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Abstract: Novel soil datasets and the application of pedotransfer functions provide soil hydraulic input data for modelling 
hydrological processes at different scales. We aimed to evaluate the reliability of soil hydraulic parameters derived by 
indirect methods in simulation of soil moisture time series and water budgets at profile level of three sites (Forest, Orchard 
and Grassland) from a Central European catchment (Lake Balaton, Hungary). Five soil-vegetation-atmosphere model 
variants were set up with the Hydrus-1D model for each site, differing only in the parametrization of input soil data: i) a 
calibrated reference, ii) measured values, iii) values predicted from measured basic soil properties, iv) values predicted 
from national soil map information, v) values derived from the 3D soil hydraulic dataset of Europe. Calibrated soil 
parameters led to Nash-Sutcliffe efficiency 0.50, 0.54 and 0.71 for the Forest, Orchard and Grassland Site respectively. 
The outcomes for model efficiency of soil moisture underline the superiority of local databases over regional ones and the 
need for more detailed vertical discretization during modelling. The model performance according to soil moisture and 
water budget accuracy led to different rank order of model variants. Water budget comparisons indicated moderate 
differences between the hydrologic fluxes simulated by the different model variants, emphasizing the uncertainties 
associated with soil hydraulic parametrization either at local or at watershed scale. 
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INTRODUCTION 

 
The input data requirement of hydrological, water quality and 

ecological models poses a growing challenge (Arnold et al., 
2012; Farkas et al., 2011; Trodahl et al., 2017; Van Looy et al., 
2017). This data need is expected to further increase in the future 
with the development of the theoretical background, the compu-
tational capacity and the achievable spatial resolution 
(Vereecken et al., 2016). Remote sensing (Karimi and 
Bastiaanssen, 2015; Mohanty et al., 2017) and automated hydro-
meteorological monitoring (Dorigo et al., 2013; Fiala et al., 
2014; Ganot et al., 2017; Qu et al., 2016) go through remarkable 
technological advancement, resulting in improving temporal and 
spatial resolution. However, these methods provide mostly only 
indirect information about the physical characteristics of the sub-
surface domain/region. Thus, soil hydraulic parametrization, 
namely the definition of the soil moisture retention curve (MRC) 
and hydraulic conductivity curve (HCC) became one of the main 
challenges of process based hydrologic/environmental model-
ling both at local and catchment scale (Đukić et al., 2021; Kozma 
et al., 2022; Vereecken et al., 2016). Direct measurement of these 
soil hydraulic properties is time consuming and costly, therefore 

in many cases they are estimated with pedotransfer functions 
(PTFs) from easily measurable soil properties (e.g.  
texture, bulk density). In most of the model studies, the parame-
ters of the MRC and the HCC are calculated using linear regres-
sion or machine learning-based PTFs, based on soil texture,  
organic carbon content, and bulk density (Van Looy et al., 2017). 
Recognizing the situation, novel soil hydraulic databases were 
recently developed with different methodologies, spatial  
characteristics and coverage (point or spatial datasets, various 
resolution, national, continental or global) e.g. among others 
(Chaney et al., 2016; Dai et al., 2019; Gupta et al., 2022; Orgiazzi 
et al., 2018; Pásztor et al., 2020; Poggio et al., 2021; Rahmati et 
al., 2018; Soil Survey Staff Natural Resources Conservation 
Service United States Department of Agriculture, 2020; Tóth et 
al., 2017; Weynants et al., 2013). 

The reliability of hydraulic data sets generated from these soil 
hydraulic databases, i.e. to what extent do they improve the 
results of environmental modelling, for example the simulation 
of soil moisture, are rarely analysed by using measured field 
data. Usually soil hydrologic data sets are compared against each 
other through model applications (Nemes et al., 2003; Vereecken 
et al., 1992; Zhao et al., 2018). As certain model inputs, the 
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hydraulic data sets based on different data sources are evaluated 
usually separately (a single dataset per study) and/or indirectly 
(comparing measured and simulated state variables, which are 
indirectly affected by soil hydraulic parameters) (Ganot et al., 
2017; Kozma et al., 2014; Scanlon et al., 2002).  

Ganot et al. (2017) indirectly proved the reliability of the 
European pedotransfer functions (EU-PTF-s, Tóth et al., 2015), 
by using seepage hydraulic simulations they modelled the effects 
of an artificial recharge lake on groundwater levels. The soil 
hydraulic parametrization of the involved soil layers was 
determined by using a number of widespread datasets. Those 
results provided the best agreement between measured and 
simulated groundwater levels, which were based on the EU-PTF-
s. Scanlon et al. (2002) demonstrated that benchmarking soil 
water movement simulation results and measured soil moisture 
data provides valuable information about the uncertainty related 
to theoretical considerations, model algorithms and input data. 
Nemes et al. (2003) compared the performance of soil water 
content (WC) simulations using parameters of the soil moisture 
retention curve estimated with national and international PTFs. 
In their study the differences in the accuracy of simulations were 
marginal, even if measured soil hydraulic properties were 
considered. Thus, computing soil hydraulic properties with 
international PTFs were found to be an alternative solution 
compared to using national PTFs or measured values. Guber et 
al. (2009) found that using several PTFs in a multi-model 
ensemble can enhance simulation of vertical water flow under 
field conditions. In their study the geographic similarity of the 
PTFs’ training set did not influence the performance of the 
hydraulic model, however they used different PTFs for the 
prediction of only the van Genuchten parameters (van 
Genuchten, 1980) to describe the MRC, the saturated hydraulic 
conductivity (KS) was computed with a single PTF for all model 
variants. Loosvelt et al. (2011) analysed whether the type of 
PTFs – used to compute soil hydraulic parameters – influences 
simulation of soil water content. They found that region specific 
PTFs are preferable over non-region specific PTFs to assess the 
uncertainty of modelled soil water content. Nasta et al. (2021b) 
compared the predictive capability of several PTFs on European 
soil hydrological datasets and analysed the performance of the 
best performing ones in simulating the water balance components 
of a transect. Based on their results estimation of KS had high 
uncertainty with all analysed PTFs, which influence soil water 
storage simulations. These findings underpin the importance of 
quantifying the potentials and limitations of applying predicted 
soil hydraulic properties in water flow simulations. 

Our assumption was that comparative hydrological model 
studies designed in the fashion of the above mentioned are 
suitable to evaluate the soil hydraulic data derived from different 
sources. In this study our aim was to analyse the reliability of 
derived soil hydraulic data sets for simulating soil moisture time 
series and water budget at soil profile scale. All of the five tested 
soil hydrologic datasets provide the Mualem-van Genuchten 
(MVG) parameters of the MRC and the HCC. We used the 
Hydrus-1D software (Šimůnek et al., 2013) to carry out 
simulations at three monitoring sites (Lake Balaton catchment 
area, Hungary), where measured hydro-meteorological and soil 
moisture data were available. 

 
MATERIALS AND METHODS 
Basic concept 

 
To evaluate the reliability of the analysed soil hydraulic 

datasets, we carried out process based hydrologic simulations at 
local scale. The analysis followed the logic below: 

(1) The water content and water budget of a monitored soil 
profile can be described with a series of similar soil-vegetation-
atmosphere (SVAT, Vereecken et al. (2016)) model variants, 
differing only in their soil hydraulic parametrization (depths of 
soil layers, MVG parameters of the MRC and HCC). 

(2) Presumably, these nearly identical models will lead to 
different agreement between measured and simulated soil 
moisture time series. Also, they provide varying estimates of 
water budget components. 

(3) If the quality of the input data used for boundary 
conditions is sufficiently good for modelling purposes (accurate 
local information with multi-season, continuous temporal 
coverage), then we can assume that the goodness-of-fit of the 
model variants indicate the reliability of the underlying indirectly 
derived soil data. 

(4) The (1)–(3) steps can be considered as a comparative, 
functional evaluation of the studied soil hydraulic databases at 
pointwise/local scale. The more sites are involved in the 
assessment the more extensive information it provides. 

For model performance evaluation we compared the accuracy 
of (i) the modelled soil water content time series using common 
model efficiency measures and (ii) the components of the 
simulated water budgets. The previous is mainly defining at 
detailed local, site-specific analyses, while the latter one is also 
relevant for distributed parameter catchment scale modelling, as 
it quantifies the effect of soil information on the hydrological 
response of soil profiles. Soil water simulations at local (plot, 
hillslope) scale are very sensitive to soil hydraulic properties, 
especially to saturated WC, field capacity and KS (Nasta et al., 
2021a). KS governs infiltration and runoff generation, while 
saturated WC and field capacity has impact e.g. on the recession 
of the soil moisture curve during dry periods. Hydrological 
calculations at catchment scale are also highly influenced by soil 
hydraulic parameterization (Zhao et al., 2024). 

 
Study sites 

 
We performed the analysis at three locations: at two hydro-

meteorological monitoring sites of the Forest Research Institute 
of the University of Sopron in Fiad and Szalafő and one 
monitoring site in Keszthely (Figure 1). Basic soil and climatic 
properties are highlighted in Table 1. 

The mixed oak-beech Forest Site is in Fiad, which is situated 
in the central part of the Trans-Danubian region of Hungary, 
South to the Lake Balaton (46°37'18.0" N, 17°49'48.6" E, 210 m 
a.s.l.) (Figure A1). The site is located in zonal situation without 
the effect of slopes and surplus water. The soil type is Endocal-
caric Cambisol (Pantoloamic, Ochric, Bathycalcic) (IUSS 
Working Group WRB, 2015). Soil water content is monitored 
with Decagon ECH20 EC-5 (Meter Group Inc., USA) sensors at 
10, 20, 30, 50 and 100 cm soil depths at every 15 minutes. Me-
teorological data is available from two nearby meteorological 
stations.  

The Orchard Site is in Keszthely, on the Western shore of 
Lake Balaton (46° 44' 46.43" N, 17° 14' 19.31" E, 116 m a.s.l.) 
(Figure A2). Pear trees are grown in uniform rows, with mowed, 
spontaneous grass flora covering the alleys. The soil is Cambic 
Endocalcic Phaeozem (Aric, Pantoloamic) on loess parent 
material. Soil water content is measured with FP/mts probe of 
the TDR/MUX/mpts meter (Easy Test) at 15, 25, 35, 45, 55, 65 
and 95 cm soil depth at every hour (Skierucha et al., 2006). 
Meteorological time series for the site is available from a close-
by meteorological station. 

The Grassland Site is located in Szalafő, in the Upper Zala 
Valley (46° 51' 17.0'' N, 16° 22' 28.0'' E, 257 m a.s.l.) (Figure A3). 
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Fig. 1. Overview of the Lake Balaton catchment and the three sites: Forest Site (Fiad); Orchard Site (Keszthely); Grassland Site (Szalafő). 
 

Table 1. Soil and meteorological properties and the studied soil profiles. Meteorological data refers to the period 2002-2021 (Hungarian 
Meteorological Service, 2022). Abbreviations: WRB SRG: WRB Soil Reference Group; SOM: Soil Organic Material; EC: Electrical  
Conductivity. Psum: annual precipitation sum; Tmean: annual mean air temperature.  

 
Soil  
profile 
name 

Depth 
(cm) 

Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

Texture SOM 
(%) 

CaCO3 
(%) 

pH_H2O EC 1:2.5 
(µS/cm) 

Climate 
Psum;Tave  
(C; mm) 

Forest Site 
Fiad 

0–15 16.73 62.37 20.90 silt loam 3.47 0.08 6.09 158 moderately 
warm,  

moderately 
wet 

638 mm 
11.0°C 

15–40 25.56 52.99 21.45 silt loam 0.86 0.06 5.57 44.5 

40–75 27.57 50.81 21.63 clay loam 0.62 0.08 6.01 36.5 

75–110 17.54 59.62 22.85 silt loam 0.59 24.26 8.27 160.5 

110–130 13.40 61.15 25.45 silt loam 0.38 29.67 8.45 146 

Orchard 
Site  
Keszthely 

0–20 20.40 33.08 46.52 loam 1.48 0.39 7.79 177 moderately 
warm,  

moderately 
wet 

623 mm 
11.1°C 

20–40 20.04 32.47 47.49 loam 1.10 0.21 7.89 143.5 

40–80 20.65 31.84 47.51 loam 0.90 0.38 8.01 151 

80–140 19.20 53.80 27.00 silt loam 0.53 30.16 8.44 143.5 

Grassland 
Site 
Szalafő 

0–15 11.03 69.54 19.43 silt loam 4.81 0.08 7.11 242 moderately 
cool and 

wet  
747 mm 
10.3°C 

20–50 16.40 64.51 19.09 silt loam 1.63 0.08 7.12 119 

50–65 25.14 59.87 14.99 silt loam 0.75 0.04 7.14 105 

65–80 29.97 50.97 19.06 silty clay 
loam 0.45 0.10 6.83 132.5 

100–120 31.73 56.40 11.87 silty clay 
loam 0.27 0.02 5.81 94 

 
Soil type is Cambic Luvic Katostagnic Chernic Phaeozem 
(Endodensic, Episiltic, Katoloamic) developed on a sandy, 
clayey, marly Pannonian sediment. Campbell CS616 sensors 
(Campbell Scientific, 2020) are used to monitor soil water 
content at 10, 20 and 40 cm depth at every 10 minutes, of which 
daily aggregated values were considered for the analysis. 
Meteorological parameters were measured at the site. 

In case of all three sites, daily averages/sums of precipitation, 

air temperature, relative humidity, wind speed, global radiation 
and soil moisture time series were used for the simulations. The 
soil moisture sensors have been installed after using standard 
calibration with bulk EC of ≤ 0.5 dS m–1, bulk density of ≤ 1.55 
g cm–3, and measurement range of 0% to 50% volumetric WC. 
Post installation calibration with gravimetric method has also 
been carried out for each soil horizons. The derived calibration 
equations were applied on the time series soil moisture data. 
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Accuracy of the sensors were ±2%. The 10-min/15-min/1-hour 
step soil moisture measurements were inspected visually to 
identify and filter erroneous readings. This was done according 
to Dorigo et al. (2013) and gaps, spikes, oversaturation periods, 
geophysical consistency were checked. The filtered sub-daily 
soil moisture data were averaged to gain daily means at all sites. 
Finally, periods of low soil temperatures (Tsoil,daily < 5 ℃ for the 
Forest and Orchard, Tsoil,daily < 10 ℃ for the Grassland) were 
excluded in order to minimize the measurement uncertainty 
caused by the temperature effect on the soil moisture sensors. 

During excavating the soil profiles, from every soil horizon 
disturbed and six parallel undisturbed samples were taken. 
Undisturbed soil cores have 5 cm high and 5 cm diameter. Soil 
physical and chemical properties, water retention characteristics 
and saturated hydraulic conductivity were measured according 
to the Hungarian standard (MSZ-08.0205:1978, 1978; Buzás, 
1988, 1993). Water retention between 1 and 50 kPa was 
determined on three 100 cm³ undisturbed samples for each 
horizon, using the hanging water column method with sand- and 
kaolin-plate boxes. For pressures between 250 and 1500 kPa, 
pressure chambers were used on 2 cm³ disturbed samples. 
Saturated hydraulic conductivity was measured using the falling 
head method on three 100 cm³ undisturbed samples for each 
horizon. Finally, geometric mean values were calculated for the 
three-three repetitions of each horizon. The graphs in Figure A4 
show the measured pF-water content data pairs and the fitted 
MRC-s for all sampled profiles. 
 
Soil-vegetation-atmosphere model – theoretical background 

 
To describe water movement in the soil profiles, we 

considered the following hydrological processes for all sites: 
interception, evapotranspiration (ET) and water stress limited 
root water uptake, snow hydrology, surface runoff and single 
porosity matrix flow.  

Soil water movement was simulated by the numerical so-
lution of the (1) Richards equation. We used the (2)–(4) MVG 
equations to approximate the MRC and HCC. The MVG equa-
tions are among the most widespread closed form relationships 
for this purpose (Nimmo, 2009). Also, most soil hydraulic data 
sets provide information by giving the spatially variable  
parameter values for these functions. 

 𝜕𝛳𝜕𝑡 = 𝜕𝜕𝑥 ൤𝑘ሺℎሻ ൬𝜕ℎ𝜕𝑥 + 1൰൨ − 𝑆ሺℎሻ (1)
 𝜃ሺℎሻ = ቐ𝛳௥ + 𝛳௦ − 𝛳௥ሾ1 + |𝛼 ∙ ℎ|௡ሿ௠ , ℎ < 0𝛳௦, ℎ ≥ 0 (2)

 𝑘ሺℎሻ = 𝑘଴ ∙ 𝑆௘௟ ቈ1 − ቆ1 − 𝑆௘௟௠ቇ௠቉ଶ
 (3)

 𝑆௘ = 𝜃 − 𝜃௥𝜃௦ − 𝜃௥ (4)

 
where θ(h) is the water content of the soil (cm3 cm–3) at a given 
h matric pressure head (expressed in cm of water column); θr is 
the residual water content (cm3 cm–3); θs is the saturated water 
content (cm3 cm–3); α (cm–1), n (–), and m (–) are fitting 
parameters, where m = 1 – 1/n; k(h) is the soil hydraulic 
conductivity (cm day–1) at h; k0 is the hydraulic conductivity 
acting as a matching point at saturation (cm day–1); Se is the 
effective saturation (–) and l is a fitting parameter related to 
tortuosity of the pore space (–).  

Soil-vegetation-atmosphere model – practical setup 
 
To implement the SVAT approach, we mainly relied on the 

Hydrus-1D software (Šimůnek et al., 2013). The Hydrus code is 
a widely applied numerical solver to describe water movement 
in variably saturated soil profiles. It provides versatile, stable and 
reliable solution of challenging unsaturated phenomena with a 
strong emphasis on soil hydraulic parametrization. However, in 
case of the Forest Site we also applied the Brook90 model 
(Federer, 2021). The model setups for the three sites were similar 
in many aspects, but there were also some major differences. We 
introduce these by going through model geometry, initial and 
boundary conditions, description of vegetation (Figures A1–3).  

The depth of the model domains was selected with respect to 
the results of soil profile surveys. In each model version, we ad-
justed the soil layers with respect to the actual soil hydrological 
databases (see below). Daily soil moisture data was used at the 
observation points during the calibration-validation process in 
case of all three sites. 

Initial conditions were estimated with respect to the measured 
water contents and a two-month warm-up period was also 
applied. The soil profile surveys showed that neither the 
groundwater table nor the capillary fringe reach the domain of 
interest, so we uniformly used a zero-gradient lower boundary 
condition (free drainage). Considering the terrain, surface runoff 
was allowed at all sites. 

Measured daily meteorological data were used to define the 
upper boundary condition time series. The amount of precipita-
tion (rain or snow) was reduced with interception. Potential evap-
otranspiration (PET) was computed with the Penman-Monteith 
formula (Monteith, 1965). The built-in vegetation functions (in-
terception, light extinction, potential evapotranspiration, root wa-
ter uptake) of Hydrus-1D can facilitate mainly agricultural crops, 
but not forests. For the latter, the Brook90 software (Federer, 
2021) is a suitable alternative, as this model was developed to de-
scribe hydrological processes with more focus on canopy pro-
cesses. It provides a better approximation of interception, poten-
tial and actual ET and infiltration in case of wooded areas. Thus 
in case of Forest Site the Brook90 was used to calculate elements 
of the canopy related water budget, then these time series were 
used in the Hydrus-1D as atmospheric boundary conditions. 

Parametrization of the vegetation properties was based both 
on field observations and literature data. The maximal leaf area 
index (LAI) of the mixed oak/beech forest at Fiad was 
determined with leaf sampling (using five pieces of 0.25 m2 
frames, according to Bréda, (2003)), while the seasonal changes of 
LAI were estimated by using MODIS 16-day composite NDVI 
images (Wang et al., 2005). At the Orchard and Grassland Sites 
the variation of LAI was unknown as the grass was mowed 
according to an irregular and unrecorded schedule. Thus we 
assumed a trapezoid type of time series (Figure A5), of which the 
shape was partially based on Breuer et al. (2003), partially 
manually adjusted. Maximal rooting depth was set to 150 and 60 
cm for the Forest and Grassland Site respectively, while the root 
distribution was based on field observations and calibration. The 
water stress of root water uptake was modelled with the S-shape 
function (calibrated parameters) (Wesseling et al., 1991) for the 
Forest Site and with the Feddes-formula (default parameters for 
pastures) for the Orchard and Grassland Sites (Feddes et al., 1978). 
 
Applied soil hydraulic parameter sets 

 
The model variants differed only in the depth intervals of soil 

layers and the parameterization of the MRC and HCC. If it is 
possible in practice, water content-pressure head data pairs and 
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KS are measured to derive hydraulic parameters for soil 
hydrological simulations. For the description of the MRC, 
parameters of the van Genuchten model are fitted on the water 
content-head data pairs. There were no available k-h data pairs 
to optimize the k0 and l parameters, therefore we used measured 
KS as a matching point, and l = 0.5 as a common default value 
in of the MVG model based on (Mualem, 1976). Despite that this 
is not the most accurate approach regarding the description of the 
hydraulic conductivity, it is widely used due to the high cost of 
measuring unsaturated hydraulic conductivity. 

The five model variants for soil hydraulic properties were (1) 
reference (REF), (2) measured in the laboratory (MEAS_SHP), 
(3) predicted from the measured basic soil properties with the 
class European hydraulic pedotransfer functions (Tóth et al., 
2015) (MEAS_EU-PTF), (4) mapped with the EU-PTFs based 
on the national 100 m resolution DOSoReMI.hu soil dataset 
(Pásztor et al., 2020) (HUN-MAP_EU-PTF), (5) retrieved from 
the 250 m resolution EU-SoilHydroGrids dataset (Tóth et al., 
2017) (EU-SHG). The REF model variant was derived based on 
field and laboratory measured data, from which some were 
modified during the calibration-validation process. We 
considered this variant as the best achievable approximation of 
the soil water contents and fluxes computed by the Hydrus-1D 
simulation. The data sources used in the five model versions are 
summarized in Table 2. 

For the HUN-MAP_EU-PTF we computed the soil hydraulic 
parameters for the 0–30, 30–60 and 60–90 cm soil depths at a 
100 m horizontal resolution for the whole Balaton catchment and 
extracted the parameters from those maps for the locations of the 
analysed soil profiles. As part of the mapping process we 
analysed the performance of soil hydraulic maps – HUN-
MAP_EU-PTF and EU-SHG – based on the Hungarian Detailed 
Soil Hydro-physical Database (Makó et al., 2010). The dataset 
includes measured soil hydraulic data of soil profiles located at 
the Balaton catchment. For calculating the residuals between the 
mapped and measured properties, we harmonized the soil water  
 

retention values of the soil hydro-physical dataset for the soil 
depths used on the maps, i.e. 0–30, 30–60, 60–90 cm (HUN-
MAP_EU-PTF) and 0–2.5, 2.5–10, 10–22.5, 22.5–45, 45–80, 
80–150, 150–200 cm (EU-SHG) by using mass-preserving 
splines built in the R package GSIF (Hengl, 2017). The 
performance of the maps was evaluated based on mean error 
(ME) and root mean square error (RMSE) values. For the 
comparison of HUN-MAP-EU-PTF and EU-SHG maps the 
Kruskal–Wallis test of the R package “agricolae” (De 
Mendiburu, 2017) was applied at the 5% significance level on 
the mean square error values. The analysis related to the maps 
were performed in R (R Core Team, 2019) 
 
Calibration-validation and model performance comparison 

 
Automated calibration was applied only for the REF. 

Standard measures of goodness-of-fit (coefficient of 
determination – R2, mean absolute error – ME, root mean square 
error – RMSE, Nash-Sutcliffe Model Efficiency – NSME, see 
formulas in the Appendix) were used to quantify the agreement 
between measured and simulated soil moisture time series (Nash 
and Sutcliffe, 1970). Considering the evaluation of goodness-of-
fit, we followed the general guidance of Harmel et al. (2018). 
NSME was used as the primary efficiency indicator. We 
considered the simulation results unacceptable, if NSME was 
negative, satisfactory, if NSME > 0.5 and good if NSME > 0.66. 
We continued the calibration-validation process at least until the 
NSME was above 0.5 for the whole period. As the efficiency 
order of the non-calibrated model variants varied from site to 
site, we also calculated an overall rank to summarize the model 
reliability for all three sites. Here (i) we set up the rank (1 – best; 
5 – worst) of the model variants according to the order of their 
efficiency indicators for the given site, then (ii) averaged the 
ranks for the three sites, giving an extra penalty rank point for 
negative NSME values to express the low reliability of such 
results. 

 
Table 2. The source of soil depth intervals and soil hydraulic parameters input data used for the soil profile simulations. 
 

Name of model  
variant 

                 Source of the input data Figure for vertical profile of soil 
hydraulic parameters Soil depth intervals MVG and KS parameters 

REF Measured and cali-
brated 

Measured and calibrated Forest: Fig A1 (1) 
Orchard: Fig A2 (1) 
Grassland: Fig A3 (1)  

MEAS_SHP Measured Measured Forest: Fig A1 (2) 
Orchard: Fig A2 (2) 
Grassland: Fig A3 (2) 

MEAS_EU-PTF Measured 

Predicted from the measured easily available 
soil properties (particle size distribution, 
organic carbon content, topsoil/subsoil 
distinction, bulk density, pH) with the 
European pedotransfer functions (EU-PTFs) 
with PTF22 (MRC) and PTF16 (KS) of  
EU-PTFs 

Forest: Fig A1 (3) 
Orchard: Fig A2 (3) 
Grassland: Fig A3 (3) 

HUN-MAP_EU-PTF 0–30, 30–60, 60–90 
cm DOSoReMI.hu 

Predicted based on soil data of the  
DOSoReMI.hu maps with PTF19 (MRC) and 
PTF16 (KS) of EU-PTFs  

Forest: Fig A1 (4) 
Orchard: Fig A2 (4) 
Grassland: Fig A3 (4) 

EU_SHG 0–2.5, 2.5–10,  
10–22.5, 22.5–45,  
45–80, 80–150,  
150–200 cm  
EU-SoilHydroGrids 

Derived from EU-SoilHydroGrids maps Forest: Fig A1 (5) 
Orchard: Fig A2 (5) 
Grassland: Fig A3 (5) 
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The calibration involved the following parameters and 
variables: (i) vertical position of the soil layers, (ii) soil hydraulic 
parameters (for all layers), and (iii) vegetation parameters 
(extinction and interception coefficients, shape of LAI time 
series, vertical distribution of root density). Furthermore, in the 
REF variant we used an additional thin virtual soil layer at the 
surface to represent the effects of the sensitive boundary domain, 
i.e. higher organic material content and root density, possible 
presence of macro-pores, thus enhanced infiltration. 

Considering the water budget, only open field precipitation 
was measured directly among the governing hydrological 
processes, while PET was estimated independently prior to the 
simulations. All other water balance components were calculated 
as part of the model simulations. Thus – in the absence of a 
complete measured dataset – we used the simulated annual water 
budget of the calibrated REF model as the reference scenario for 
the model variant comparison for all three sites. 

 
RESULTS 
Soil hydraulic properties 

 
The RMSE values of the MRC computed based on the 

mapped van Genuchten parameters are 0.07 cm3 cm–3 for HUN-
MAP_EU-PTF and 0.07–0.09 cm3 cm–3 for EU-SHG (Table 3.) 
analysed on the samples with measured theta-head pairs of 
Balaton catchment. Based on the Kruskal-Wallis test, HUN-
MAP_EU-PTF performed significantly better than EU-SHG 
based on the mean squared error of the predictions. During 
deriving the parametric EU-PTFs, the RMSE was 0.058–0.067 
cm3 cm–3 for the class PTFs (PTF19) (Tóth et al., 2015), which 
is comparable with the RMSE of HUN-MAP_EU-PTF. In case 
of both maps PTF16 of EU-PTFs was used to compute the KS. 
For log10KS the PTF16 had 1.06–1.09 log10 (cm day–1) RMSE on 
the test set of EU-PTFs. For HUN-MAP_EU-PTF the RMSE 
was 0.86–1.06 log10 (cm day–1), for EU-SHG it was larger than 
that, but there was no significant difference between the 
performance of the two maps, however it could be analysed at 
only maximum 37 samples per soil horizons. It was expected that 
the performance of the mapped soil hydraulic properties would 
decrease compared to that of the PTFs, due to the uncertainty of 
soil property maps, which were used as input information for the 
predictions. The RMSE values of the derived maps are 
comparable with the findings of Zhang et al. (2018), Gupta et al. 
(2021), and Gupta et al. (2022). 

Figure A9 and Figure A10 show the density plots of mapped  
 

values in the case of HUN-MAP_EU-PTF and EU-SHG model 
variants computed for the Balaton catchment. The density plots 
of the soil hydraulic parameters have multiple peaks within the 
same soil depth, because for HUN-MAP_EU-PTF, the parame-
ters of MRC were computed with class PTF, which considers 
USDA texture classes and topsoil/subsoil distinction. Majority 
of the residual water content values is zero, which is in line with 
findings of Zhang et al. (2022). The KS was computed with re-
gression-tree-based PTF (PTF16) for both maps. 

For each site, the five soil profiles derived from (i) calibration, 
(ii) measurements of field samples, (iii) from measured basic soil 
properties with PTF and (iv-v) from using soil maps are 
presented in the Appendix (Figure A1–3). The horizontal 
characteristics of the gravitational, plant available, unavailable 
water content and solid part are similar for the measured soil 
hydraulic properties (MEAS_SHP) and predicted ones from 
measured basic soil properties (MEAS_EU-PTF). In the case of 
mapped soil hydraulic properties (HUN-MAP_EU-PTF, 
EU_SHG) data shows decrease in porosity – i.e. increase volume 
of solid part – with depth for all three sites but it is not the case 
in reality for the Forest and Orchard site. For these sites, the 
layering of the soil is not captured by the maps. This shows that 
uncertainty of mapped soil hydraulic properties mainly come 
from the uncertainty of the soil maps used as inputs to compute 
the soil hydraulic maps. Regarding the KS there are notable 
differences both in vertical change and magnitude even when 
measured soil properties are used to compute it. This underpins 
that the prediction of saturated hydraulic conductivity has high 
prediction uncertainty (Nasta et al., 2021b) which is due to a 
number of reasons: high variability of KS in space (Usowicz and 
Lipiec, 2021) and time (Alletto et al., 2015), the variability of KS 
cannot be fully explained by basic soil properties (Vereecken, 
2002) and difficulty in defining the volume of measured sample 
that can support the description of soil hydrological processes at 
profile scale (Rezaei et al., 2016). 
 
Simulation of soil moisture 

 
According to the guidelines of Harmel et al. (2018), we 

considered the calibration-validation (REF model) at the Forest 
Site as acceptable (the two-year averaged NSME = 0.50). Soil 
water content was under- and overestimated in wetter and drier 
periods respectively. Apart from this, the REF model simulated 
the effects of snow melt, precipitation and evapotranspiration 
realistically, with residuals moving in an acceptable range.  
 

Table 3. Performance of soil hydraulic maps computed for the Balaton catchment based on the measured profile data of the Hungarian 
Detailed Soil Hydro-physical Dataset. KS: saturated hydraulic conductivity, MRC: soil moisture retention curve, ME: mean error, RMSE: 
root mean square error, N: number of samples/number of theta-h pairs. 
 

Soil hydraulic map Depth log10KS MRC 
ME RMSE N ME RMSE N 

cm log10 (cm day–1) – cm3 cm–3 – 
HUN-MAP_EU-PTF 0–30 –0.36 1.06 37 0.003 0.069 1694 

30–60 0.09 0.81 36 0.005 0.071 1674 
60–90 0.09 0.86 35 0.011 0.073 1632 

EU-SHG 0–2.5 –0.17 1.58 37 –0.024 0.078 1727 
2.5–10 –0.39 1.48 37 –0.008 0.074 1727 
10–22.5 –0.40 1.06 37 0.007 0.071 1723 
22.5–45 –0.09 0.62 37 0.015 0.070 1718 
45–80 0.62 1.32 36 0.025 0.077 1696 
80–150 0.31 0.85 34 0.029 0.080 1555 
150–200 0.08 0.89 14 0.038 0.093 427 
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Model efficiency of the calibration and validation periods dif-
fered notably, which suggests that longer simulation period will 
improve model performance. 

Parameter fitting was burdened with data uncertainty: based 
on visual evaluation (Dorigo et al., 2013), the soil moisture data 
from the 10 cm sensor had to be excluded from the analysis. This 
is an unfavourable factor for the parameter fitting process, as this 
sensor monitored the critical topsoil layer of the soil column, 
where the water content variations are the most sensitive for me-
teorological conditions. The absence of locally measured precip-
itation also meant a source of error as the water budget calcula-
tions showed significant sensitivity to the atmospheric boundary 
time series. Notable overestimations (0.1–0.2 cm3 cm–3 in the 
spring of 2017, Figure A11) were present for the REF variant, 
which could not be eliminated with parameter adjustment. This 
indicates that the applied boundary conditions were biased. To 
overcome this issue, a new precipitation gauge was installed at 
the Forest Site, which will help improving model accuracy in the 
future. The goodness of fit of the other four model variants were 
not acceptable, the NSME was negative in four cases. The mean 
coefficients of determination between the measured and simu-
lated soil water content values were between 0.48 and 0.79 for the 
site. The lower values were obtained for 100 cm soil depth. 

At the Orchard Site the variability of soil water content was 
the lowest among the three sites, which is partly the result of the 
lowest amount of precipitation in the studied period. Only the 
calibrated model provided acceptable results for soil moisture 
(NSME = 0.54), while variants with mapped soil hydraulic  
properties (HUN-MAP_EU-PTF, EU-SHG) yielded negative 
NSME values (Table 4). Underestimation of soil moisture time 
series occurred in wet periods, while over-prediction was not 
characteristic. The highest prediction error occurred in the 
wettest period of the simulation, as a result of a major 
precipitation event (09-2018). Nor the calibrated, neither any 
other model variants were able to reproduce the sharp 
appearance of the wetting front in the deepest (95 cm) layer. This 
suggests the presence of preferential flow paths or other sources 
of strong non-linear behaviour (e.g MRC hysteresis), which  
 

allow the quick advance of the wetting front. However, as most 
soil hydraulic databases provide only the single-porosity 
Mualem-van Genuchten parameters, we also considered single-
porosity matrix flow. It is noteworthy that the effect of initial 
conditions disappeared after only 3 months, and later on the five 
variants led to similar soil moisture time series with major 
differences appearing only after large precipitation events. 

The mean coefficients of determination between the observed 
and simulated time series with predicted soil hydraulic properties 
for the site were between 0.55 and 0.86. Lower values (0.35–0.62) 
were obtained at 95 cm soil depth, which can be attributed to the 
underestimation of the only major soil moisture peak. 

Soil moisture simulations proved to be the most accurate at 
the Grassland Site, where all five model variants resulted in 
positive NSME values. Furthermore, according to Harmel et al. 
(2018) the REF model results turned out to be excellent (Figure 
2, Table 4). Calculations represented real world processes 
reliably: soil moisture varied intensively in the topmost layer 
indicating strong dependence from atmospheric conditions. This 
significant temporal variation showed a rapid decrease with 
depth: the ranges of measured/simulated water content at 20 and 
40 cm are only half of the range at 10 cm. This is in line with the 
observed characteristics of the soil profile: the generally high 
clay content is accompanied by relatively high organic matter 
content in the topsoil (the highest OM content among the three 
studied sites), which rapidly drops with depth. Measured, 
database derived and calibrated vertical profiles of the saturated 
water content and hydraulic conductivity also suggest such a 
hydraulic behaviour (Figure A3). All model variants over-
predicted measured values, when the soil started to dry out and 
through dry periods. Under-prediction is characteristic when the 
water content of the soil is close to saturation. At 10 cm depth, 
MEAS_SHP and MEAS_EU-PTF usually overestimated, while 
in contrast HUN-MAP_EU-PTF and EU-SHG under-predicted 
the soil water content in most of the studied period. Except in the 
case of MEAS_SHP, at 20 cm depths mainly under-prediction 
occurred with all model variants. At 40 cm depth all model 
variant underestimated the soil moisture time series. 

 
 
 

 
Fig. 2. Precipitation (a), measured and simulated soil moisture time series at the Grassland Site for depths 10 cm (b), 20 cm (c) and 40 cm. 
Blank measured data indicate periods of low soil temperature, where measurements are not reliable. 
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Table 4. Outcomes for model efficiency of soil moisture simulations with the five model variants, the number of measured soil moisture data 
per layer and the calibration-validation periods. Overall database reliability rank Dimension: NSME [–], RMSE [cm3 cm–3], ME  
[cm3 cm–3], R2 [–]. 
 

Name of the 
site 

Goodness-of-fit by model variants Number of meas-
ured soil water 
content per soil 

layer 

Calibration  
period 

Validation  
period 

 
REF MEAS_ 

SHP 

MEAS_
EU-
PTF 

HUN-
MAP_EU-

PTF 

EU-
SHG 

Forest Site 

NSME 0.50 –0.80 –0.52 –0.47 –0.65 

568 01/01/2016–
31/12/2016 

01/01/2017–
31/12/2017 

RMSE 0.04 0.076 0.075 0.075 0.078 
ME 0.03 0.06 0.07 0.06 0.07 
R2 0.79 0.48 0.56 0.62 0.55 

Orchard Site 

NSME 0.54 0.15 0.07 –1.81 –0.69 

391–478 01/02/2018–
31/12/2018 

01/01/2019–
31/07/2019 

RMSE 0.02 0.024 0.024 0.041 0.032 
ME 0.01 0.02 0.02 0.03 0.03 
R2 0.86 0.74 0.79 0.55 0.70 

Grassland 
Site 

NSME 0.71 0.49 0.19 0.28 0.34 

760–817 01/01/2013–
31/12/2014 

01/01/2015–
31/12/2016 

RMSE 0.05 0.07 0.09 0.09 0.08 
ME 0.04 0.06 0.08 0.08 0.07 
R2 0.87 0.85 0.79 0.88 0.85 

Overall rank: 
soil moisture 

NSME 1 2 3 5 5 Performance ranked with respect to model efficien-
cies 

combined for the three Sites: 
1 – best; 5 – worst 

RMSE 1 2 4 4 5 
ME 1 2 4 4 4 
R2 1 5 3 2 4 

Overall rank:  
water budget Ref 2 4 1 3 

Performance ranked according to water budget accu-
racy, combined for the three Sites:  

1 – best; 4 – worst 
 

 

 

Fig. 3. The most accurate model variants based on mean absolute error of the simulated soil water content, computed by day for the whole 
soil profile in the a) Forest, b) Orchard and c) Grassland sites. 
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As expected, the calibrated soil parameters led to the best 
model performance at all locations, not only for the Nash-
Sutcliffe efficiency (NSME was 0.50, 0.54 and 0.71 for the 
Forest, Orchard and Grassland Site respectively), but also 
performed best for any other efficiency metrics. The other four 
variants had different orders from site to site, but when 
considering the overall rank (for all three sites) the simulations 
based directly on the measured soil hydraulic parameters 
(MEAS_SHP) provided second best agreement. The 
combination of in situ measured primary soil properties and the 
EU_PTFs ranked third. The two variants based solely on soil 
maps performed the weakest, yielding negative NSME values for 
two sites (Table 4). 

Beside the common model efficiency measures, we also com-
pared the accuracy of the model variants on a daily basis, using 
mean absolute error of the simulated soil moisture values at all 
depths (the REF variant was not included in this analysis to allow 
a more detailed comparison of the four database derived model 
set ups) (Figure 3). 

For all studied sites the MEAS_SHP model variant had the 
lowest mean absolute error for most of the studied period. For 
the Forest and Orchard Site the MEAS_EU-PTF model variant 
provided the second most accurate simulation; if only validation 
period was considered, MEAS_EU-PTF outperformed the 
MEAS_SHP. When soil parameters were derived from soil 
hydraulic maps, the one using national soil information (HUN-
MAP_EU-PTF) resulted more accurate soil moisture 
simulations, than the European (EU-SHG) in the case of Orchard 
and Grassland sites (Figure 3). Interestingly, for the Forest Site, 
the EU-SHG model variant was more accurate than the HUN-
MAP_EU-PTF, which might be due to the lower predictive 
power of the REF model compared to the other two sites. 
 
Water budget comparison 

 
Major differences occurred in the simulated water budgets of 

the REF variants among the three sites, which can be attributed 
to the different governing environmental conditions and thus 
varying atmospheric fluxes (Table 5).  

At the Forest Site the annual average precipitation sum 
exceeded PET and had a notable, 20% simulated interception. 
Most of the throughfall infiltrated, providing enough water to 
increase soil water storage (with 88 mm per year) beside of 
covering 93% of the PET. In line with the large 
evapotranspirative capacity of the forest canopy, ET dominated 
the output side of the water balance. Due to this dominance of 
actual ET, the amount of runoff was almost negligible (0.6%). 
No percolation occurred, indicating that the infiltrated water 
remained in the upper ~100 cm domain. This is supported by the 
fact that the soil moisture sensor at 100 cm depth registered only 
an almost negligible soil water content change throughout the 
two years (Figure A11). The PET exceeded precipitation sum 
only at the Orchard Site with more than 200 mm per year, 
indicating much drier climatic conditions at this location. 
However, due to the lower precipitation sum, the loose 

vegetation cover and the applied low LAI time series (Figure 
A8), simulated actual ET turned out to be the lowest. As a result 
of the minimal interception and the low ET/PET ratio, the REF 
variant yielded 5.4% soil water storage  
increase and 10.4% percolation as well. The latter can be 
attributed to one single heavy rainfall event, the only time, when 
soil water content showed a positive change and increased above 
field capacity at 95 cm (deepest measurement). PET was the 
lowest at the Grassland Site, 90% of it was covered by actual ET. 
This was possible due to the sufficient amount of rainfall and on 
the expense of 11% storage decrease. At this location percolation 
was a significant component of the water budget (21% of 
precipitation). As expected, runoff was the highest here both in 
absolute and relative sense (68 mm year–1 and 8%) out of the 
three sites. 

At each site, the four model variants resulted in minor to 
moderate water budget differences compared to the reference 
runs (REF variants). These differences are only partially in line 
with the model efficiency indicators: the model reliability 
(overall rank) judged by (i) the accuracy of the simulated soil 
moisture time series and by (ii) the water budget leads to a 
different order of model variants (Table 4). At the Forest Site, 
the on-site measured soil hydraulic parameters (MEAS_SHP) 
resulted in increased runoff (8.4% of total precipitation), while 
the positive storage change and actual ET was both reduced. On 
the other hand, the three model variants with weaker soil 
moisture overall rank led to similar water budgets as the REF 
with only slight differences (–2% to 5%) in storage change and 
ET. Especially the EU_SHG version approximated closely the 
reference variant. Water balances differed in actual ET, 
percolation and storage change at the Orchard Site. Only the 
HUN-MAP_EU-PTF variant reproduced the positive storage 
change indicated by the REF, and neither of the four variants 
could approximate the volume of percolation. At the Grassland 
Site major differences occurred in soil water storage, runoff and 
percolation. Runoff estimates ranged from zero (EU_SHG) to 
more than three times the REF value (MEAS_EU-PTF). Here, 
the MEAS_SHP provided the best match with the reference 
variant water budget. 
 
DISCUSSION 
Soil hydraulic maps 

 
The uncertainty of mapped soil hydraulic properties can 

originate from two sources: the soil maps used as input soil data 
for the predictions and the PTFs applied to compute the soil 
hydraulic properties (Dai et al., 2013; Van Looy et al., 2017). As 
expected, the predictions based on the national soil maps (HUN-
MAP_EU-PTF) are more accurate than the one based on the 
global soil map (EU_SHG). Further improvement in the 
performance of the soil hydraulic maps could be gained by using 
national soil maps based on a higher soil profile density with 
more detailed vertical information as input and application of 
PTF derived on local soil hydraulic dataset. 

 
 
Table 5. Average annual precipitation, interception and potential evapotranspiration at the Sites. 
 

Name of the site Annual average fluxes 
Precipitation Interception Potential evapotranspiration 

 mm year–1 
Forest Site 794 158 750 
Orchard Site 701 30 912 
Grassland Site 797 101 639 
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Fig. 4. Average annual water budget for the five model variants at the Forest, Orchard and Grassland Sites. First columns indicate the fate of 
precipitation at the soil surface; Second columns show hydrological processes in the modelled soil domains (evapotranspiration and root 
water uptake, recharge and change in soil water storage); For better clarity, water intercepted and evaporated at vegetation surface is not 
displayed. 

 
 

 
Site specific lessons 

 
Regarding both the sites and the model variants, soil moisture 

and water budget simulation results showed a remarkable 
variation. This is in line with changes in local environmental 
conditions (meteorology, vegetation and soil) as well as with 
differences in the measurement/database derived soil profiles. 
The vertical distribution of water retention characteristics and 
especially KS showed major differences for the five model 
variants at each site (Figure A5–7). Beside the depth distribution 
of MRC and HCC parameters, the position of soil layers also 
contributed to the observed differences of the results, as the 
numerical simulation is rather sensitive to this input. This 
highlights the importance of vertical discretization, which might 
be uncertain in soil datasets. For instance, if a textural change 
occurs between 70 and 90 cm soil depth it might not be captured 

due to the standardized layering – i.e., 0–5, 5–15, 15–30, 30–60, 
60–100, 100–200 cm – of the soil map. 

At the Forest site both the field and laboratory measurements 
of hydraulic conductivity were burdened with various 
complications (extensive root network near the soil surface, 
slow/incomplete saturation of the samples, etc.), which led to 
data uncertainty. Especially soil hydraulic characteristics 
showed great variability that can influence local data collection 
and modeling. The hydrological effects of this inherent 
variability in the MRC and KS are strongly scale-dependent and 
are probably the most defining at the plot-hillslope scale (Baveye 
and Laba, 2015). At certain depths, hydraulic conductivity 
values from calibration (REF), measurements (MEAS_SHP) or 
derived by PTFs differed with orders of magnitude. Such data 
uncertainty is a general experience for PTF derived KS data at 
local, regional and global scales (Gupta et al., 2022; Nasta et al., 
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2021b; Zhang et al., 2018). This originates from the (i) lack of 
standardized KS measurement methods and (ii) limited spatial 
and temporal information about environmental conditions, 
which influence KS, e.g., porosity governed by biological and 
human activity. These limit the efficiency of KS PTFs 
predictions in general. The strong water content dependency of 
to the HCC and the frequent absence of k(h) measurements (as 
in case of this study as well) further increases data uncertainty 
associated to field- and/or map-based hydraulic conductivity 
data (De Pue et al., 2019). As one of the most sensitive 
parameters of soil moisture simulations is the hydraulic 
conductivity (De Pue et al., 2019), its uncertain vertical 
distribution explains the weak model performance (negative 
NSME for all variants expect for REF) at the Forest site. 
Furthermore, hydraulic conductivity has a defining role also on 
water budget results: runoff, percolation and storage change 
responded sensitively to alterations in HCC profiles. This 
outcome was relevant not only at the Forest but at all three sites.  

Simulated storage change and percolation responded sensi-
tively at the Orchard and Grassland Sites for the variation of soil 
hydraulic parameters: at the Orchard, the increased downward 
flux decreased the volume of stored soil water or vice versa. 
Modelled percolation varied between 0 and 98 mm  
year–1. At the Grassland Site, percolation ranged between 115 
and 272 mm year–1 and beside storage, it influenced actual ET 
and runoff. These ranges show a major uncertainty in the estima-
tion of groundwater recharge. In case of a distributed parameter 
hydrological model application such local uncertainties would 
accumulate along the flow paths, leading to an increased 
over/underestimation of other percolation-dependent water 
budget components (baseflow and discharge), as well. 

At the Grassland Site water budget results raised an 
interesting issue, all variants resulted in relatively high values of 
percolation, an outcome that contradicts our a priori expectations 
considering the high clay content at this site. One explanation for 
this phenomenon is the possible presence of preferential flow 
paths, which is supported by simulation and field experience. At 
40 cm depth the measured soil water content changes slowly and 
in a smooth manner except for two moderate rainfall events, 
which induced unexpectedly sharp increases in the observed 
water content. Simulations could not reproduce this strongly 
non-linear response. During the field survey we observed the 
presence of pseudo-gleyic expansive clay in the soil profile, 
which might offer a possible explanation for the irregular soil 
moisture behavior. Such expansive soils tend to have special 
shapes of the MRC and HCC due to the dis- and reappearance of 
fissures during the swelling-shrinking process (Ito and Azam, 
2020). Another possible cause for the observed non-linear 
change can be the presence of occasional interflow, a 
phenomenon possibly occurring in this region, however 
neglected by the applied Hydrus-1D algorithm. Either its 
preferential flow paths and/or interflow, this experience 
underlines the limited capacity of available soil hydrological 
databases to represent such complex behavior by using the most 
common single-porosity soil hydraulic model. Incorporating 
dual-porosity information into PTF development is a promising 
research direction to cope with this issue (Zhang et al., 2022). 
 
General experience 

 
Beside the differences, there were some similarities between 

the three sites, as well. In line with expectations and common 
sense, the simulations based directly on the measured soil 
hydraulic parameters (MEAS_SHP) provided second best 
agreement with observed soil moisture data, while PTF estimates 

based on measured primary soil properties (MEAS_EU-PTF) 
ranked as third, and the soil hydraulic parameters derived from 
maps ranked the weakest. The NSME turned out to be negative 
for several database model variants. While the national and 
continental database derived results ranked the weakest with 
respect to soil moisture, the comparison of the water budgets 
interestingly led to a different outcome. The HUN-MEAS_EU-
PTF turned out to provide the best approximation of the REF 
variant. These outcomes indicate the importance of field 
experience and the acceptable performance of PTF derived soil 
hydraulic parameters in soil water simulations if locally 
measured basic soil data is used as input.  

The performance of the model was influenced by several local 
environmental factors, such as dense root network near the forest 
floor, temperature effects on the measured near-surface soil 
moisture contents, possible presence of macro-pores and/or 
fissures, expansive clay with non-linear behavior, which limits 
the accuracy of automated soil moisture simulations at soil 
profile and catchment level if soil input data is based solely on 
large-scale soil hydraulic databases. 

The overall ranks for model efficiency and for the water 
budget results also raise questions about the local 
representativeness/accuracy of catchment scale, distributed 
parameter hydrological simulations. Even though the recent 
technological advances, the calibration-validation of cell-based 
catchment models still relies mostly on time series recorded at a 
relatively low number of observation points within the 
watershed. This calibration practice provides only a limited 
control over the adjustment of spatially distributed parameters. 
Therefore, the seemingly good model efficiencies can be the 
result of over-parametrization (Fatichi et al., 2016).  

Two main options can offer solution for this issue, one of 
them is the multi-objective calibration strategy. Beside pointwise 
data, the multi-objective calibration relies also on spatially 
continuous data sources of hydrologic variables, e.g. snow cover, 
surface soil moisture content, evapotranspiration or temporal 
water coverage (Gomis-Cebolla et al., 2022; Kozma et al., 2022). 
Among these variables remotely sensed soil moisture data could 
offer the most relevant information for the adjustment of soil 
parameters. However, such soil moisture products haven’t 
become very popular among modelers for a number of reasons 
(Tong et al., 2021). Thus, currently these products have limited 
and “costly” capacity to increase the spatial representativeness 
of hydrological simulations. 

The improvement of the spatial input data quality is the other 
option. The increasing resolution and accuracy of the input soil 
data and the good discharge agreement at the gauging stations 
together offer the illusion of reliable spatial representation of 
surface and subsurface water movements and conditions. 
However, as this research points it out, there are significant 
differences between soil databases both in case of soil 
hydrological parametrization and vertical distribution of soil 
layering within the soil profile. These can lead to significantly 
different simulation outcomes at cell-level, leading to uncertain 
spatial representations of hydrological processes. 

This emphasizes the importance of proper aim definition for 
each model study: whether an analysis primarily aims to simulate 
(i) soil moisture dynamics or (ii) water budget and 
hydrological/environmental flows. Considering catchment scale 
hydrological modelling, the profile based (cell-level) budgets – 
such as the ones presented here or e.g. Vereecken et al. (1992), 
Nasta et al. (2021b) – can provide useful information and insight 
about the functional reliability of the studied soil property 
databases and might help to overcome the issue of over-fitted 
models. 
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CONCLUSIONS 
 
Soil hydraulic properties derived by PTFs from continental 

and national soil maps still have limited capacity to provide 
reliable input data for the simulations of unsaturated zone 
hydrology at soil profile scale. Even though the recent advances 
in geostatistics and remote sensing, the site-specific field scale 
data gathering is still necessary for profile scale hydrological 
simulations. If local soil survey information is available for the 
basic soil properties – i.e. depth of genetic soil horizons, sand, 
silt and clay content, organic carbon content, bulk density –, soil 
hydraulic properties derived from those by PTFs can provide 
input with acceptable accuracy for profile scale simulation. The 
largest challenges are to improve the vertical accuracy of soil 
layering and to represent quantitative information about 
preferential flow paths. 
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APPENDIX A 

 
 
Fig. A1. Soil profile representation in the Hydrus model for the measured soil properties (MEAS_SHP) at the Forest Site: profile discretiza-
tion, position of soil horizons, depth distribution of soil hydraulic properties and root distribution. 
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Fig. A2. Soil profile representation in the Hydrus model for the measured soil properties (MEAS_SHP) at the Orchard Site: profile discreti-
zation, position of soil horizons, depth distribution of soil hydraulic properties and root distribution. 

 

 
 
Fig. A3. Soil profile representation in the Hydrus model for the measured soil properties (MEAS_SHP) at the Grassland Site: profile discreti-
zation, position of soil horizons, depth distribution of soil hydraulic properties and root distribution. 
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Fig. A4. measured pF-water content values (markers) and fitted pF curves (lines) of the three study sites: Forest (top), Orchard (middle) and 
Grassland (bottom). Error bars indicate the range of measured water content values from the three samples taken from each soil horizon. 
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Fig. A5. Depth distribution of soil hydraulic properties for the five model variants at the Forest Site: gravitational, plant available and una-
vailable water contents (WC) and saturated hydraulic conductivity. 
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Fig. A6. Depth distribution of soil hydraulic properties for the five model variants at the Orchard Site: gravitational, plant available and 
unavailable water contents (WC) and saturated hydraulic conductivity. 
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Fig. A7. Depth distribution of soil hydraulic properties for the five model variants at the Grassland Site: gravitational, plant available and 
unavailable water contents (WC) and saturated hydraulic conductivity. 
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Fig. A8. Meteorological time series applied as boundary conditions at a) Forest (Fiad), b) Orchard (Keszthely) and c) Grassland (Szalafő) 
Site. 
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Fig. A9. Density plots of a)-d) mapped van Genuchten model parameters to describe the soil moisture retention curve and e) saturated 
hydraulic conductivity for the area of Balaton catchment by soil depths. Maps were derived by applying class EU-PTFs on the soil map 
information of the DOSoReMI.hu (HUN-MAP_EU-PTF). θr: residual water content; θs: saturated water content; α and n: fitting parameters; 
KS: saturated hydraulic conductivity. The van Genuchten parameters and hydraulic conductivity values retrieved from the map for the three 
studied sites are indicated by dot, triangle and square. 
 

 
 
Fig. A10. Density plot of a)-d) the van Genuchten model parameters to describe the soil moisture retention curve and e) saturated hydraulic 
conductivity for the area of Balaton catchment by depth from the EU-SoilHydroGrids dataset (EU-SHG). θr: residual water content; θs: 
saturated water content; α and n: fitting parameters; KS: saturated hydraulic conductivity. The van Genuchten parameters and hydraulic 
conductivity values retrieved from the map for the three studied sites are indicated by dot, triangle and square. 
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Fig. A11. Precipitation (a), measured and simulated soil moisture time series at the Forest Site for depths 20 cm (b), 30 cm (c), 50 cm (d) and 
100 cm (e). Blank measured data indicate periods of low soil temperature, where measurements are not reliable. 
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Fig. A12. Precipitation (a), measured and simulated soil moisture time series at the Orchard Site for depths 15 cm (b), 35 cm (c), 45 cm (d) 
55 cm (e), 65 cm (f) and 95 cm (g). Blank measured data indicate periods of low soil temperature, where measurements are not reliable. 
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Model efficiency measures 
 Rଶ = ቆ ∑ ሺ𝑥௜ − 𝑥̅ሻሺ𝑦௜ − 𝑦തሻ௡௜ୀଵඥ∑ ሺ𝑥௜ − 𝑥̅ሻଶ௡௜ୀଵ ∑ ሺ𝑦௜ − 𝑦തሻଶ௡௜ୀଵ ቇ 

𝑀𝐸 = ∑ |𝑥௜ − 𝑦௜|௡௜ୀଵ 𝑛  

𝑅𝑀𝑆𝐸 = ඨ∑ ሺ𝑥௜ − 𝑦௜ሻଶ௡௜ୀଵ 𝑛  

𝑁𝑆𝑀𝐸 = 1 − ∑ ሺ𝑦௜ − 𝑥௜ሻଶ௡௜ୀଵ∑ ሺ𝑦௜ − 𝑦పഥሻଶ௡௜ୀଵ  

 
where R2 coefficient of determination 
ME mean absolute error 
RMSE root mean square error 
NSME Nash-Sutcliffe model efficiency 
xi i-th value of simulated time series 
yi i-th value of measured time series 𝑥̅, 𝑦ത Average value of simulated/measured test time  
 
Technical remarks 

 
The process of Hydurs-1D model calibration was aided with the self-developed framework software "Batched Hydrologic Runs" 

(BHR.exe, (Decsi et al., 2020)). The BHR.exe serves as an extension for Hydrus-1D and carries out automated model set ups, model 
runs and statistical evaluation of results. It can be used for various calibration tasks (fitting of soil moisture at multiple depths, surface 
pressure head or bottom flux) and batched model runs with varying top-bottom boundary condition time series. Considering calibra-
tion, the main advantage of the BHR algorithm compared to the Hydrus-1D built in inverse solution is that not only soil hydraulic 
parameters, but practically all model input data can be optimized (involving e.g. vegetation data or soil layer positions). The BHR.exe 
carries out local/global optimizations by using the open source nlopt library (Johnson, 2014). 
 

 


