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Tiling of dominoes with ranked colors

Omar Khadir, László Németh , and László Szalay

Abstract. Several articles deal with tilings with various colors and shapes.
In this paper, we present a new type of tiling problem of a (1×n)—board
where the colors have a prescribed order of preference and the size of
colored dominoes is bounded by (1×s). We show that the total number of
tilings can be given as a linearly recurrent sequence of order ks, and at the
same time by a higher order self-convolution of s-generalized Fibonacci
sequences.
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1. Introduction

The investigation of tiling problems has been an intensively researched area
of combinatorics. The researchers consider different shapes and colors of tiles,
different boards, and different tiling rules.

Let rn be the number of different tilings with 1 × 1 squares and 1 × 2
dominoes (two squares with a common edge) of a (1 × n)—board. It is known
that these tilings can be counted by the Fibonacci numbers (see, for example,
Benjamin and Quinn [1]). In fact, rn = Fn+1 is the shifted Fibonacci sequence
(as usual, Fn is defined by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, and associated
with A000045 in The On-Line Encyclopedia of Integer Sequences (OEIS) [2]).
Considering the squares and dominoes, respectively, in a and b different colors,
one finds rn = a rn−1 + b rn−2 for n ≥ 2 with the initial values r0 = 1, r1 = a
(see Refs. [1,3]). Obviously, if a = b = 1, then we obtain the classical solution
rn = Fn+1. Koshy [4, Chapter 33] defined the weight of a square to be x and
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that of a domino to be 1. This weighting provides combinatorial models for
Fibonacci and Lucas polynomials using linear and circular tilings, and in that
way, a general discussion of the tiling with squares and dominoes. The author
has not only given the number of tilings made up of colored tiles but has also
given a number of combinatorial identities of the Fibonacci and Lucas numbers
using the well-known Fubini principle (counting objects in a set in two different
ways gives the same result). In Ref. [4, Chapter 42], the reader can find similar
models for the Chebyshev polynomial with different weightings of squares and
dominoes.

It is also well-known that for s ≥ 2 the sequence of s-generalized Fi-
bonacci (or s-bonacci, or s-Fibonacci) numbers F

(s)
n+s−1 gives the number of

tilings on a (1 × n)–board with unicolored dominoes having maximal size
1 × s [5]. As usual, the sequence (F (s)

n ) is defined by the recurrence F
(s)
n =

F
(s)
n−1 + F

(s)
n−2 + · · · + F

(s)
n−s with F

(s)
0 = F

(s)
1 = · · · = F

(s)
s−2 = 0, F

(s)
s−1 = 1.

Clearly, Fn = F
(2)
n holds for s = 2. The first few k-generalized Fibonacci

sequences appear in (OEIS) [2], see A000045, A000073, A000078, A001591,
A001592, A066178, A122189, A079262.

For a recent identity concerning the connection of s-generalized Fibonacci
sequences and tilings, see Ref. [6]. Certain new results on s-generalized Fi-
bonacci sequence were published by Belbachir and Belkhir [7], further Komatsu
et al. [8]. Komatsu and Laohakosol [9] investigated some reciprocal sums of
generalized Fibonacci sequence.

In the previous works, all colors had the same meaning, they had no
order of importance. In contrast, in this article, unusually, we give preference
rank to colors. We think that this new approach of tiling could trigger further
investigations.

Let n ∈ N
+ and consider the domino tilings of a (1×n)—board with the

following properties.

Condition 1. Every domino has a color from the color set {C1, C2, . . . , Ck},
1 ≤ k ∈ N.

Condition 2. The size of a domino (in each color) is one of 1 × �, where � is
a positive integer with 1 ≤ � ≤ s.

Condition 3. In the tilings, there exists a preference rank of colors such that
color Cj cannot be used before color Ci (from left to right) if
i < j.

As an example, Fig. 1 illustrates all the tilings for n ≤ 3, s = 3, when
k = 3 and the colors C1, C2, and C3 are black, grey, and white, respectively.
We note that if n ≤ 3 and s ≥ 3, then we cannot use dominoes longer than 3.
Thus, for example, for s = 4 Fig. 1 even shows all the tilings for n ≤ 3, k = 3.

In the present work, we examine the number Tk,s(n) of possible tilings
with the conditions above. The main result gives Tk,s(n) as a recursive sequence
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Figure 1. All tilings with colors C1, C2, and C3 (black, grey,
and white) if n ≤ 3 and s = 3

of n with parameters k and s. Note that

Tk,s(0) = 1, Tk,s(1) = k, and Tk,s(n) = Tk,s+1(n) for all s ≥ n (1)

hold trivially. It turns out that the order of the recurrence is ks. The main tool
is the method developed in Ref. [10, Theorem 2], which gives the characteristic
polynomial of the component sequences of a suitable vector recurrence, and of
Tk,s(n) at the same time. We remark that Németh and Szalay [11] described
the sequence Tk,2(n) recursively as a corollary of a result on a specific system
of two recurrence sequences with order s. The second important observation
in this work is that the number Tk,s(n) of tilings can be provided by a self-
convolution of s-generalized Fibonacci sequences.

In the next subsection, we prepare the machinery we need in the proof of
Theorem 1 later. Section 2 studies the tiling problem in detail; the main result
(Theorem 1) is illustrated in the cases k = 2 and k = 3. For larger k values,
the precise computation becomes more and more difficult from technical point
of view. Moreover, we present one-to-one correspondence between the binary
strings and our tilings. Finally, the convolution approach will be presented.

1.1. Vector Recurrences

Now we turn our attention to the basic tool we will apply to solve our tiling
problem.

As before, let k ≥ 1 and s ≥ 1 denote two positive integers. Assume that
there are given the matrices At =

[
a
(t)
i,j

]
∈ C

k×k for t = 1, 2, . . . , s. Define the
vector recurrence

vn = A1vn−1 + A2vn−2 + · · · + Asvn−s, n ≥ s (2)

with initial column vectors v0,v1, . . . ,vs−1 ∈ C
k. One important endeavor is

to separate the component sequences of the vectors (vn) and find a common
linear recurrence relation to describe them. The main advantage of our solution
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is the uniform treatment and the possibility of automatism. This is given in
Ref. [10, Theorem 2.1], and can be formulated as follows. Let Ik denote the
k × k unit matrix.

Lemma 1. The common characteristic polynomial of the component sequences
of (vn) is

p(x) = (−1)s det
(
As + xAs−1 + x2As−2 + · · · + xs−1A1 − xsIk

)
.

This lemma is the key tool in determining the number of the tilings presented
above. We note that ks2 + ks − s2 was the exponent of −1 we computed
originally, but (−1)s gives an equivalent coefficient to the determinant since
ks2 + ks is always even.

2. Tiling with Colored Dominoes

In this section, we find the characteristic polynomial of the recursive sequence
(Tk,s(n)) and the exact recurrence relations for k = 2 and 1 ≤ s ≤ 7.

Theorem 1. The characteristic polynomial of the recursive sequence (Tk,s(n))
is

p(x) = (1 + x + · · · + xs−1 − xs)k.

It implies immediately that the order of recursion which determines (Tk,s(n))
is ks.

Proof. Under Conditions 1–3, let ci(n) (1 ≤ i ≤ k) denote the number of
different tilings of a (1 × n)-board when the last domino has color Ci. (Note
that here we do not denote the parameter s.) Clearly, Tk,s(n) =

∑k
i=1 ci(n).

It follows from the constraints that

ci(n) =
i∑

j=1

cj(n − 1) +
i∑

j=1

cj(n − 2) + · · · +
i∑

j=1

cj(n − s), n ≥ s (3)

holds for any 1 ≤ i ≤ k. (See also [11] for the case k = 2.) If we consider ci(n)
as the ith component of the vector vn, then we obtain a particular case of the
vector recurrence (2). Indeed, writing out (3) in details we find

c1(n) = c1(n − 1) + c1(n − 2) + · · · + c1(n − s),
c2(n) = c1(n−1) + c2(n − 1) + c1(n−2) + c2(n−2)+ · · · +c1(n − s) + c2(n−s),

...

ck(n) =
k∑

j=1

cj(n − 1) +
k∑

j=1

cj(n − 2) + · · · +
k∑

j=1

cj(n − s).
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This system can be also given in the form (2) with matrices

A1 = A2 = · · · = As =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

∈ C
k×k.

Put

Bs(x) = As + xAs−1 + x2As−2 + · · · + xs−1A1 − xsIk.

Since all Ai are equal, we can denote them by A. Moreover, let xs = 1 + x +
· · · + xs−1. Then

Bs(x) = xsA − xsI,

and according to Lemma 1 we have

Bs(x) =

⎛
⎜⎜⎜⎜⎜⎝

xs − xs 0 0 · · · 0
xs xs − xs 0 · · · 0
xs xs xs − xs · · · 0
...

...
...

. . .
...

xs xs xs · · · xs − xs

⎞
⎟⎟⎟⎟⎟⎠

.

Obviously, xs = (xs − 1)/(x − 1), further

p(x) = det(Bs(x)) = (xs − xs)k.

Consequently, the zeros of the characteristic polynomial p(x) in this particular
case coincide to the zeros of d(x) = xs −xs = xs −xs−1−· · ·−x−1. Note that
this polynomial is the characteristic polynomial of the s-generalized Fibonacci
sequence. It is known that d(x) is a Pisot polynomial possessing single zeros.
Thus, each zero of p(x) = (d(x))k has multiplicity k. We record the result we
have proved, this is the principal statement of this paper. �

Hence, we have the characteristic polynomial p(x), and it implies the
recursive rule for Tk,s(n) in direct manner (in n). We illustrate it for small
values of k in the next two subsections.

2.1. Example: Two-Color-Tilings (k = 2)

Consider now the case k = 2, i.e., we have only two colors.
Then

A1 = A2 = · · · = As =
(

1 0
1 1

)
,
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and p(x) = det(Bs(x)) = (xs − xs)2. We can easily have

p(x) =
(

xs − 1
x − 1

− xs

)2

=
(−xs+1 + 2xs − 1)2

(x − 1)2

=
x2s+2 − 4x2s+1 + 4x2s + 2xs+1 − 4xs + 1

(x − 1)2
.

To compute the coefficients of the polynomial, p(x) we apply Horner’s method1.
For simplicity, let pa(x) = (x−1)2p(x) and pb(x) = (x−1)p(x) be introduced.

First, we copy the coefficients of pa(x) = x2s+2 −4x2s+1 +4x2s +2xs+1 −
4xs + 1 into the first row of Table 1. Then, following Horners’s scheme, we
calculate the quotient polynomial pa(x)/(x − 1) = pb(x). The coefficients of
pb(x) appear in the second row of the table. Then we divide this result again
by x − 1, and the coefficient of p(x) can be seen in the last row of the table.
For technical reason, we assume that s ≥ 3. For s = 1 and s = 2 one can
derive det(Bk(x)) separately, the result is p(x) = (x − 1)2 = x2 − 2x + 1, and
p(x) = (1 + x − x2)2 = x4 − 2x3 − x2 + 2x + 1, respectively.

After the program described in the previous paragraph, we turn our at-
tention to the details. In the first row, looking at x2s+2 − 4x2s+1 + 4x2s +
2xs+1 −4xs +1, there are two blocks of zeros according to the zero coefficients
of the polynomial. The first block contains s−2 zeros, the second one does s−1
zeros (see the first row of Table 1). At the beginning of the second row, value
1 indicates that we look for the polynomial evaluation of pa(x) at 1. Since it
is zero, we obtain the coefficients of the polynomial pb(x) = pa(x)/(x − 1) in
the second row. The second element (which is 1 again) is only a copy of the
leading coefficient 1 of x2s+2 − 4x2s+1 +4x2s +2xs+1 − 4xs +1. For other cells
of the second row, we use elementary steps explained in the footnote. They
give −3 = 1 ·1+(−4), then 1 = 1 · (−3)+4, then 1 = 1 ·1+0, etc. This way we
obtain gradually the coefficients of (x − 1)p(x) in the second row. The third
row can be found similarly, it gives the coefficients of p(x). Thus, it follows for
s ≥ 3 that we have

p(x) = x2s − 2x2s−1 − x2s−2 +
s−3∑
j=0

jx2s−3−j +
s−1∑
j=0

(s − j)xs−1−j , (4)

see Table 1.
The determinant implies immediately the recursive rule for the sequences

(ci(n)) (i = 1, 2), as well as the number T2,s(n) of different tilings, as follows.

1Horner’s method is a procedure for polynomial evaluation (see, for instance, the excellent
book of Knuth [12, pp. 467–472]). If the polynomial value is zero at α ∈ C, then the table
gives directly the result of the polynomial division by x − α. The elementary step to obtain
the value of one cell is to multiply the value of the previous left-hand side cell by α and add
the corresponding coefficient of the polynomial, which is located above the cell in question.



Tiling of dominoes with ranked colors Page 7 of 13   253 

T
a
b
l
e
1
.

H
or

ne
r’

s
sc

he
m

e
fo

r
tw

o
co

lo
rs

1
−4

4
0

0
..

.
0

2
−4

0
0

..
.

0
0

1

1
1

−3
1

1
1

..
.

1
3

−1
−1

−1
..

.
−1

−1
0

1
1

−2
−1

0
1

..
.

s
−

3
s

s
−

1
s

−
2

s
−

3
..

.
1

0



  253 Page 8 of 13 O. Khadir et al. Results Math

For our convenience, put τs(n) = T2,s(n). For n ≥ 2s, from (4) we find the
recurrence

τs(n) = 2τs(n − 1) + τs(n − 2)−
s−3∑
j=0

jτs(n − 3 − j)−
s−1∑
j=0

(s−j)τs(n − s − 1 − j).

Clearly, we need the initial values τs(0), τs(1), . . . , τs(2s−1) in order to fix the
sequence (τs(n)) completely.

As an illustration we give the cases 1 ≤ s ≤ 4 here:

τ1(n) = 2τ1(n − 1) − τ1(n − 2), (n ≥ 2),

τ2(n) = 2τ2(n − 1) + τ2(n − 2) − 2τ2(n − 3) − τ2(n − 4), (n ≥ 4),

τ3(n) = 2τ3(n − 1) + τ3(n − 2) − 3τ3(n − 4) − 2τ3(n − 5) − τ3(n − 6), (n ≥ 6).

τ4(n) = 2τ3(n − 1) + τ3(n − 2) − τ3(n − 4) − 4τ3(n − 5) − 3τ3(n − 6)

− 2τ3(n − 7) − τ3(n − 8), (n ≥ 8).

The initial values are τs(0) = 1 and τs(1) = 2 from (1), and for n ≥ 2 we
use again (1) and consider Fig. 1 restricted only to two colors (or see [11]). For
the further n and s, Eq. (5) of Theorem 2 provides the initial values later, as
we will see in Sect. 2.3. For our convenience, we computed the first few terms
of sequences (τs(n)) in the cases 1 ≤ s ≤ 4:

(τ1(n))n≥0 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, . . .),

(τ2(n))n≥0 = (1, 2, 5, 10, 20, 38, 71, 130, 235, 420, 744, 1308, 2285, . . .),

(τ3(n))n≥0 = (1, 2, 5, 12, 26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, . . .),

(τ4(n))n≥0 = (1, 2, 5, 12, 28, 62, 136, 294, 628, 1328, 2787, 5810, 12043, . . .).

They appear in OEIS [2] as A000027, A001629, A073778, A118898, respec-
tively. (The corresponding sequences are not in OEIS for larger integer s.)
Moreover, the rows of Table 2 show the coefficients of the recurrence relations
for s = 1, 2, . . . , 7. We note that this result is compatible with the arguments
of Ref. [11].

2.2. Example: Three-Color Tiling (k = 3)
The equivalent computation to the previous subsection works with

p(x) =

(
xs − 1

x − 1
− xs

)3

=
−x3s+3 + 6x3s+2 − 12x3s+1 + 8x3s − 3x2s+2 + 12x2s+1 − 12x2s − 3xs+1 + 6xs − 1

(x − 1)3
.
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Table 2. Coefficients of the recurrence relations τs(n) =
T2,s(n)

2 −1

2 1 −2 −1

2 1 0 −3 −2 −1

2 1 0 −1 −4 −3 −2 −1

2 1 0 −1 −2 −5 −4 −3 −2 −1

2 1 0 −1 −2 −3 −6 −5 −4 −3 −2 −1

2 1 0 −1 −2 −3 −4 −7 −6 −5 −4 −3 −2 −1

The three-step consecutive application of Horner’s scheme provides p(x) =∑3
i=1 pi(x), where

p1(x) = −x3s + 3x3s−1 − 2x3s−3 +
s−3∑
j=1

j2 − 3j − 4
2

x3s−3−j ,

p2(x) =
s2 − 7s

2
x2s−1 +

s2 − 5s + 6
2

x2s−2 +
s2 − 3s + 8

2
x2s−3

+
s−2∑
j=1

(
s2 − 3s + 8

2
+ j(s − j)

)
x2s−3−j ,

p3(x) =
s2 − s

2
xs−2 +

s2 − 3s + 2
2

xs−3

+
s−3∑
j=1

(
s2 − 3s + 2

2
+

j(j − 2s + 3)
2

)
x3s−3−j .

The characteristic polynomial immediately implies the corresponding re-
currence rule. For example, in case of s = 2 it follows that

T3,2(n) = 3T3,2(n − 1) − 5T3,2(n − 3) + 3T3,2(n − 5) + T3,2(n − 6).

Note that the method based on the application of Horner’s scheme would
work theoretically if k is larger, but the technical execution would become more
and more complicated as k is increasing. On the other hand, the formulae we
obtain would not be attractive.

2.3. A General Convolution Result

Let F̃
(s)
n = F

(s)
n+s−1 denote the nth term (n ≥ 0) of the shifted non-zero s-

generated Fibonacci sequence.
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Figure 2. A dominoe tiling with k colors

Figure 3. Tilings with one colored dominoes and binary
numbers

Theorem 2. The sequence (Tk,s(n))∞
n=0 is the k-order self-convolution of the

non zero s-generated Fibonacci sequence. More precisely, for all n, k, s ≥ 0 we
have

Tk,s(n) =
∑

�1+�2+···+�k=n

F̃
(s)
�1

F̃
(s)
�2

· · · F̃ (s)
�k

=
n∑

�=0

Tk−1,s(�)F̃
(s)
n−�. (5)

Proof. In the virtue of the tiling conditions the colored dominoes in a tiling are
separated from left to right according to the preference order of the colors. Let
�i be the length of the Ci-colored sub-tiling, where 0 ≤ �i ≤ n and

∑k
i=1 �i =

n. Figure 2 illustrates the scheme of such a possible tiling. Clearly, the ith
sub-board can be tiled F̃

(s)
�i

different ways, and their product enumerates the
number of tilings with fixed color separation. Considering all the possible values
of �i’s we obtain Tk,s(n) as a sum of the corresponding products. Hence, (5) is
valid.

2.4. Binary Strings and Tilings

If we consider the unicolored tilings, for example, with grey color, then we can
give a one-to-one correspondence between (1 × n)–tilings and the binary bit
strings of length n−1 with no block of s or more 0’s. The base of the bijection is
what follows. Imagine a (1 × n) square grid behind the tiling, where neighbor
squares are separated from each other by vertical edges. If such an edge is
covered by the tiling, then we write 0 above the edge; otherwise, we write 1.
Figure 3 shows a (1 × 10)—tiling and its corresponding binary string.

Similarly, we can give a bijective connection between the tilings with our
conditions and n − ka long binary strings, where any string has no block of s
or more 0’s and all the strings are grouped into ka blocks with k−1 separating
signs ω. Here, ka denotes the number of actual colors used in the tiling. If
color Ci is not used in a tiling, then the colors Ci−1 and Ci+1 are separated
doubly by ωω. Figure 4 illustrates a tiling and its corresponding separated
binary string when k = ka = 3 and s = 3. The separated binary sting has no
sub-sequence 000.
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Figure 4. Tilings and binary codes

3. Future Works and Possibilities for Further
Application—New Type of Colored Tilings

As a further area of research, one can investigate tilings, where not only colours
have a preference, but also the maximum length of dominoes depends on the
colours. In this manner, the system of conditions for tilings is the following.

Condition 1. Every domino has a color of k ≥ 1 different colors from the
color set {C1, C2, . . . , Ck}.

Condition 2�. The size of a domino in color Cm with 1 ≤ m ≤ k is one of
1 × �, where � and sm are positive integers with 1 ≤ � ≤ sm.

Condition 3. In a tiling, there exists a preference of colors, more precisely,
color Cj cannot be used before color Ci (from left to right) if
i < j.

A more general tiling problem is defined by Condition 1–3 and the fol-
lowing additional condition:

Condition 4. In a tiling, there exists a preference of dominoes; more precisely,
dominoes 1× j cannot be used before dominoes 1× i (from left
to right) if i < j.
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Department of Mathematics, Institute of Basic Sciences
University of Sopron
Bajcsy-Zs. u. 4
Sopron 9400
Hungary
e-mail: nemeth.laszlo@uni-sopron.hu;

szalay.laszlo@uni-sopron.hu

László Szalay
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