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Side-side-angle with fixed angles and the
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Abstract.Among the triangle congruence axioms, the side-side-angle (SsA)
axiom states that two triangles are congruent if and only if two pairs of
corresponding sides and the angles opposite the longer sides are equal.
The modification of the SsA axiom provides a construction with two tri-
angle sequences . We require that the opposite angles of the equivalent
shorter sides be fixed and the longer sides be equal. The locus of the in-
tersection points of other sides of triangles is derived to be a hyperbola,
and in a generalized form defined by a complete quadrilateral, it is a conic
section.
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1. Introduction and main results

Triangle congruences play a significant role in Euclidean geometry, moreover, in
absolute geometry. Some of them are axioms in almost all geometric structures.
The triangle congruences are as follows, where S, A, s, R, and H represent,
respectively, the side, angle, shorter side, right-angle, and hypotenuse.

SSS Two triangles are congruent iff their corresponding sides are equal.
ASA Two triangles are congruent iff two pairs of corresponding angles and the

sides between them are equal.
SAS Two triangles are congruent iff two pairs of corresponding sides and the

angles between those sides are equal.
AAS Two triangles are congruent iff two pairs of corresponding angles and a

non-included side are equal.
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SsA Two triangles are congruent iff two pairs of corresponding sides and the
angles opposite the longer sides are equal.

RHS Two right-angled triangles are congruent iff their corresponding hypotenuse
and one side are equal.

Currently, the triangle congruence axioms have attracted the interest of a
number of researchers, such as Donnelly [3–5] and Righy [9], who examined
their role in absolute geometry, Hähl and Peters [7], who derived a variant of
Hilbert’s axioms from a subset of them.

The SsA triangle congruence is the most complex of the triangle congruences.
Some researchers disagree that it is a fundamental triangle congruence axiom.
We understand that two triangles are not necessarily congruent if two pairs of
corresponding sides and the angles opposite the shorter sides are equal. In this
case, two non-congruent triangles are possible under these conditions. This led
us to examine the following connections between these two triangles and the
condition sSA:

Condition sSA holds for two triangles if their two pairs of corresponding sides
and the angles opposite the shorter sides are equal.

Csiba and Németh [2] fixed and superimposed the shorter sides of two trian-
gles under the condition sSA, and they demonstrated that the locus of the
intersection points of the side lines is a hyperbola. In this article, with similar
conditions we show that the locus of the intersection points of the side lines is
a hyperbola if the angles opposite the shorter sides are also fixed.

Theorem 1.1. Let A and B be two fixed points. If the triangles ABC and
ABC ′, with condition sSA have their corresponding shorter sides AB, and the
common angles γ = γ′ opposite the shorter sides are fixed, then the locus of
the intersection points of the corresponding lines of other sides is a orthogonal
(normal) hyperbola.

In our construction, the points A, B, C, and C ′ in any position form a cyclic
quadrilateral �ABCC ′ and as C moves on their circumcircle the resulting
lines CC ′ are parallel. It means that they have a common infinite point. In the
second part of our article, we give a generalization of our construction when
lines CC ′ have a given fixed (not only infinity) point.

Cyclic quadrilaterals have a wide literature [6,8], one of the recent article
about complete quadrilateral and quadrangle is [10]. However, to the best
of our knowledge the following theorems about cyclic quadrilaterals are not
known.

Theorem 1.2. Let A, B, C, and C ′ be four points of a circle K, where line
CC ′ lies on another fixed (finite or infinite) point F . Then the locus of two
diagonal points (not on line CC ′) of cyclic quadrilateral ABCC ′ is a conic if
C is moving along K.
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Figure 1 Base construction of sSA

In addition, the loci equations are derived in this article.

While writing this paper, we utilized GeoGebra software to visually verify our
assumptions and to create the figures for the article, as well as Maple software
to precisely validate some highly complex computations.

2. Base construction

2.1. Definitions

Consider two triangles ABC and A′B′C ′ with the same orientation, sides, and
angles a, b, c, α, β, γ, and a′, b′, c′, α′, β′, γ′, respectively. If b = b′, c = c′

with b > c and γ = γ′, then both triangles satisfy the condition sSA. We are
aware that these triangles are not necessarily congruent. Let A = A′, B = B′,
and the third vertices of both triangles be in the same half-plane bordered by
the line c = c′, since b > c. Figure 1 depicts our structure. Let us fix γ = γ′

(0 ≤ γ ≤ 90◦) and c. Let M and M be the intersection points of lines BC
and A′C ′, and lines AC and B′C ′, respectively. In the following, we will look
at this construction, specifically the locus of the points M and M when b is
the variable. Because of continuity we allow the cases when C and C ′ are not
the same sides of the line c = c′, but then γ′ = 180◦ − γ, moreover, b ≤ c and
b′ ≤ c′ = c (Fig. 2).

2.2. Locus of M

For our analytical calculations, we select an appropriate coordinate system.
Let the origin O be the midpoint of segment AB and the y-axis be the line
AB, so that the coordinates of A, B are (0,−c/2) and (0, c/2), as shown
in Fig. 3. Moreover, let γ be fixed (in our figures γ = 32◦). The points C
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Figure 2 Extended base construction of sSA

Figure 3 Hyperbola H

and C ′ lie on the circumcircle K of �ABC ′C, whose equation, with center
K = (Kx,Ky) = (c/(2m), 0) and radius AK, is

(
x − c

2m

)2

+ y2 =
c2

4
+

c2

4m2
, (2.1)

where m is the slope of line AK and

m = tan γ,

m �= 0. The equation of line AK is y = mx − c/2, and is orthogonal to all of
the lines which form an angle of γ with line AB.
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The points C = (Cx, Cy) and C ′ = (C ′
x, C ′

y) are the same distance b from A.
Thus, they lie on the circle x2 + (y + c/2)2 = b2, where 0 ≤ b ≤ √

a2 + c2.
From the intersection of this circle with K, we get that their coordinates are

C =
(

(b + Ω)mb

c(m2 + 1)
,
b2(1 + m2) − (b + Ω)2

2c(m2 + 1)

)
,

C ′ =
(

(b − Ω)mb

c(m2 + 1)
,
b2(1 + m2) − (b − Ω)2

2c(m2 + 1)

)
,

where Ω =
√

m2(c2 − b2) + c2.

The equations of lines BC and AC ′ are 2Ω x+2bmy−bcm = 0 and 2(bm2 + Ω)/
(Ω − b)x + 2my + cm = 0, respectively. We get that their intersection point
M = (Mx,My) is

M =
(

bcm(b − Ω)
b2m2 + 2bΩ − Ω2

,
c(b2m2 + Ω2)

2(b2m2 + 2bΩ − Ω2)

)
.

If we change the role of C and C ′, then we obtain the point M with the same
coordinates as M . Moreover, it means that the coordinates of M are obtained
from the coordinates of M by replacing Ω with −Ω. Thus, we have

M =
(

bcm(b + Ω)
b2m2 − 2bΩ − Ω2

,
c(b2m2 + Ω2)

2(b2m2 − 2bΩ − Ω2)

)
.

Our variable is b and since the coordinates of points M and M are second
order rational functions of b, then the loci of these points is a second order
curve. Now, we shall show that this loci is the same hyperbola as we stated in
Theorem 1.1.

Let E be the intersection point (different from A) of the line AK and the
circle K. Then its coordinates are E = (c/m, c/2). Based on the previous
construction and results, we formulate the following theorem.

Theorem 2.1. The locus of the points M and M is the normal hyperbola H
defined by the points A, B, E, and lines 2x + 2my ± mc = 0, as tangent lines
at points A and B, respectively. The equation of H is

− 4x2 +
8xy

m
+ 4y2 − c2 = 0. (2.2)

Proof. First, we know from the drawing construction that b = b′, and that the
line AK is the symmetric axis of segment CC ′. Thus, CC ′ is orthogonal to line
AK with slope m (recall the equation of AK is y = mx − c/2). This implies
that the slope of CC ′ is −1/m. We examine special cases as observations. If C
is tends to B then M also tends to B, and consequently the line CC ′ becomes a
tangent line tB at B with equation y = −1/mx+c/2. We also see that when C
tends to A, then M (and M) tends to A, as well, and the line CC ′ tends to the
tangent line tA at A with equation y = −1/mx−c/2. The case when the length
of b = b′ is maximal provides the point E(c/m, c/2) = C = C ′ = M = M .
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Using our above observations, let us define the hyperbola H with points A, B,
E, and lines tA and tB as the tangents of H at points A and B, respectively.

The general equation of H is

h1x
2 + h2y

2 + h3xy + h4x + h5y + h6 = 0, (2.3)

where the variables hi are real numbers such that one of them is a free variable.
If (x0, y0) is a point that serves as a pole with respect to H, then its polar
equation is

h1x0x + h2y0y +
1
2
h3(x0y + xy0) +

1
2
h4(x + x0) +

1
2
h5(y + y0) + h6 = 0.

(2.4)

If (x0, y0) is on H, then its polar is a tangent of H at (x0, y0).

Thus, we have the system of linear equations for hi from (2.3) and (2.4)

c2h2 − 2ch5 + 4h6 = 0,

c2h2 + 2ch5 + 4h6 = 0,

4c2h1 + c2m2h2 + 2c2mh3 + 4cmh4 + 2mch5 + 4m2h6 = 0,

−2ch2y − ch3x + 2h4x + h5 (2y − c) + 4h6 = λ1(2x + 2my + cm),

2ch2y + ch3x + 2h4x + h5 (2y + c) + 4h6 = λ2(2x + 2my − cm).

We have two extra variables λ1 �= 0 and λ2 �= 0, which is important, as
otherwise the last two equations would not be clearly defined as lines. Thus,
the last two equations are polynomial equations and they yield linear equations
for the equalities of the coefficients of x, y, and constant parts.

If we consider h3 as the free variable, and let h3 = 2, then by the solving of
the system of linear equations we have h1 = −m,h2 = m,h4 = 0, h5 = 0, h6 =
−(1/4)mc2. Thus the equation of K is

−4x2 +
8xy

m
+ 4y2 − c2 = 0.

Since the sum of the coefficients of x2 and y2 are zero and the coefficients of
x and y are zeros, then H is a normal hyperbola.

We leave it to the reader to confirm that the coordinates of M satisfy Eq. 2.2.
Moreover, if we change the positions of the points C and C ′, we shall obtain
the point M instead of M . Consequently, M is one of the points of H. �

From the proof of Theorem 2.1 we obtain the following corollary.

Corollary 2.1. The tangent lines to H at the points A and B, and the lines
CC ′ for any C are parallel. Moreover, they are perpendicular to the line AK.

In the following, we shall give the canonical equation of H. For this we will
choose other coordinate axes through the origin. We denote these axes as the
ξ-axis and η-axis, respectively. See Fig. 4.
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Figure 4 Axis of hyperbola H

Theorem 2.2. The canonical equation of H is

− 4
√

m2 + 1
mc2

ξ2 +
4
√

m2 + 1
mc2

η2 = 1, (2.5)

where η and ξ are the transverse and conjugate axis of H, respectively.

Proof. The matrix form of H given by (2.2) is

�v TQ �v = 0, (2.6)

where �v =
[
x y 1

]
, and the symmetric coefficient matrix Q is

Q =

⎡
⎣

−4 4
m 0

4
m 4 0
0 0 −c2

⎤
⎦ .

Let R be a planar transformation given by a 3 × 3 matrix. In our case,

R =

⎡
⎣

cos(	) − sin(	) 0
sin(	) cos(	) 0

0 0 1

⎤
⎦

is a positive rotation with angle 	. Let ξ and η denote the new coordinate axes,
so that

�v ′ =
[
ξ η 1

]
= R�v.

Letting R−1 denote the inverse transformation of R, then �v = R−1�v ′. Sub-
stituting into (2.6), we have that

�v TQ �v =
(
R−1�v ′)T Q

(
R−1�v ′)

= (�v ′)T
((

R−1
)T

QR−1
)

�v ′ = (�v ′)T Q′ �v ′ = 0.
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Since R is a rotation, then R−1 = R T and
(
R−1

)T = R. Let

	 =
γ

2
− π

4
(2.7)

(the value of 	 is a suggestion from the drawing of Fig. 4). Thus,

Q′ = RQRT =

⎡
⎢⎢⎢⎣

− 4
sin(γ)

0 0

0
4

sin(γ)
0

0 0 −c2

⎤
⎥⎥⎥⎦ .

Thus, the rotation with angle (2.7) transforms the equation of H into the
canonical form

− 4
c2 sin(γ)

ξ2 +
4

c2 sin(γ)
η2 = 1.

Recall, m = tan(γ). Another form of the canonical equation of H is (2.5). �

Moreover, in the (x, y)-coordinate system, the equations of the transverse and
conjugate axis of H are y = cot(	)x and y = −1/ cot(	)x, respectively, and
the coordinates of the foci in the (ξ, η)-system are (0,±c

√
sin(	)/2), where

	 = (π − 2γ)/4.

3. Generalizations

According to Corollary 2.1, when C moves along the circle K the resulting
lines CC ′ are parallel. Thus, they form a pencil of lines, and consequently
have a common point at infinity. There is a very natural generalization of this
problem in which the lines still form a pencil of lines, but have a common
point which is not at infinity. More generally, we can consider a conic section
instead of the circle K. In this section, we give results for the more general
case using projective tools. In the second subsection, we give the equation of
the locus H of M with this classification.

3.1. Projective generalization

In this subsection, we generalize our construction for conics instead of the
circle K in the sections above, and we prove the following theorem.

Theorem 3.1. Let K be a non-degenerated conic and let A, B, C, and C ′ be its
four points, where A, B are fix points, and the line CC ′ goes through another
fix point F . We consider A, B, C, and C ′ as a complete quadrilateral with
diagonal points M1, M2, and M3 (see Fig. 5, M3 is on the line AB). The locus
of the diagonal points which are not on fix line AB is a conic when C is moving
along K.
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Figure 5 Projective generalization

Proof. We use projective geometry tools. We consider the lines passing through
the point F as a pencil of lines and denote it by [F ]. Let Ci and C ′

i be the
intersection points of one of the line of [F ] with K (see Fig. 6). If a line from
[F ] is tangent to K, then we denote the tangential point by E. If F is outside
K, then there are two such points, as illustrated in Fig. 6. Thus, [F ] generates a
bijection among the points of K when Ci corresponds to C ′

i and the tangential
points correspond to themselves. This means that the cross ratios of any four
points and their image points are the same. We now consider the pencils of
lines [A] and [B], and define a map between them. We say that their lines
correspond each other if they contain corresponding points of K. Thus, ACi

and BC ′
i are the corresponding lines with intersection point Ci. In this way,

the cross ratios of any four lines and their image lines are the same. Thus, [A]
and [B] are projective. According to the Steiner theory for projective pencils of
lines, two pencils of lines at two different points are projective (perspective) if
and only if the intersection points of corresponding lines lie on a non-degenerate
(degenerate) conic. Thus, the points Ci form a conic H. If [A] and [B] are
perspective (ex., F is on AB or K), then H is degenerated conic, otherwise
not.

Moreover, from the properties of Steiner theory, the conic section H contains
the points A and B as well.

If we change the roles of the points Ci and C ′
i, then we obtain similarly that

the other diagonal point is on H. �

Corollary 3.1. If H is a non-degenerated conic, then its tangent lines at points
A and B go through the point F .
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Figure 6 Intersection of projective pencils of lines

Proof. Let C ′ = A. We must prove that the line FAC has no other intersection
points with H. Suppose to the contrary that Cj is another intersection point.
Consider the projective pencils of lines [A] and [B] (see the proof of Theo-
rem 3.1 and Fig. 6). The line BCj intersects the conic at C ′

j , and is different
to A. This implies that F , C, C ′

j and F , A, C are collinear, and that A, C,
and C ′

j are three different points of H. Hence, we have a contradiction. �

Let L and H be the poles of the lines AB and CC ′ with respect to H. The
properties in the following lemma are well-known in projective geomety.

Lemma 3.2. The polar line of M3 with respect to H is the line M1M2. More-
over, the points L and H are also on this line.

3.2. Generalization for the circle case

We now fix a circle K (see Figs. 7), and we follow the definitions from the
previous sections. We have the following corollary of Theorem 3.1 which is
equivalent to Theorem 1.2.

Corollary 3.3. Let A and B be given points of the circle K, and let F be an
arbitrary point. Let the point C be a point of K, and denote by C ′ the second
intersection point of line FC with K. Then the locus of the intersection points
of AC with BC ′, and of AC ′ with BC is a conic section H.

In this section, we give the equation of H in a coordinate system similar to
in the previous section, and we show how H depends on the position F in
relation to the circle K.

We choose a coordinate system similar to the one used in previous sections.
The origin is the midpoint of AB and the y-axis is the line AB. However, we
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Figure 7 Generalization with circle and fix point

let the distant between the points A and B be c = 2, and we assume that A
and B have coordinates A = (0,−1) and B = (0, 1). Moreover, let K be given
with the equation

(x − h)2 + y2 = 1 + h2, (3.1)

where without the loss of generality, 0 ≤ h. In this coordinate system, let
F = (p, q), where p ∈ R \ {0} and q ∈ R. (If p = 0, then H is a degenerated
conic, namely two intersecting lines, see later.)

To simplify our calculations we choose a point T (0, t) on the y-axis, and we
denote by C and C ′ the intersections of the line FT (with eq. (t−q)x+py = pt)
with the circle K.

Thus, we have

C =
(

(hp − qt + t2 + Θ)p
p2 + q2 − 2qt + t2

,
hpq − hpt + p2t + (q − t) Θ

p2 + q2 − 2qt + t2

)

and

C ′ =
(

hp − qt + t2 − Θ)p
p2 + q2 − 2qt + t2

,
hpq − hpt + p2t − (q − t) Θ

p2 + q2 − 2qt + t2

)
,

where Θ =
√

h2p2 − 2hpqt + 2hpt2 − p2t2 + p2 + q2 − 2qt + t2.

The intersection point of the line AC ′ with line BC, and the intersection point
of line AC with line BC ′, respectively, are

M =
( −hp + qt − t2 − tΘ

h2p − 2hqt + 2ht2 − pt2
,

−hq + ht − pt − hΘ
h2p − 2hqt + 2ht2 − pt2

)
,

and

M =
( −hp + qt − t2 + tΘ

h2p − 2hqt + 2ht2 − pt2
,

−hq + ht − pt + hΘ
h2p − 2hqt + 2ht2 − pt2

)
.
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The coordinates of points M and M are functions of t. Let us denote these
functions by M(t) and M(t), respectively. According to Corollary 3.3 we know
that H is a conic, which implies that H and its equation are determined by
its five points. Thus, the generalization of Eq. (2.3) is defined by the points
A = M(−1), B = M(1),

M(0) =

(
−1
h

,
−q −

√
h2p2 + p2 + q2

hp

)
,

M(0) =

(
−1
h

,
−q +

√
h2p2 + p2 + q2

hp

)
,

and

M(q) =

(
−h − q

√
h2 − q2 + 1

h2 + q2
,
−q − h

√
h2 − q2 + 1

h2 + q2

)
.

Substituting the coordinates of A and B into (2.3) we obtain the system of
equations

h2 − h5 + h6 = 0,

h2 + h5 + h6 = 0,

which implies that h5 = 0 and h6 = −h2. Substituting the coordinates of
M(0), M(0) and M(q) again into (2.3), then the system of equations is

h1M(0)2x + h2M(0)2y + h3M(0)xM(0)y + h4M(0)x − h2 = 0,

h1M(0)2x + h2M(0)2y + h3M(0)xM(0)y + h4M(0)x − h2 = 0,

h1M(q)2x + h2M(q)2y + h3M(q)xM(q)y + h4M(q)x − h2 = 0.

We consider h2 to be a free variable, and we let h2 = −p. From solving this
system of equations we obtain h1 = p − 2h, h3 = 2q, h4 = −2, h5 = 0, h6 = p.

Thus, the equation of H is

(p − 2h) x2 + 2qxy − py2 − 2x + p = 0 (3.2)

with the coefficient matrix

Q(H) =

⎡
⎣

p − 2h q −1
q −p 0

−1 0 p

⎤
⎦ .

3.2.1. Classification of H. For the classification of H, we examine the deter-
minant of the matrix Q(H) and some of its minor matrices. First of all, we
suppose that F �= A and F �= B.

It follows from

|Q(H)| = −p
(
p2 + q2 − 2hp − 1

)
,

that if p = 0 or p2 + q2 − 2hp − 1 = 0, then |Q(H)| = 0 and H is degenerate.
Otherwise, H is non-degenerate. If p = 0, then the point F is on the line AB.
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Figure 8 Classification of H depending on the position of F

If p2 + q2 − 2hp − 1 = 0, then F is a point of the circle K (substitute p and q
into the Eq. (3.1)).

For the detailed classification, we have to give the minor

M3,3 of matrix QH (see [1]).

M3,3 =
∣∣∣∣
p − 2h q

q −p

∣∣∣∣ = − (
p2 + q2 − 2hp

)
.

Let us note that M3,3 = 0 if and only if p �= 0 and F is one of the points on
the circle C with equation (x − h)2 + y2 = h2 and concentric to K (Fig. 8).

Types of H (F �= A and F �= B)

• If |Q(H)| = 0, then H is degenerated, and
– if p = 0, then (3.2) becomes x(hx−qy+1) = 0, where hx−qy+1 = 0

is the equation of the polar of F with respect to K (see (2.4));
– if p2 + q2 − 2hp − 1 = 0, then F is on the circle K and M3,3 < 0.

Thus, H is two intersecting lines passing through F ;
• If |Q(H)| �= 0, then H is non-degenerated, and

– if M3,3 < 0, then F is outside of the circle C and H is hyperbola;
– if M3,3 = 0, then F is on the circle C and H is parabola;
– if M3,3 > 0, then F is inside of the circle C and H is ellipse.

∗ If F = K = (h, 0), so F is the center of K, then H is a circle
with equation (x+h)2+y2 = 1+h2, see (3.2)), H is the mirror
of K to the line AB.
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[7] Hähl, H., Peters, H.: A variation of Hilbert’s axioms for Euclidean geometry.
Math. Semesterber. (2022). https://doi.org/10.1007/s00591-022-00320-3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3934/era.2023065
https://doi.org/10.3934/era.2023065
https://doi.org/10.1007/s00022-010-0038-y
https://doi.org/10.1007/s00022-010-0038-y
https://doi.org/10.1007/s00022-015-0264-4
https://doi.org/10.1007/s00022-015-0264-4
https://doi.org/10.1007/s00591-022-00320-3


Side-side-angle with fixed angles Page 15 of 15    30 

[8] Josefson, H.: Characterizations of cyclic quadrilaterals. Int. J. Geom. 8(1), 5–21
(2019)

[9] Rigby, J.: Congruence axioms for absolute geometry. Math. Chronicle. 4, 13–44
(1975)
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