Climate change mitigation potentials of wood industry related measures in Hungary

Király, Éva Ilona and Forsell, Nicklas and Schulte, Maximilian and Kis-Kovács, Gábor and Börcsök, Zoltán and Kocsis, Zoltán and Kottek, Péter and Mertl, Tamás and Németh, Gábor and Polgár, András and Borovics, Attila (2024) Climate change mitigation potentials of wood industry related measures in Hungary. MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 29 (6). ISSN 1381-2386

[thumbnail of s11027-024-10161-1.pdf] Text
s11027-024-10161-1.pdf

Download (2MB)
Official URL: https://doi.org/10.1007/s11027-024-10161-1

Abstract

Harvested wood products (HWPs) store a significant amount of carbon while long-lived products and wooden buildings can be among the most effective means for carbon storage. Wood products’ lifetime extension and appropriate waste management, recycling, and reuse can further contribute to the achievement of climate goals. In our study we projected under 10 different scenarios the carbon storage, carbon dioxide and methane emissions of the Hungarian HWP pool up to 2050 in order to find the combination of wood industry-related measures with the highest climate change mitigation effect. For the projection we used the country-specific HWP-RIAL model to predict emissions associated with the end-of-life and waste management of wood products. The main conclusion is that without additional measures the Hungarian HWP pool would turn from a carbon sink to a source of emissions by 2047. To maintain the Hungarian HWP pool to be a continuous carbon sink it is essential to implement additional climate mitigation measures including cascading product value chains, and approaches of a circular bioeconomy. We find the most effective individual measures are increasing product half-life, increasing recycling rate and increasing industrial wood production through increased industrial wood assortments and increased harvest. With the combination of these measures a maximum average annual climate change mitigation potential of 1.5 Mt CO 2 equivalents could be reached during the 2022–2050 period.

Tudományterület / tudományág

agricultural sciences > forestry and wildlife management

Faculty

Not relevant

Institution

Soproni Egyetem

Item Type: Article
SWORD Depositor: Teszt Sword
Depositing User: Csaba Horváth
Identification Number: MTMT:35175632
Date Deposited: 21 Aug 2024 12:07
Last Modified: 21 Aug 2024 12:07
URI: http://publicatio.uni-sopron.hu/id/eprint/3254

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year