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ABSTRACT

Based on air quality index data for the period 2018-2022, Hungary ranks as the 80th most polluted
country in the world. Given the air pollution data measured in Hungary and the health impact of air
pollution, it is of utmost importance to measure air quality in Hungary focusing on PM10 and PM2.5
pollutants. One possible solution for high-density measurement is to utilize low-cost sensors at the
population level. The calibration procedure has to be carried out in a way that does not incur extra costs
and maintenance at the physical level. A potential solution is the development of an algorithm to
perform the calibration with remote access. This publication presents a fragment of this development,
where we attempted to implement the procedure using a neural network and performed a comparative
analysis with official data.
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1. INTRODUCTION

On 12 May 2021, the European Commission adopted the EU Action Plan on “Zero Pol-
lutants in Air, Water and Soil” [1], a key commitment of the European Green Deal. The Zero
Pollutant Goal 17 is an overarching objective that contributes to the UN 2030 Agenda for
Sustainable Development and complements the EU’s climate neutrality target for 2050, in
synergy with the goals for a clean and circular economy and the restoration of biodiversity.
The main objective of the Action Plan is to provide guidance for integrating pollution
prevention into all relevant EU policies, maximizing synergies in an effective and propor-
tionate way, enhancing implementation and identifying possible gaps or trade-offs. In order
to steer the European Union (EU) towards the vision of a Healthy Planet for All by 2050, the
Action Plan sets out key targets for 2030 to accelerate the reduction of pollution:

Key target 1: Reduce the health impacts of air pollution (premature deaths) by more than
55% - based on Directive 2016/2284/EC of the European Parliament and of the Council on
national emission reduction commitments.

Key target 2: The EU should reduce the proportion of EU ecosystems where air pollution
threatens biodiversity by 25% by 2030 - based on Directive (EU) 2016/2284 of the European
Parliament and of the Council on national emission reduction commitments.
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In June 2022, the Environment Council adopted a gen-
eral approach on the review of the EU ETS. In December
2022, the Council reached a provisional agreement with the
European Parliament. Under this agreement, the overall
emissions reduction target for sectors covered by the EU
ETS for 2030 was increased from 61% to 62%, as proposed
by the Commission.

The project GINOP-2.3.4 (Establishment of Advanced
Materials and Smart Technologies at the University
of Miskolc - GINOP-2.3.4 - 15-2016-00004), was to
establish the foundation for intelligent building man-
agement and urban management systems and services.
These systems and services can be integrated into sus-
tainable building management systems, they contribute
to more efficient and sustainable operation, and prepare
decisions and interventions by analyzing measured
environmental and comfort perception and structural
parameters. A sensor-based urban monitoring and
operation support system is composed of two main parts.
Firstly, low-cost sensor units for air quality measurement
have been developed within the GINOP-2.3.4 project
and, secondly, a methodology to describe the system and
its applicability.

The low-cost sensor units used for air quality measure-
ment also include sensors for measuring particulate matter
concentrations. Several of these sensor units have been
installed in the Miskolc-Martinkertvéros area, and their
data is stored and summarized in a central database.

The measured data are recorded every 10 min along with
time stamps and coordinates. In addition to the station
deployed by the National Air Pollution Monitoring Network
(NAPMN) in Miskolc-Martinkertvaros, a proprietary sensor
unit was also installed. The data logger placed next to the
NAPMN station provides data every 6 s when the particulate
matter sensor is active.

The sensors used in NAPMN stations are subjected to
a rigorous calibration process every six months, which
involves considerable costs. A prerequisite for using the low-
cost sensor unit developed within the GINOP-2.3.4 project
for residential and municipal surveillance purposes is that
the sensors are installed in a calibrated condition and are
automatically recalibrated at regular intervals without the
need for dismantling or replacement. This requires the
development of a calibration method. The method involves
processing of measured data using neural networks and
linear regression. The test results will be evaluated based on
validated data. One year’s worth of measured data from the
two data sets was obtained.

The long-term reliability (in terms of accuracy) of the
outdoor sensor-based air quality measurement system
can be maintained in the long-term without the need for
periodic on-site servicing of the physical device, and the
calibration can be performed by the use of the appropriate
software. This methodological element means significant
cost and resource savings in operating the system, and
the accurately measured data ensures more efficient
and sustainable operation of municipalities and public
buildings.

2. DATA MATCHING AND PRESENTING DATA

The analysis was preceded by matching the existing data.
The fundamental challenge was to create a dataset from all
the available different sources that could be analyzed in
conjunction with the NAPMN and the sensor deployed by
the University of Miskolc. The available data consists of air
parameters measured independently by the University of
Miskolc and the data collected by the NAPMN. The data
are available for the period between February 2019 and
February 2020.

The authors present the data collected by the University
of Miskolc. This data has been provided in text format.
Each file contains data for a maximum of one day, although
there may be cases where data from a single day needs to be
extracted from 5 to 8 separate data files. The measurement
frequency is set at 6, assuming all sensors are read suc-
cessfully, resulting in a potential maximum of 10 records per
minute. However, this frequency can decrease to as few as
1-2 records per minute. Table 1 illustrates the data and
the suitable units of measurement corresponding to three
different kind of sensors Particle Measure Systems 7003
(PMS7003), Budapest University of Technology and
Economics (BUTE) sensor and Digital Humidity and
Temperature (DHT) sensors. The BUTE and DHT sensors
also measure humidity and temperature, in the tests, were
used the measured values of the sensor that were closer to
the reference values.

The data mentioned above are included in the files
provided by the University of Miskolc. Data are separated by

Table 1. Sensor data from University of Miskolc

Unit of
Name Measurement Example
Timestamp Date 2019.2.8,
0:0:5

BUTE Pressure Pa 1009.02

BUTE Temperature Celsius —1.65

BUTE Humidity % 80.43

DHT Temperature Celsius 20.58

DHT Humidity % 77.56

PMS7003 PM10 pg m~’ 34

PMS7003 PM2.5 pg m~> 25

PMS7003 PM1 pg m~? 13

PMS7003 0.3 pm number of pcs dm—? 2,345
particles

PMS7003 0.5 pm number of pes dm™? 254
particles

PMS7003 1 pm number of pes dm™? 23
particles

PMS7003 2.5 pm number of pes/dm’ 10
particles

PMS7003 5 pm number of pcs m? 3
particles

PMS7003 10 pm number of pcs m~> 1
particles

Status OK/Error -
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commas in the data files, where one row represents one
measurement. Within these data files, entries are separated
by commas, with each row representing a single measure-
ment. For the purposes of analysis and validation, a total of
852 files were acquired, necessitating approximately 547 MB
of storage space.

The NAPMN data were provided by the University of
Miskolc for strictly research purposes. These datasets are
stored in a standard file format, accessible through appli-
cations like Excel. Importing the data is faster than using
Excel. The NAPMN data file contains the following infor-
mation as it is shown in Table 2.

Within the NAPMN data, minute averages have been
incorporated; however, occasional gaps of up to one day
exist. Given the non-standard format and text file nature of
this data, a tailored software solution has been developed to
facilitate its processing. This comprehensive software entails
a customized parser and a dedicated data model. Based on
past experiences, a C# console application has been selected,
as it is considered suitable for the array of software tasks
anticipated.

3. THEORETICAL BACKGROUND OF THE
EXAMINED PROCEDURES

A requirement for using the developed low-cost sensor unit
for residential and municipal surveillance purposes is that
the sensors are calibrated and automatically recalibrated at
regular intervals without the need for dismantling or
replacement. This requires the development of a calibration
method. Through training and testing conducted by the
authors, the data from the sensors developed within the
NAPMN project are ensured to align as closely as possible
with the temperature, humidity, PM10, and PM2.5 param-
eters measured by the NAPMN station. To assess the ac-
curacy of the neural network-based classifier, a classification
based on the Air Quality Index (AQI) of particulate matter
concentration was employed. Regardless of their chemical
composition, particulate matter is categorized based on the
size of airborne particles, and its concentration is classified
using a scale. From a health perspective, particulate matter
smaller than 10-16 pm is of great importance. Measuring
instruments typically gauge sizes of 10, 4, 2.5, and 1pm
separately. Based on the obtained data series, tests were
performed for both PM10 and PM2.5 sizes [2].

Table 2. NAPMN data

Name Unit of measurement Example
Time of measurement Date Time 28/02/2019 23:03
PM10 pg m-> 24.6
Wind direction degree 300.0
Wind speed km h™* 3.0
Temperature Celsius 34.6
Humidity % 56.0
PM2.5 pg m—> 13.4

The AQI serves as an indicator of how polluted the air is
and how that pollution might affect health. Concentrations
of PM2.5, measured in pg m > are categorized into six
classifications based on their potential health impact. An
AQI value ranging from 0 to 50, corresponding to PM2.5
concentrations between 0 and 12 ug m >, indicates ‘Good’
air quality. As the AQI value increases, indicating higher
PM2.5 concentrations, the air quality deteriorates. For
instance, AQI values between 51 and 100, which correspond
to PM2.5 levels of 12-35 ug m >, are classified as ‘Moder-
ately good.” When AQI surpasses 300, reflecting PM2.5
concentrations greater than 250 pg m >, the air quality is
deemed ‘Dangerous.” This classification system aids in un-
derstanding the potential health risks associated with vary-
ing levels of air pollution [2].

PM10 are airborne particles of less than 10 pm. They can
be of any composition: organic, inorganic, solid, even
droplets of dew in humid weather. When inhaled, they pass
through the pharynx, usually irritating the upper respiratory
tract. They can increase the number and severity of asthma
attacks, trigger or aggravate bronchitis and other lung dis-
eases, and reduce the body’s defences against infections.
PM10 includes fine particles defined as PM2.5, which are
2.5 pum or less in diameter.

PM2.5 refers to particles that are two and a half microns
in size. Their dimensions are approximately thirty times
smaller than the diameter of a human hair. These minuscule
particles have the ability to penetrate deep into the respi-
ratory tract, reaching as far as the lungs. They can cause
irritation in the eyes, nose, and throat, leading to symptoms
as coughing, sneezing, and a runny nose. Prolonged expo-
sure to PM2.5 can result in shortness of breath, reduced lung
function, and adverse effects on individuals with asthma and
heart conditions.

These particles primarily originate from outdoor com-
bustion sources as fuels, power plants, heating systems, and
natural fires. However, they can also originate from gases
and tiny vapor droplets in the atmosphere, traveling
considerable distances from their point of emission. Forest
fires or a volcanic eruption can significantly increase
airborne concentrations up to hundreds of kilometers
away [2].

3.1. Neural networks

Deep neural networks are currently among the most exten-
sively researched topics in the field of applied artificial intel-
ligence. Their applications span a wide range and are
continuously growing. Given that neural networks have been
successfully utilized in other studies for calibration and
parameterization of gases [3, 4], the authors were motivated
to explore this direction. Neural networks allow us to solve
problems that would previously have been considered
impractical due to limited computing resources. Through the
addition of multiple hidden layers, deep neural networks can
effectively extract complex data abstractions. These abstrac-
tions play a crucial role in building more accurate models
compared to conventional machine learning methods.
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The smallest component of a neural network is the
perceptron (Fig. 1), i.e., a processing element. The classical
artificial neuron is a multi-input, single-output unit that
implements some kind of nonlinear mapping between in-
puts and outputs. One of its important properties is that it
invokes a nonlinear activation function on the weighted sum
of the inputs of each neuron, which provides the output of
the neuron. During network training, these weights must be
adjusted to produce the desired output [5].

The topology of a neural network can be represented
easily as you can see in (1). The input neurons are the inputs
to the network and their outputs are used to drive neurons
in the deeper layers of the network. The hidden layers are
responsible for converting the input signals into the form
corresponding to the output. The characteristic of a multi-
layer feed-forward neural network is that there is no circular
feedback, the information flows in only one direction:

input layer — hidden layer (even multiple layers) — output layer,
(1)

i.e., the output vector of one layer is the input vector of the
next layer [6].

Neural networks can be divided into two main groups
according to how neurons are connected to each other.

The first type is the feed-forward neural network [5, 7].
In a feed-forward network, the only variable that requires
adjustment is the weight vector of synaptic connections
between neurons. Similar networks give a consistent output
for a given input regardless of the number of iterations.

The second type is recurrent networks [5, 8-10]. In
recurrent networks, the synaptic connections depend not
only on the inputs of other neurons, but also on the neuron’s
own previous inputs. These networks can form cyclic
structures, introducing feedback loops of different lengths. A
feedback network is a graph, which can contain circles with
arbitrary length.

Since in these networks the output of any neuron can be
connected to the input of another neuron, the current
output of the network no longer depends only on the vector
generated by the weights of the synaptic connections in the
network, but also on the previous state of the network [5].
This creates a kind of memory in recurrent networks.

Network training is the process of optimizing computa-
tional parameters, where the goal is to obtain approximately

/V Y

Step function

&l w1

a W2
X2 >

w3 2 Weighted Sum
P\

(x3 )

Fig. 1. Perceptron

correct output values for the input data. This process is based
on a combination of the data used for training and also on the
algorithms. The training algorithm selects different combi-
nations of computational parameters and evaluates these
combinations by applying them to each training case. In
doing so, it determines how good the network’s responses are.
Each parameter combination is actually a test run. An
important property of neural networks is their learning abil-
ity. During the learning process, neural networks can improve
and adapt the weights of the network with the sample points
used during training [5]. The goal of parameter modification
during learning is to produce the desired responses for the
given inputs, so that later on it will produce the correct output
only for the input data not used during training (also for
regression and classification problems). The (back-propaga-
tion) algorithm tries to reduce the error of the model after
each learning iteration (learning epoch) by modifying the
weight functions of the network [6].

Using the validated data for testing the calibration pro-
cedure, the feed-forward backprop type neural network was
chosen among the available neural network types, and the
reasons and advantages of this network are described below.

The essential characteristic of a neural network is
learning from a set of samples, so the effectiveness of the
network depends to a large extent on the number of samples
trained. If the network is built on poor, sparse, or excessively
noisy sample sets, the system will compute output values
based on the faulty connections. The success of training is an
essential component, as the network tends to over-learn the
input data. In this case, the network does not learn the re-
lationships between the set of samples, but the individual
samples, leading to obvious bias [6].

The correction of the data for possible deviations and the
compilation of statistics for the full one-year measurement
period (availability time, calculation of mean and standard
deviation values by day) were carried out using MATLAB
software. MATLAB software and its add-ons (Neural
Network Toolbox) were also used to build, train and test the
neural networks.

4. NEURAL NETWORK LEARNING AND
TRAINING RESULTS

In the study of neural networks, three types of training were
conducted. In each case, the predefined feed-forward back-
prop neural network type was selected within the Neural
Network Toolbox add-on of MATLAB software. For two of
the performed tests, the full annual dataset from February
2019 to January 2020 was used both as training and testing
dataset. In these two cases, calibration of particulate matter
concentrations of different sizes (PM10 and PM2.5) was
attempted. In the third case, the calibration of PM10 par-
ticulate matter concentrations was tested on a monthly basis.
For each month, training and testing were performed using
the respective monthly data. The following sections sum-
marize the defined exercise and the results of the tests.
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The effectiveness of the neural network is measured by
the percentage of correspondence between the AQI class
classification of the PM10 and PM2.5 data measured by the
NAPMN and the AQI class classification of the data cali-
brated by the neural network.

4.1. Calibration of PM2.5 particle concentration data
series with a one-year training set

Task: to study a feed-forward backprop neural network
trained on a validated and migrated annual dataset (525 538
samples). The training is performed in 4 different ways ac-
cording to the type and number of training parameters:

using PM10 data;

using PM10 and NAPMN temperature data;

using PM10 and NAPMN humidity data;

using PM10, NAPMN humidity and NAPMN tempera-
ture data.

Ll o

The differences between the efficiency results presented
in Table 3 are minimal, within one tenth of a percentage
point. In this context, the training was most successful
when the humidity measured by the NAPMN station was
used as a correction factor in addition to the PM10 con-
centration. This may be because the air humidity affects the
concentration of particulate matter, the higher the hu-
midity the lower the concentration. The use of NAPMN
temperature data as a correction factor can also be justified
on these grounds. Using both parameters together results
in a 0.09% underperformance, but improves the overall
efficiency.

Figures 2—4 illustrate the different neural network ar-
chitectures. When using the 3 parameters, the number of
hidden layers should be increased. Figures 2-4 contain the
author’s editing about the structure of a neural network
from MATLAB.

4.2. Calibration of the PM2.5 particulate matter
concentration data series with a one-year training set

The task: to study a feed-forward backprop neural network
trained on a validated and migrated annual dataset (525 538
samples). The training is performed in four different ways
according to the type and number of training parameters:

1. using PM2.5 data;

2. using PM2.5 and NAPMN temperature data;

3. using PM2.5 and NAPMN humidity data;

4. using PM2.5, NAPMN humidity and NAPMN temper-
ature data.

Hidden Layer Output Layer
Input | 5 Output
ST t
, 5 2
i 1

Fig. 2. Neural network structure in the case of one teaching
parameter

Hidden Layer Output Layer
- m
2 1

Fig. 3. Neural network structure in the case of two teaching
parameters

Output

-

Hidden Layer 1 Hidden Layer 2 Output Layer
Input ~ Output
o o TJ
3 2 1

Fig. 4. Neural network structure with three teaching parameters

The differences between the efficiency results in
Table 4 are also minimal in this case with variations
within one-tenth of a percentage point. In this context,
the training proved to be most successful when the hu-
midity and temperature measured by the NAPMN station
were used as correction factors in addition to the PM2.5
concentration value. The reason for this can be explained
by the interaction of particulate matter concentration,
humidity, and temperature as explained in the previous
chapter. Overall, the results from the PM2.5 particulate
matter concentration calibration tests showed ~5% better
efficiency compared to the PM10 particulate matter con-
centration calibration test results. Since the numerical
values within the term represent the particle size, the
difference in results may be due to the fact that the PM10
values include the PM2.5 values, i.e. the PM2.5 value
fluctuates over a smaller range.

Figures 5-7 illustrate the different neural network ar-
chitectures. When using three parameters, the number of
hidden layers should be increased.

Table 3. Training efficiency with varying parameterization

Teaching dataset(s)

Number of teaching dataset(s) Teaching efficiency

PM10

PM10 NAPMN temperature

PM10 NAPMN humidity

PM10 NAPMN temperature NAPMN humidity

91.5648%
91.7505%
91.7875%
91.6908%

W NN
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Table 4. Efficiency of training with different parameterization

Teaching dataset(s)

Number of teaching dataset(s) Teaching efficiency

PM10

PM10 NAPMN temperature

PM10 NAPMN humidity

PM10 NAPMN temperature NAPMN humidity

96.0606%
96.1147%
96.0785%
96.1456%

W NN

Hidden Layer

Fig. 5. Neural network structure in the case of one teaching
parameter

Hidden Layer Output Layer
Input
T2
2 1
Fig. 6. Neural network structure in the case of two teaching
parameters

Output

]

Hidden Layer 1

Hidden Layer 2 Output Layer

Fig. 7. Neural network structure in the case of three teaching
parameters

Hidden Layer Output Layer

Fig. 8. The architecture of the trained neural network

4.3. Calibration of PM10 particulate matter data
series with monthly training set

Task: Analyzing the feed-forward backprop neural network
trained with a validated and migrated annual dataset on a
monthly basis. We conduct separate training runs for each
month and assess its efficiency.

Figure 8 illustrates the neural network architecture used
in the training, consisting of 1 hidden layer and 1 neuron per
layer. Previous test results indicate that the efficiency values
show minimal differences during calibration, while the
complexity of the neural network increases more steeply.
The aim of this study is to find out whether there is an
efficiency improvement when the sensor data is calibrated
for a given month (covering a smaller time interval) or not.
This study was carried out using PM10 particulate matter
concentration data.

Table 5 and Fig. 9 also present the efficiency of the
monthly training sessions visually. A significant variation is
observed in the percentage results. The highest efficiency
value was 99.4578% in August, while the lowest was
82.8172% in January, with a difference of almost 17%. This
variation can be attributed to temperature and humidity
values. During the heating season and winter’s low tem-
peratures, particulate matter concentrations tend to be
higher, and grain sizes can become more variable compared
to the summer months. The average of the monthly effi-
ciency values is 92.8763%, which shows approximately ~1%
better results than learning from annual PM10 data along
with compensation values.

This suggests the value of conducting further studies
along this line. Furthermore, a significant discrepancy exists
between the seasonal and average efficiencies, further sup-
porting the case for additional testing.

Table 5. Training effectiveness and averages by month

Month Teaching efficiency Season Average efficiency
March 2019 91.7065% Spring 93.8101%
April 2019 90.2884%

May 2019 99.4354%

June 2019 99.0833% Summer 99.2292%
July 2019 99.1464%

August 2019 99.4578%

September 2019 98.6781% Fall 90.1891%
October 2019 83.4698%

November 2019 88.4194%

December 2019 89.1371% Winter 84.9638%
January 2020 82.8172%

February 2020 82.9371%

Annual average 92.8763%
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Feb-20
Jan-20
Dec-19
Now-1%
Oct-19
Sep-19
Aug-19
Jul-19
Jun-18
May-18
Apr-19

Mar-19

Fig. 9. PM10 particulate matter concentration calibration efficiency by month

5. SUMMARY

The study presented in this paper helps to improve the ac-
curacy of the instrument developed by the University of
Miskolc and provides a transparent and clear data set from
which further statistics and calibration procedures can be
developed.

The neural networks were investigated by performing
three types of training. In each case, the predefined feed-
forward backprop type neural network was chosen within
the Neural Network Toolbox add-on of MATLAB software
was chosen. In two of the tests performed, the full annual
dataset from February 2019 to January 2020 was used as
both training and testing dataset. In two cases, calibration of
particulate matter concentrations of different sizes (PM10
and PM2.5) was attempted. In the third case, the calibration
of PM10 particulate matter concentrations was tested on a
monthly basis. For each month, training and testing with the
respective monthly data series was performed.

In summary, the results of the neural network efficiency
show that the neural network method is suitable for cali-
brating particle concentration data, with initial tests
providing an average result of over 90%. The calibration of
PM10 particulate matter concentration data is very chal-
lenging. The findings also indicate the benefits of incorpo-
rating temperature and humidity compensation values
during the calibration process. A comparison between the
outcomes of learning on a yearly and monthly basis points
towards the idea of investigating the use of distinct cali-
bration neural networks throughout a year, considering
either seasons or individual months. Moreover, it is valuable
to explore determining the optimal points for dividing in-
dividual training sessions and the related data. Overall,
over the one-year measurement period, there were a total of

5,523,772 min of data collected. This indicates that 1,828
min of data were not available for the full year. This means
that the sensors were operating with 99.66% availability.
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