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* Correspondence: kun.agnes@uni-mate.hu

Abstract: This study examines the impact of line spacing (X: 24 m, Y: 9 m, Z: 6.5 m) and orientation to
tree lines on the growth, yield, and quality of red clover (Trifolium pratense L.) in a temperate, irrigated
agroforestry system (2 ha) in Szarvas, Hungary. Three sampling locations were distinguished between
the east and west oriented tree lines: the north (N) side, middle (M) strip, and south (S) side of the
tree lines. The highest red clovers were observed in the 6.5 m spacing (mean height 69.3 ± 7.2 cm),
although yields were similar across 24 m, 9 m, and 6.5 m spacings (2.9 t ha−1, 2.3 t ha−1, and 2.7 t ha−1

dry matter, respectively). Orientation significantly influenced all forage quality parameters, with
the north side showing earlier developmental stages and higher proportions of immature flowers
(41–59%). Managing the spatial arrangement of red clover in agroforestry systems can help optimize
forage quality by mitigating variations in plant maturity.

Keywords: intercropping; irrigation; legumes; plant maturity; seed production; soil moisture; protein
content; fiber content; ash content; agroforestry

1. Introduction

There is an immediate need for increasing adaptive capacity in agriculture to long-term
climatic trends and increasing variability in weather patterns [1]. Production systems such
as monocrop cultivation monocultures are no longer sustainable [2,3], as monocultures
have evident adverse effects on soil and water quality, as well as on the conservation
of biodiversity [3]. It is also largely responsible for soil nutrient depletion and soil ero-
sion [3]. Alternatively, agroforestry systems (AFS) combine herbaceous crops or legumes
with perennial woody crops to create diversified, sustainable, and climate-resilient sys-
tems [4]. Agroforestry, the integration of trees into agricultural landscapes, serves as an
adaptation strategy that can help mitigate climate change by significantly increasing carbon
sequestration in both soil and vegetation [5].

As we face the challenges of climate change and seek sustainable solutions, it is crucial
to consider how environmental factors influence competitive dynamics within agroforestry
systems. Vaccaro [6] summarized how environmental factors such as solar radiation and
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water availability influence the competition dynamics between trees and arable crops in
agroforestry systems: in regions above 45 degrees latitude, there is more competition for
light between trees and crops due to lower solar radiation. In Mediterranean areas, water
availability is usually the most limiting factor. Arid environments face competition for
light or nutrients, while temperate climates deal with water scarcity [6]. According to Ehret
et al. [7] in temperate agroforestry systems, light availability and quality are expected to be
the most important constraints throughout the growing season. In addition, other studies
have shown that competition for soil organic matter, and nutrient availability is also an
issue [7,8].

The challenges highlighted above occur for a variety of reasons, such as the age of the
trees, the space between the trees, the design of the agroforestry systems at different eleva-
tions, and the spatial variation of the soil. A study on apple–soybean intercropping systems
found that older trees occupied a larger soil space and had greater fine-root biomass density,
affecting interspecific competition and soil spatial distribution [9]. Different tree spacing
in agroforestry systems alters microclimate and soil properties, affecting decomposition
rates, e.g., willow leaves in agroforestry treatments showed greater traits and influenced
litter decomposition compared to monoculture, highlighting the impact of tree spacing on
agroecosystem processes [10]. Crop density plays a crucial role in optimizing yield in agro-
forestry systems, e.g., in a jujube/cotton agroforestry system, cotton yield was significantly
affected by plant density, with the highest yield attained at an intermediate density due to
intraspecific and interspecific competitions [11]. A study in Belgium analyzed the spatial
variability of soil organic carbon, acidity, and nutrient status in arable agroforestry fields;
the results highlighted significantly higher soil organic carbon and nutrient concentrations
in the vicinity of trees in field boundaries, impacting soil conditions up to at least 30 m into
the field [12].

Woody line rows also have an impact on non-cropped vegetation in agroforestry. The
weed community is also affected by competition for water and nutrient supply, as well as
for light [13]. The effect of different tillage can be detected in the arable field by comparing
the weed cover and composition of the border line and the inner part of the field [14], but
in agroforestry, the shading effect of woody lines is even greater than in arable land [15].

Legumes play a crucial role in agroforestry, offering a range of benefits such as nutrient
fixation, soil improvement, and biodiversity enhancement. Forage legumes not only
provide food and feed to animals, but also improve soil productivity and act as soil-
conserving components of agricultural and agroforestry systems. The inclusion of legumes
in agroforestry systems is crucial for sustainable food and nutritional security without
compromising long-term soil fertility [16]. Integrating legumes in agroecosystems can
reduce the negative impacts of production by limiting major nitrogen fertilizers in the
greenhouse gas (GHG) emission processes and simplifying cropping practices [16,17].

Red clover’s use in arable rotations can make significant contributions to sustainable
intensification, preserving environmental integrity, and resolving food access and distri-
bution equalities. Red clover is also valued for its nitrogen-fixing ability and nutritional
properties for ruminants [18]. Red clover has been compared to lucerne for ruminant
feeding, showing differences in crude protein (CP) concentrations and NDF digestibility,
with red clover having lower CP and NDF concentrations and greater organic matter
digestibility [19]. Red clover contributes to environmental protection and soil fertility,
providing ecosystem services such as atmospheric nitrogen fixation, soil conservation, and
increased soil microbial activity [20]. It can fix in excess of 350 kg/ha of nitrogen, making it
beneficial for cropping systems [21]. Red clover faces challenges related to drought, with
breeding for increased adaptation becoming essential [22,23]. Inclusion of early- versus
late-maturing red clover varieties is being explored to reduce disproportionality in the
yield between spring and summer growth [24].

This study examines the impact of line spacing (X: 24 m, Y: 9 m, Z: 6.5 m) and east–west
orientation of tree lines on the growth (plant height, number of stem, number of flowers,
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SPAD) yield, and quality (crude protein, fiber, ash, fat content) of red clover (Trifolium
pratense L.) in a temperate, irrigated agroforestry system.

2. Materials and Methods
2.1. Site Description

The experiment was set up at the agroforestry research site (2.7 ha) of the Hungar-ian
University of Agriculture and Life Sciences (MATE), Institute of Environmental Sciences
(IES), Research Center for Irrigation and Water Management (ÖVKI), in Szarvas, Hungary.

Hungary has a temperate continental climate; the specific area of the experimental site
is described as a warm and dry climate region. The meteorological data of the experimental
year (2022) were collected at an automatic weather station (Agromet Solar, Boreas Ltd.,
Hungary) located 1300 m from the experimental site (Figure 1). Total rainfall in the year
of the experiment was 343.5 mm, 33% less than the average annual rainfall in the region
(515 mm). The experimental year was not only drier but also warmer, with average annual
temperatures (12.5 ◦C) above the long-term average for the region (10.8 ◦C).
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Figure 1. Monthly precipitation and mean monthly temperature in the experimental year 2022 and
1981–2010 in Szarvas.

The experimental site (46◦51′06.8′′ N 20◦31′16.3′′ E) is located on the Great Hungarian
Plain in a 1 km wide flat valley surrounded by oxbow lake of the River Körös, which is
an island-like area. Due to river regulation measures, the area has been free from flooding
since the second half of the 19th century. The soils of the area are formed on the alluvial
deposits of the Körös river, mainly on clay and silty clay bedrock. The soil type of the
experimental site is Vertisols, with a clay texture, 6.7 pH(KCl), <0.5 m/m% total carbonate,
and 1.1% total organic carbon.

The weed infestation in the experimental area is low, but is influenced by the orienta-
tion of sampling locations. The total weed cover was 0.6 ± 0.4%, 0.7 ± 0.3%, 3.0 ± 2.6% in
the N, M, S locations, with Lolium perenne, Adonis aestivalis, Capsella bursa-pastoris, and Cir-
sium arvense being the most abundant on 29 April, and <0.1 ± <0.1%, 0.0 + 0.0%, 0.2 ± 0.1%,
with Convolvulus arvense being the only weed present on 17 August. Contributing to the
low weed cover was the fact that 2022 was an extremely dry year with only Convolvulus
arvense as a weed. Also, according to Den Hollander et al. [25] other clover species like
Persian clover, red clover, alsike clover, berseem clover, and crimson clover provide good
weed suppression. The results of the weed survey are supported by the examination of
areas of 1 m2 [14,26].

2.2. Red Clover Cultivation Technology

Before the red clover was sown, the experimental area served as an energy plantation
and was left fallow in 2020 following its conversion. The cultivation of red clover began
with ploughing, disking, and seedbed preparation, which took place between December
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2020 and March 2021. The DIANA variety was sown at a rate of 12 kg ha−1 on 25 March
2021. During the first year, irrigation was performed on 8–9 July using surface water
(50 mm) from the oxbow lake of the Körös River, followed by the first mowing on 16 July.
A second irrigation of 50 mm was conducted on 28–29 July. The seed was harvested on
5 October in the first year. In the second year, 2022, the first mowing occurred on 19 May.
Due to the extremely dry conditions, three irrigations were necessary: on 24 May (45 mm),
7 June (90 mm), and 20 June (50 mm). The second mowing was carried out on 6 August
2022. The water consumption for red clover production is 500 to 700 mm per year, with the
highest usage occurring from July to August, when up to 4.5 mm per day is consumed [27].

The water quality of the oxbow lake is excellent fresh water for irrigation (specific
electrical conductivity 371 µS/cm, sodium adsorption ratio 1.2) [28]. The irrigation method
used was sprinkler irrigation with a drum sprinkler.

2.3. Experimental Design and Sampling Locations

Prior to the present experiment, there was an energy plantation (Salix alba L., clone
77 and 82, named “Naperti”) in the research area between 2014 and 2019 for experimental
purposes, with irrigation using reused water from an intensive catfish farm. In 2020,
the plantation was transformed into an agroforestry system consisting of 7 rows of trees
simulating alley cropping arrangement [29]. This transformation effectively created a semi-
industrial pilot agroforestry system. Between the rows of willow trees, there are 3 fields of
different widths (X: 24 m, Y: 9 m, Z: 6.5 m) in two replicates for intercropping (Figure 2).
The orientation of the tree rows is east–west, which is the recommended orientation to
reduce the shading of arable land by trees [30]. Since the trees were planted in April 2014,
they reached their 9th growing season in 2022. In January 2021, the above-ground biomass
of the willows was harvested in the year of red clover sowing, and in the second year of
red clover sowing, the trees produced their second annual shoot. The spacing between the
trees in the rows was 0.5 m.
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The buffer zone was “beside the crop line, which did not receive any soil disturbance,
or crop production” [13]. The zone was approximetly 1 m wide in 2022, so the real widths
of the plots were as follows: 22 m, 7 m, 4.5 m. Each plot was 275 metres long, so the areas
of plots X, Y, and Z were, in order, 6050 m2, 1925 m2, 1237.5 m2.

By testing the three different line spacings (plots of the intercrop) (X: 24 m, Y: 9 m, Z:
6.5 m) between the trees, we looked for the optimum line spacing at which the intercrop
plant could grow best. The orientation of the tree lines was east–west. Three sampling
locations were distinguished according to the position relative to the tree lines: north (N) is
the northern sides of the tree lines, highly affected by the shadows of the trees during the
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season; middle (M) is the strip equidistant from the tree (1 m strips in the center of the red
clover plots); and south (S) is the southern sides of the tree lines. By differentiating between
sites, we aimed to investigate the effect of the shadow of the tree lines on the development
of red clover (Figure 2). All three aforementioned positions (N, M, S) were selected for each
line spacing (X, Y, Z); for the number of replicates, see Sections 2.4–2.6. Remote sensing and
ground observations indicated that the vegetation was uniformly developed and the area
was homogeneous, justifying the use of fewer replicates. Additionally, the experimental
site’s layout, constrained by the pilot agroforestry system, limited the number of feasible
replicates.

The N and S positions represent strips 1 m wide and 275 m long; the M position
represents the area of the red clover parcel minus the areas of N and S. Red clover (Trifolium
pratense L.) is a perennial crop, and measurements were made in its second year. This was
a one-year study. Because the experiment was conducted between tree lines, the shading
effects of tree growth varied, making comparisons between years difficult, as these were
very fast-growing willow clones (77, 82) [31].

2.4. Assay of Phenologycal Parameters

The phenological measurements of the plants were recorded on 12 July 2022, during the
phenological phase of full flowering. The following parameters of red clover were studied:
root length, shoot length, number of shoots, plant weight, and the number and colour
of flowers. For phenological measurements, 5 red clover individual was collected along
5 straight lines perpendicular to the tree lines at the sampling positions indicated above
in each line spacing (X, Y, Z) and in each orientation (N, M, S), resulting in 25 replications
per each position. The individual plants were dug up and transported to the laboratory,
where the roots were washed. The length of the longest shoot, which can be taken as
the height of the plant, was measured with a tape measure, and the numbers of stem
branches and flowers were counted. The plant weight without the root was measured with
a bench scale (Metripond Plus CAS MWP 1500, Metripond Plus Mérlegtechnika Kft. 6800
Hódmezővásárhely, Bajcsy Zsilinszky utca 70).

For plant biomass measurements, a 1 m2 red clover area was mown (27 June 2022)
along 4 straight lines perpendicular to the tree lines at the sampling positions indicated
above in each line spacing (X, Y, Z) and in each orientation (N, M, S), resulting in 4 replica-
tions per position. The biomass was measured with a bench scale (Metripond Plus CAS CS,
Metripond Plus Mérlegtechnika Kft. 6800 Hódmezővásárhely, Bajcsy Zsilinszky utca 70).

2.5. Forage Quality of Red Clover

Although the aim of the crop was to harvest seeds from the second growth, four
different parameters (crude protein, crude fat, crude fiber, crude ash) of the red clover
biomass were investigated for a fiber feed. Plant samples were taken from the mown
red clover during biomass measurements, resulting in 4 replicates per sampling position
(see Section 2.4). The fodder quality was determined in the laboratory in the Agricultural
Science Specialization of the MATE University Laboratory Center in Kaposvár. Crude
protein content (%) was determined using the Kjeldahl method (EN ISO 5983-2:2009). For
the determination of crude fiber content (%), the sample was treated with boiling sulphuric
acid and potassium hydroxide, then filtered, dried, weighed, and ashed at 475–500 ◦C. The
weight loss on ashing indicated the crude fiber content (Commission Regulation (EC) No
152/2009). Crude ash content (%) was determined by incineration of dried samples (ISO
5984:1992). The content of crude fat (%) was determined by the Soxhlet extraction method
(according to Hungarian standard MSZ 6830-19:1979) [32].

2.6. Soil Moisture Measurements

Soil moisture measurements were conducted on three occasions (31 May, 13 June,
and 27 June 2022) 6–7 days after the irrigation events. Measurements were taken along
8 straight lines perpendicular to the tree rows at the specified sampling positions (X, Y, Z)
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in each orientation (N, M, S) and directly within the tree lines, resulting in 8 replications
per position. A custom-built soil penetrometer (model PEN 100M150) was used, capable
of penetrating up to 1 m. However, due to the extremely high resistance of the soil,
measurements were limited to the top 50 cm.

The penetrometer measures soil moisture content by detecting impedance between
the probe tip and the shaft, with wet soil showing lower impedance and dry soil showing
higher impedance. Calibration tables developed using soil samples from sandy and clay
soils were used to convert the measured impedance into gravimetric moisture content
(percent by weight), which was then displayed and stored in the device’s internal memory.
Although the instrument is no longer commercially available, its unique calibration ensured
accurate readings under the study’s specific conditions.

2.7. Statistical Analyses

The collected data underwent two-way analysis of variance (ANOVA) using IBM SPSS
Statistics software (version 25.0) to assess the variability and validate the results. Pearson
correlation was used to examine the relationships between the plant phenology parameters.
The evaluation of the line spacing and orientation was carried out with a one-way ANOVA
and Tukey’s post hoc test.

3. Results
3.1. Phenology

Red clover stem length varied significantly with orientation (north, middle, south),
line spacing (X, Y, Z), and their interaction (Table 1).

Table 1. Two-way ANOVA output of line spacing and orientation for phenology data.

Variable (Unit) Factor SS df MS F Sig.

Length of shoots
(cm)

Line
Spacing 1332.70 2 666.35 11.71 <0.001

Orientation 2528.29 2 1264.15 22.22 <0.001
Line Spac-

ing*Orientation 3110.44 4 777.61 13.67 <0.001

Shoots (pcs plant−1)
Line

Spacing 48.50 2 24.25 4.34 0.014

Orientation 25.19 2 12.59 2.25 0.108
Line Spac-

ing*Orientation 75.92 4 18.98 3.40 0.01

Mass (g plant−1)
Line

Spacing 477.53 2 238.77 6.20 0.002

Orientation 1467.03 2 733.52 19.04 <0.001
Line Spac-

ing*Orientation 449.64 4 112.41 2.92 0.022

SPAD
Line

Spacing 301.59 2 150.79 4.53 0.012

Orientation 689.98 2 344.99 10.36 <0.001
Line Spac-

ing*Orientation 316.97 4 79.24 2.38 0.053

Total number of
flowers (pcs)

Line
Spacing 111.95 2 55.97 3.47 0.033

Orientation 1480.35 2 740.18 45.83 <0.001
Line Spac-

ing*Orientation 193.95 4 48.49 3.00 0.02

ANOVA, analysis of variance; SS, sum of squares; df, degree of freedom; MS, mean squares; Sig., significance.
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Stem lengths ranged from 37.5 cm to 86.3 cm. In line X, the mean stem length was
63.4 ± 10.8 cm, with the south side showing shorter plants compared to the north side and
the middle strip. In line Y, the mean stem length was 66.6 ± 8.9 cm, with the tallest plants
in the middle strip and no significant differences between the north and south sides. In line
Z, the mean stem length was 69.3 ± 7.2 cm, with no significant differences according to
orientation (Table 2).

Table 2. Phenology data of red clover.

Length of
Shoots (cm)

Shoots (pcs
Plant−1)

Mass
(g Plant−1) SPAD Total Number

of Flowers

X North 68.2 ± 6.7 bB 5.4 ± 1.8 aA 9.5 ± 3.5 aA 55.6 ± 5.4 bAB 3.8 ± 1.7 aA

Middle 69.4 ± 6.4 bA 6.6 ± 2.2 aA 16.4 ± 5.7 bA 55.2 ± 5.8 abB 11.2 ± 4.2 bA

South 51.4 ± 8.4 aA 6.6 ± 1.8 aA 7.1 ± 3.6 aA 51.7 ± 3.9 aA 5.2 ± 3.8 aA

Y North 62.1 ± 10.4 aA 8.0 ± 2.8 bB 10.4 ± 5.5 aA 57.1 ± 5.4 bB 3.9 ± 3.3 aA

Middle 71.7 ± 7.1 bA 5.9 ± 2.4 aA 18.0 ± 8.0 bA 52.5 ± 8.3 aAB 10.7 ± 5.4 bA

South 65.7 ± 6.4 aB 7.8 ± 2.1 bA 14.4 ± 7.0 abB 50.0 ± 4.8 aA 8.7 ± 4.1 bB

Z North 68.7 ± 7.1 aB 8.0 ± 2.6 aB 14.4 ± 5.7 aB 53.4 ± 4.1 bA 5.0 ± 2.8 bA

Middle 70.5 ± 7.1 aA 6.7 ± 2.4 aA 16.7 ± 9.3 aA 49.0 ± 6.2 aA 10.5 ± 5.4 aA

South 68.7 ± 7.5 aB 7.2 ± 2.9 aA 12.2 ± 4.0 aB 51.3 ± 6.3 abA 10.2 ± 4.1 bB

The letters ‘a’ and ‘b’ indicate significant differences among different orientations within the same line spacing,
while ‘A’ and ‘B’ denote significant differences among different line spacings (X: 24 m, Y: 9 m, or Z: 6.5 m) within
the same orientation, respectively, at the p = 0.05 level.

The number of shoots per plant was also influenced by line spacing, orientation, and
their interaction (Table 1). The mean shoot numbers were 6.2 ± 2.0 for line X, 7.2 ± 2.6 for
line Y, and 7.3 ± 2.7 for line Z. In line Y, the middle strip had significantly fewer shoots
than the north and south sides. For the north strips, line X had fewer shoots compared to
lines Y and Z (Table 2).

Fresh weight per plant varied from 2.2 g to 37.3 g and was significantly affected by
orientation, line spacing, and their interaction (Table 1). In line X, the mean plant mass
was 11.2 ± 5.8 g, with the highest mass in the middle strip and no significant differences
between the north and south sides. In line Y, the mean plant mass was 14.4 ± 7.5 g, with
the middle strip significantly higher than the north side. In line Z, the mean plant mass
was 14.4 ± 6.9 g, with the highest mass in the middle strip and no significant orientation
differences (Table 2). There were strong correlations between red clover weight and stem
length and between the number of stems and the number of flowers (Table 3).

Table 3. Pearson correlation of phenology parameters.

LS SP PW SPAD TF PF BF

LS 1
SP 0.002 1
PW 0.536 ** 0.434 ** 1
SPAD 0.045 −0.034 −0.022 1
TF 0.359 ** 0.228 ** 0.778 ** −0.131 1
PF 0.274 ** 0.192 ** 0.248 ** 0.201 ** 0.028 1
BF 0.274 ** 0.169 * 0.688 ** −0.181 ** 0.963 ** −0.242 ** 1

LS: Length of shoots (cm); SP: shoots (pcs plant−1); PW: plant weight (g plant−1); TF: total number of flowers
(pcs); PF: number of purple flowers (pcs); BF: number of brown flowers (pcs); **: significant at the p = 0.01 level.
*: significant at the p = 0.05 level.

SPAD values, indicating chlorophyll content, were significantly affected by line spacing
and orientation, but not their interaction (Table 1). Mean SPAD values were 54.3 ± 5.3 for
line X, 53.1 ± 7.0 for line Y, and 51.2 ± 5.8 for line Z. SPAD values were significantly higher
in the north strip than in the middle and south strips across all line spacings (Table 2).

The total number of flowers per plant was significantly influenced by orientation, line
spacing, and their interaction (Table 1). The mean flower counts were 6.6 ± 4.6 for line
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X, 7.8 ± 5.2 for line Y, and 8.5 ± 4.9 for line Z. The lowest flower count was observed on
the north side, and the highest in the middle strip across all line spacings. In the southern
strip, line X had significantly fewer flowers than lines Y and Z (Table 2). Flower maturity
varied significantly with orientation, with a higher proportion of purple (immature) flowers
on the north side, indicating earlier developmental stages (Figure 3). This is supported
by the correlation between SPAD values and number of purple/brown/total flowers, as
chlorophyll content depends on the flowering stage (Table 3). According to Saadat et al. [33],
the differences in SPAD values in red clover could be attributed to the plants flowering at
different times.

Agronomy 2024, 14, x FOR PEER REVIEW 8 of 17 
 

 

SPAD values, indicating chlorophyll content, were significantly affected by line 
spacing and orientation, but not their interaction (Table 1). Mean SPAD values were 54.3 
± 5.3 for line X, 53.1 ± 7.0 for line Y, and 51.2 ± 5.8 for line Z. SPAD values were significantly 
higher in the north strip than in the middle and south strips across all line spacings (Table 
2). 

The total number of flowers per plant was significantly influenced by orientation, line 
spacing, and their interaction (Table 1). The mean flower counts were 6.6 ± 4.6 for line X, 
7.8 ± 5.2 for line Y, and 8.5 ± 4.9 for line Z. The lowest flower count was observed on the 
north side, and the highest in the middle strip across all line spacings. In the southern 
strip, line X had significantly fewer flowers than lines Y and Z (Table 2). Flower maturity 
varied significantly with orientation, with a higher proportion of purple (immature) 
flowers on the north side, indicating earlier developmental stages (Figure 3). This is 
supported by the correlation between SPAD values and number of purple/brown/total 
flowers, as chlorophyll content depends on the flowering stage (Table 3). According to 
Saadat et al. [33], the differences in SPAD values in red clover could be attributed to the 
plants flowering at different times. 

Table 3. Pearson correlation of phenology parameters. 

 LS SP PW SPAD TF PF BF 
LS 1       
SP 0.002 1      
PW 0.536 ** 0.434 ** 1     
SPAD 0.045 −0.034 −0.022 1    
TF 0.359 ** 0.228 ** 0.778 ** −0.131 1   
PF 0.274 ** 0.192 ** 0.248 ** 0.201 ** 0.028 1  
BF 0.274 ** 0.169 * 0.688 ** −0.181 ** 0.963 ** −0.242 ** 1 
LS: Length of shoots (cm); SP: shoots (pcs plant−1); PW: plant weight (g plant−1); TF: total number of 
flowers (pcs); PF: number of purple flowers (pcs); BF: number of brown flowers (pcs); **: significant 
at the p = 0.01 level. *: significant at the p = 0.05 level. 

 
Figure 3. Distribution of flowers by maturity stage (colour). Line spacings X: 24 m, Y: 9 m, and Z: 
6.5 m. 

3.2. Forage Quality 

Figure 3. Distribution of flowers by maturity stage (colour). Line spacings X: 24 m, Y: 9 m, and Z:
6.5 m.

3.2. Forage Quality

Forage quality in terms of crude protein, crude fat, crude fiber, and crude ash was
analysed at different line spacings and in different orientations. The orientation (north,
middle, south) had a significant influence on all examined forage quality parameters at the
p < 0.001 level, except for crude fiber, which was significant at the p < 0.01 level (Table 4).
Line spacing significantly influenced only crude fiber (p < 0.001). The interaction of line
spacing and orientation was significant in one case, specifically for crude ash (p = 0.01).

The crude protein content of red clover varied between 15.6% and 19.3% in the experi-
ment. The highest mean protein value (18.1 ± 0.8%) was recorded at the widest line spacing
(24 m, X), with Y and Z line spacings showing lower values (17.5 ± 0.7% and 17.5 ± 1.2%,
respectively); however, the differences were not significant. Orientation significantly af-
fected protein content, with the north side of the tree line having the highest mean value
(X: 18.4 ± 0.4%; Y: 18.2 ± 0.7%; Z: 18.9 ± 0.4%) and the middle section having the lowest
(Figure 4).

The crude fat content ranged from 2.7% to 3.8%. No significant differences were found
between the line spacings (X: 3.1 ± 0.3%; Y: 3.0 ± 0.2%; Z: 3.1 ± 0.3%). Orientation had
a significant effect, with the north side showing the highest mean value (X: 3.5 ± 0.3%;
Y: 3.2 ± 0.1%; Z: 3.5 ± 0.2%), while no significant differences were observed between the
middle and south sides (Figure 4).
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Table 4. Two-way ANOVA results for the effects of line spacing and orientation on forage quality
parameters.

Variables Actors SS df MS F Sig.

Crude Protein (%)
Line Spacing 2.174 2 1.087 2.477 0.103
Orientation 13.104 2 6.552 14.932 <0.001
Line Spac-
ing*Orientation 3.464 4 0.866 1.974 0.127

Crude Fat (%)
Line Spacing 0.111 2 0.055 1.964 0.160
Orientation 1.774 2 0.887 31.510 <0.001
Line Spac-
ing*Orientation 0.241 4 0.060 2.141 0.103

Crude Fiber (%)
Line Spacing 20.736 2 10.368 11.068 <0.001
Orientation 11.577 2 5.789 6.179 0.006
Line Spac-
ing*Orientation 5.378 4 1.344 1.435 0.249

Crude Ash (%)
Line Spacing 0.534 2 0.267 1.724 0.197
Orientation 26.191 2 13.095 84.587 <0.001
Line Spac-
ing*Orientation 2.548 4 0.637 4.114 0.010

ANOVA, analysis of variance; SS, sum of squares; df, degree of freedom; MS, mean squares; Sig., significance.
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Figure 4. Forage quality results of red clover. The letters ‘a’ and ‘b’ indicate significant differences
among different orientations within the same line spacing, while ‘A’ and ‘B’ denote significant
differences among different line spacings (X, Y, or Z) within the same orientation, respectively, at the
p = 0.05 level. X: 24 m Y: 24 m Z: 6.5 m.

The crude fiber content ranged from 18.5% to 23.5%. Line spacing significantly affected
crude fiber content, with mean values increasing as line spacing decreased (X: 19.7 ± 1.0%;
Y: 20.8 ± 1.0%; Z: 21.6 ± 1.3%). This was the only forage quality parameter showing a strong
negative relationship with row spacing (Table 5). Orientation also significantly influenced
crude fiber content, with the north side having the lowest mean value (X: 19.4 ± 1.0%;
Y: 20.3 ± 1.5%; Z: 20.1 ± 0.3%), particularly significant in the narrowest (Z) line spacing
(Figure 4).
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Table 5. Pearson correlation of parameters of forage quality and line spacing.

Line
Spacing

Crude
Protein

Crude
Fiber

Crude
Fat

Crude
Ash

Line Spacing 1
Crude
Protein 0.265 1

Crude Fiber −0.549 ** −0.710 ** 1
Crude Fat 0.052 0.553 ** −0.381 * 1
Crude Ash 0.082 0.703 ** −0.503 ** 0.788 ** 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

The crude ash content varied from 7.4% to 11.2%. No significant differences were
found between line spacings (X: 8.9 ± 1.0%; Y: 8.6 ± 0.6%; Z: 8.8 ± 1.3%). Orientation
significantly impacted the crude ash content, with the north side showing the highest mean
values (X: 10.2 ± 0.4%; Y: 9.4 ± 0.5%; Z: 10.4 ± 0.7%), which were significant across all line
spacings (Figure 4).

3.3. Yield

The two-way ANOVA result indicates that red clover biomass (d.m.) was only signifi-
cantly affected by position relative to the tree line, but not by line spacing (Table 6).

Table 6. Two-way ANOVA results for the effects of line spacing and orientation on red clover yield.

Variable Factors SS df MS F Sig.

Yield (t/ha)
Line spacing 0.635 2 0.318 1.326 0.284
Orientation 18.67 2 9.335 38.978 <0.001
Repetition 1.037 3 0.346 1.443 0.255
Line Spac-
ing*Orientation 1.45 4 0.362 1.513 0.23

ANOVA, analysis of variance; SS, sum of squares; df, degree of freedom; MS, mean squares; Sig., significance.

The lowest red clover biomass mass was measured on the north side of the tree line
for each line spacing (Table 7).

Table 7. Yield of red clover.

Dry Matter
(m/m%)

Biomass d.m. 1

(t ha−1)
Specific Yield d.m. 2

(t ha−1)

X North 18.0 ± 0.8 aA 1.33 ± 0.22 aA

Middle 20.2 ± 0.7 bAB 3.01 ± 0.73 bA

South 20.0 ± 0.8 bA 2.27 ± 0.48 abA

∑ 2.897 ± 0.669 A

Y North 19.2 ± 1.0 aA 1.35 ± 0.27 aA

Middle 20.6 ± 1.0 aB 2.56 ± 0.57 bA

South 20.0 ± 0.6 aA 2.08 ± 0.53 abA

∑ 2.325 ± 0.394 A

Z North 18.0 ± 0.6 aA 1.03 ± 0.13 aA

Middle 19.0 ± 0.3 bA 3.40 ± 0.59 bA

South 19.3 ± 0.5 bA 2.52 ± 0.64 bA

∑ 2.687 ± 0.267 A

The letters ‘a’ and ‘b’ indicate significant differences among different orientations within the same line spacing,
while ‘A’ and ‘B’ denote significant differences among different line spacings (X: 24 m, Y: 9 m, or Z: 6.5 m) within
the same orientation, respectively, at the p = 0.05 level. d.m. dry matter. 1: biomass d.m. (t/ha): measured values.
2: The specific yield of red clover per line spacing was calculated by taking the biomass measured in each strip (N,
M, S) and weighting it according to the area of the strips, resulting in an average yield per unit area.
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The highest biomass mass was measured in the middle strip of each line for all line
spacings. The dry matter content of red clover was lower on the northern side of the tree
line than in the middle and southern strips (the difference was significant in the X and
Z strips). The specific yield of red clover per line spacing was calculated by taking the
biomass measured in each strip (N, M, S) and weighting it according to the area of the strips,
resulting in an average yield per unit area. There was no significant difference between the
specific yields calculated in the different line spacings (p = 0.276). If we consider the values
measured in the middle band of the widest line space as a conventional field reference
value (3.01 t/ha), the specific yields in the line spaces X, Y, and Z were 3.8%, 22.8%, and
10.7% lower than the conventional values.

3.4. Soil Moisture

Soil moisture was measured three times, each time 6–7 days after irrigation. At the
first measurement date, the soil moisture in the fasciculus at a depth of 5–18 cm was lower
than that measured in the intercrop soil. At the same time, the higher water use of the trees
did not extend horizontally to the northern and southern strips (~1.5 m from the tree line)
of red clover soil. In all strips, similar soil moisture levels were measured throughout the
soil profile. The second measurement date was preceded by 90 mm irrigation. Neither
the orientation nor the tree line had any effect on the soil moisture, as the curves of the
mean values seem to confirm. At the third time of measurement, it can again be seen that
the different strips had similar moisture contents, but in the 7–15 cm soil layer, the higher
water use of the willows is reflected in the lower soil moisture values (Figure 5).
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Figure 5. Soil moisture distribution by depth (5–50 cm) and orientation at three different dates. The
lines in the graph represent a moving average for the 5 cm soil layer and the repetition was 8.

4. Discussion

Through evaluating line spacing by plant height values, we found that the narrowest
line spacing (Z: 6.5 m) had the highest red clovers (mean 69.3 ± 7.2 cm), and in this line
spacing, there was no difference in values by orientation. According to Radinovič et al. [34],
46 red clover varieties and cultivars (including DIANA) were tested over two years, with
a maximum height of 65.27 cm in the first year and 50.23 cm in the second year. In our
experiment, the maximum plant height was 86.3 cm. Although the plant heights were
higher than in other studies, the mass of the individual plants was lower (ranged from
2.2 g to 37.3 g). According to Radinovič et al. [34], the lowest green mass yield was 75.33 g
plant−1. However, according to Nadeem et al. [24], the plant weight ranged from 12.1 to
17.0 g plant−1 at the first harvest of the second experimental yield in the case of six cultivars.
According to the weight of the red clover plant, the highest weight was measured in the
middle strips in all line spacings; there were no significant differences in line X, Y, Z.

The SPAD values, which indicate chlorophyll content and plant health [35], were
found to have a strong positive correlation with the number of flowers in red clover. This
suggests that higher SPAD values may be associated with a greater number of flowers in red
clover plants. SPAD values also showed a positive correlation with the number of purple
flowers and a negative correlation with brown flowers. This is because the chlorophyll
content of the plant decreases as flowering progresses [36,37], whereas it is high at the
beginning of flowering. Thus, both the flower colour and SPAD values indicate the different
maturity states of the red clover in our experiment. Flower maturity varied significantly
with orientation, with a higher proportion of purple (immature) flowers (41–59% of total
flowers) on the north side, indicating earlier developmental stages, than in the middle or
south strips (4–15% of total flowers). SPAD values were significantly higher in the north
strip (53.4–57.1), also showing the earlier maturity of the plants, than in the middle and
south strips (49.0–55.2) across all line spacings.

Orientation (north, middle, south) consistently influenced the forage quality parame-
ters of red clover, with the north side generally showing higher protein and ash content
and lower fiber content. The higher fiber content is an indication of lower-quality forage,
as it is characterized by more difficult digestibility and lower protein content [38]. Accord-
ing to our results, the lowest crude fiber and the highest crude protein contents of red
clover were measured on the north side of the tree line (Figure 4), which means that the
highest-quality red clover was grown in the shade of the trees. Since shade resulted in a
lower yield, the improved yield quality is likely to have been an indirect effect of shade.
According to Mikhailov et al. [39] where red clover grew at the edge of the forest, with
lighting conditions limited to about 50% of full illumination, the plants did not “overheat”
and had a higher content of ascorbic acid. In addition, other environmental conditions,
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especially temperature and soil moisture, affect the level of vitamins in red clover, which
may indirectly impact the fiber content [39].

The concentration of rumen-degradable protein decreased with advancing plant de-
velopment in red clover cultivars, indicating a decrease in crude protein content as the
plant matured [40]. According to our results, the lowest protein content was measured in
the middle and south strips (Figure 4). This may be due to the fact that red clover in these
locations was more mature (Figure 3), whereas the plants on the north side of the tree line
were at an earlier stage of development at the time of measurement. The growth stages
of red clover influenced the crude protein content of red clover: early flowering, 19.5%,
late flowering, 14.0%, sowing, 13.2% [41]. On the other hand, there was a strong negative
correlation between the protein and fiber content of red clover (Figure 4, Table 2), which
was due to the fact that as the protein content decreased during ripening, the fiber content
increased [41], also confirming the different developmental stages of the red clover. Our
results for crude ash content are similar to the results for protein content, as the ash content
was higher in the northern plants at an earlier stage of development (Figure 4). According
to Markovič et al. [42] as the red clover matured, the content of crude ash decreased from
the first to the third stage of growth.

Red clover is a valuable forage crop, with dry matter yields ranging from 9 to 18 t
ha−1 year−1 (two mowing in one year) in Ukraine [43]. The mean annual production of
established red clover is 17.0 ± 0.48 t DM ha−1 in New Zealand [44]. The mean dry matter
yield of the first main harvesting season ranges from 7.4 t ha−1 in Serbia and Norway
to 13.4 t ha−1 in Switzerland. In our experiment, the yield of the second mowing of the
two-year-old red clover was significantly lower (Table 7). The difference was probably
mainly due to the climate requirements of the red clover, as the wetter and cooler weather in
northern Europe is more favorable for its environmental needs. The recommended growing
conditions for red clover can be summarised as follows: soil pH, 6.0–7.0; temperature,
20–25 ◦C; annual rainfall from 550 mm; and well-drained soil with a salinity of 0–0.75 dS
m−1 [20]. Red clover yields in the 24, 9, and 6.5 m rows were 2.9 t ha−1, 2.3 t ha−1, and 2.7 t
ha−1 dry matter, respectively, with no significant difference between them.

The soil moisture measurements indicate that irrigation temporarily homogenized
soil moisture levels across different strips and orientations. However, willow water use
significantly affected soil moisture at certain depths, as is particularly evident for lower
soil moisture values at 5–18 cm depth near the tree line. Over time, the effect of tree
water uptake became apparent, especially in areas closer to the trees, suggesting that the
proximity to the tree line does influence soil moisture dynamics in red clover fields. From
the soil moisture values, it can be concluded that the developmental stages of the plants in
the different strips were mainly influenced by other factors, e.g., light stress or temperature
stress [45], rather than the available water supply, which deserves further investigation.

5. Conclusions

The study shows that orientation significantly influences both forage quality param-
eters and growth of red clover in agroforestry systems. The study focused on red clover
in its second year of growth, limited by the one-year observation. North-facing strips had
higher protein and ash contents and lower fiber content, indicating superior forage quality
influenced by environmental factors such as light availability. In addition, the central strips
had higher plant mass, stem length, and flower number due to optimal light and resource
conditions, while the north-facing strips had higher SPAD values and a greater proportion
of immature flowers, suggesting delayed development due to limited light. These results
highlight the critical role of spatial arrangement and orientation in optimising red clover
growth and quality in agroforestry systems and emphasise the importance of effective
management practices to improve forage quality in different parts of the field. Future
research should aim to conduct longer-term studies to verify these findings and further
investigate the influence of spatial arrangement and orientation over multiple growing
seasons.
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