has more C atoms and is located
before succinate and malate in the citric acid cycle [98]; since under aerobic conditions,
citrate can be fed directly into the cycle by a citrate transporter [99], the process could
allow for the production of more energy (GTP) or antioxidants for the microbe. In secur-
ing metabolism under ecological stress, citrate could have been an effective solution for
oligotroph bacteria in the rhizosphere. Although the significance of the tricarboxylic acid
cycle in stress response processes in bacteria has been proven by many studies [100–102],
the possible role of citrate uptake and entry into the cycle needs further investigation.

5. Conclusions

Forest harvest did not occur as a considerable change in soil bacterial community
diversity, structure, and activity. The change in the relative abundance of bacterial phyla
followed a similar pattern in the case of most phyla in the stand-to-stand comparison,
suggesting only a slight alteration in the bacterial community caused by forest disturbance.
The higher differences occurred in the deeper layer and affected the bacteria that had
oligotrophic attributes. The substrate-induced respiration showed only a temporary relapse
after clear-cutting in the T2 stand; the bacterial activity reached and exceeded the 2018
level in 2020 and 2021. The citrate utilization was the most affected by harvesting, probably
showing the prominent role of this substrate in the stress response processes of bacteria.
The pH, TN, TC, SM, and AL-K2O contents were significant ecological predictors of forest
soil bacterial community structure and functioning. Overall, our results suggest a firmer
effect of soil attributes on soil bacterial community composition and activity than changes
in forest structure.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f15081284/s1, Figure S1: The control (T1)-related changes
of edaphic parameters in T2 stand between 2018 and 2021. Homologous groups are indicated with
the letters a and b; similar letters demonstrate no significant differences. Significant connections
should be interpreted at layers. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil
layer, B: 10–40 cm soil layer. Thick black lines represent medians, while dark grey squares represent
mean values; Figure S2: The average number of OTUs revealed in soil samples of the different forest
stands. Homologous groups are indicated with the letters a, b, c, and d; similar letters demonstrate

https://www.mdpi.com/article/10.3390/f15081284/s1


Forests 2024, 15, 1284 17 of 22

no significant differences. Significant connections should be interpreted at layers. Abbreviations:
T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil layer. Thick black lines
represent medians, while dark grey squares represent mean values; Figure S3: Mean diversity index
values of the different forest soil bacterial communities. Homologous groups are indicated with the
letters a and b; similar letters demonstrate no significant differences. Significant connections should
be interpreted at layers. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B:
10–40 cm soil layer. Thick black lines represent medians, while dark grey squares represent mean
values; Figure S4: Rarefaction curves of the different samples based on 16S rRNA gene amplicon
sequencing. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil
layer; sampling date: (yyyymm); a: 2018, b: 2019, c: 2020, d: 2021; Figure S5: Relative abundances of
major bacterial taxa at phylum level in the investigated forest soils. Relative abundance is expressed
as the percentage of total sequences. Taxa under 1% are summarized and marked as Other (<1%).
Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil layer;
a: 2018, b: 2019, c: 2020, d: 2021; sampling date: (yyyymm); Figure S6: Bacterial phyla’s relative
abundance (upper) and Pearson correlation coefficient (under) heatmaps. Diagrams illustrate average
relative abundance values determined at each site and the correlation between relative abundance
data and environmental parameters. Asterisks indicate significant differences at a significance level
of 0.01 < p ≤ 0.05 (*), 0.001 < p≤ 0.01 (**), and p≤ 0.001 (***), while empty cells indicate no significant
differences (in the upper diagrams only). Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A:
0–10 cm soil layer, B: 10–40 cm soil layer; ADT5: average daily temperature of five days before
sampling (including sampling day). Abbreviations: Aci: Acidobacteriota, Pro: Proteobacteria, Act:
Actinobacteriota, Ver: Verrucomicrobiota, Bac: Bacteroidota, Pla: Planctomycetota, Gem: Gemmati-
monadota, Chl: Chloroflexi, Oth: Other (<1%), Bun: Bacteria unclassified, Myx: Myxococcota, Pat:
Patescibacteria, Met: Methylomirabilota, Nit: Nitrospirota, Lat: Latescibacterota. Abbreviations
of physicochemical parameters are shown in Table 1; Figure S7: Mean respiration values of forest
stands expressed in µgCO2-C g–1 h–1. Homologous groups are indicated with the letters a, b, and c;
similar letters demonstrate no significant differences. Significant connections should be interpreted
at layers. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm
soil layer. Thick black lines represent medians, while dark grey squares represent mean values;
Figure S8: Mean substrate utilization values of forest stands (six primary utilized substrates are
shown) expressed in µgCO2-C g–1 h–1. Homologous groups are indicated with the letters a, b, and c;
similar letters demonstrate no significant differences. Significant connections should be interpreted
at layers. Abbreviations: T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil
layer. Thick black lines represent medians, while dark grey squares represent mean values; Table S1:
Main characteristics of the studied forest stands; Table S2: Sampling dates; Table S3: Average daily
temperatures (◦C) of the sampling periods. Abbreviations: ADT5: average daily temperature of five
days before sampling (including sampling day); Table S4: The number of bacterial sequences and
operational taxonomic units (OTUs) detected during amplicon sequencing and sequence processing;
Table S5: Predictor variables revealed by redundancy analysis of the relative abundance data of
bacterial taxa. The variables included were proven to be good predictors of bacterial community
structure. Abbreviations: A: 0–10 cm soil layer, B: 10–40 cm soil layer; R2: coefficient of determination,
F: F-test value, p: significance level of the F-test. Abbreviations of physicochemical parameters
are shown in Table 1; Table S6: Carbon source utilization (respiration) values of forest soil layers
expressed in µgCO2-C g–1 h–1. Abbreviations: Lay.: soil layer, CS.: carbon substrates, M.: means, SD:
standard deviations; T1: T1 oak forest, T2: T2 oak forest; A: 0–10 cm soil layer, B: 10–40 cm soil layer.
Abbreviations of carbon sources are shown in Section 2.6.; Table S7: Predictor variables revealed by
redundancy analysis on substrate-induced respiration data. The variables included were proven to be
good predictors of bacterial community activity. Abbreviations: A: 0–10 cm soil layer, B: 10–40 cm soil
layer; R2: coefficient of determination, F: F-test value, p: significance level of the F-test. Abbreviations
of physicochemical parameters are shown in Table 1.
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84. Stefanowicz, A.M.; Kapusta, P.; Stanek, M.; Rożek, K.; Rola, K.; Zubek, S. Herbaceous Plant Species and Their Combinations
Positively Affect Soil Microorganisms and Processes and Modify Soil Physicochemical Properties in a Mesocosm Experiment. For.
Ecol. Manag. 2023, 532, 120826. [CrossRef]

85. Roberts, M.R.; Zhu, L. Early Response of the Herbaceous Layer to Harvesting in a Mixed Coniferous–Deciduous Forest in New
Brunswick, Canada. For. Ecol. Manag. 2002, 155, 17–31. [CrossRef]

86. de Graaf, M.; Roberts, M.R. Short-Term Response of the Herbaceous Layer within Leave Patches after Harvest. For. Ecol. Manag.
2009, 257, 1014–1025. [CrossRef]

87. Nguyen, C. Rhizodeposition of Organic C by Plant: Mechanisms and Controls. In Sustainable Agriculture; Lichtfouse, E., Navarrete,
M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 97–123. ISBN 978-90-481-2666-8.

88. Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and Mycorrhizal Regulation of Rhizodeposition. New Phytol. 2004, 163, 459–480.
[CrossRef] [PubMed]

89. Dennis, P.G.; Miller, A.J.; Hirsch, P.R. Are Root Exudates More Important than Other Sources of Rhizodeposits in Structuring
Rhizosphere Bacterial Communities? FEMS Microbiol. Ecol. 2010, 72, 313–327. [CrossRef] [PubMed]

90. Struecker, J.; Joergensen, R.G. Microorganisms and Their Substrate Utilization Patterns in Topsoil and Subsoil Layers of Two Silt
Loams, Differing in Soil Organic C Accumulation Due to Colluvial Processes. Soil Biol. Biochem. 2015, 91, 310–317. [CrossRef]

91. Gunina, A.; Dippold, M.A.; Glaser, B.; Kuzyakov, Y. Fate of Low Molecular Weight Organic Substances in an Arable Soil: From
Microbial Uptake to Utilisation and Stabilisation. Soil Biol. Biochem. 2014, 77, 304–313. [CrossRef]
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