Generalized balancing numbers ${ }^{\text {NTh }}$

by Kálmán Liptai ${ }^{\text {a }}$, Florian Luca ${ }^{\text {b }}$, Ákos Pintér ${ }^{\mathrm{c}}$ and László Szalay ${ }^{\text {d }}$
${ }^{\text {a }}$ Institute of Mathematics and Informatics, Eszterházy Károly College, Leányka út 4, H-3300 Eger, Hungary
${ }^{\mathrm{b}}$ Instituto de Matemáticas, UNAM, Campus Morelia, Ap. Postal 61-3 (Xangari), CP 58089, Morelia, Michoacán, Mexico
${ }^{\text {c }}$ Institute of Mathematics, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
${ }^{\text {d }}$ Department of Mathematics and Statistics, University of West Hungary, Erzsébet utca 9, H-9400 Sopron, Hungary

Communicated by Prof. R. Tijdeman

ABSTRACT

The positive integer x is a (k, l)-balancing number for $y(x \leqslant y-2)$ if

$$
1^{k}+2^{k}+\cdots+(x-1)^{k}=(x+1)^{l}+\cdots+(y-1)^{l}
$$

for fixed positive integers k and l. In this paper, we prove some effective and ineffective finiteness statements for the balancing numbers, using certain Baker-type Diophantine results and Bilu-Tichy theorem, respectively.

1. INTRODUCTION

Let y, k and l be fixed positive integers with $y \geqslant 4$. We call the positive integer x $(\leqslant y-2)$ a (k, l)-power numerical center for y, or a (k, l)-balancing number for y if

$$
\begin{equation*}
1^{k}+\cdots+(x-1)^{k}=(x+1)^{l}+\cdots+(y-1)^{l} . \tag{1}
\end{equation*}
$$

[^0]The special case $k=l$ of this definition is due to Finkelstein [9] who proved that infinitely many integers y possess (1,1)-power centers (see also [2]), and that there is no integer $y>1$ with a $(2,2)$-power numerical center. The proofs depend on the theory of Pell equations and the resolution of the Thue equations $X^{3}+2 Y^{3}=11$ and 33 , respectively, in integers X, Y. We note that the particular case $k=l=1$ is strongly related to another problem called the house problem (see, for example, [1]). In his paper, Finkelstein conjectured that if $k>1$, then there is no integer $y>1$ with a (k, k)-power numerical center. Later, using a result of Ljunggren [11] and Cassels [7] on triangular numbers whose squares are also triangular, Finkelstein [14] confirmed his own conjecture for $k=3$. Recently, Ingram [10] proved Finkelstein's conjecture for $k=5$.

In this paper, we prove a general result about (k, l)-balancing numbers. Unfortunately, we cannot deal with Finkelstein's conjecture in its full generality. However, we obtain the following theorem.

Theorem 1. For any fixed positive integer $k>1$, there are only finitely many positive pairs of integers (y, l) such that y possesses a (k, l)-power numerical center.

The case $k=l$ has already been dealt with recently by Ingram [10] with a method similar to ours. The proof splits naturally in two cases. The first case is when $1 \leqslant$ $l \leqslant k$. Since k is fixed and there are only finitely any such l, we may assume that l is also fixed. Our proof now uses an ineffective statement of Rakaczki [13]. The second case is when $k<l$, and here we show by Runge's method that there are no positive integers y possessing a (k, l) numerical center.

Because of the use of the result from [13], our Theorem 1 is ineffective in case $l \leqslant k$ in the sense that we cannot provide an upper bound for possible numerical centers x in terms of k unless $l=1$ or $l=3$. In these cases, we have the following theorem.

Theorem 2. Let k be a fixed positive integer with $k \geqslant 1$ and $l \in\{1,3\}$. If $(k, l) \neq(1,1)$, then there are only finitely many (k, l)-balancing numbers, and these balancing numbers are bounded by an effectively computable constant depending only on k.

We note that some numerical centers do exist. For example, in the case $(k, l)=$ $(2,1)$, we can rewrite equation (1) as

$$
2 x^{3}+4 x=3 y^{2}-3 y
$$

which is an elliptic curve whose short Weierstrass normal form is $u^{3}+72 u+81=v^{2}$ (via the bi-rational transformation $v=18 y-9$ and $u=6 x$). Using the program package MAGMA, we solved this elliptic equation and its solutions lead to three (2,1)-balancing numbers x, namely 5, 13 and 36 .

For the proofs of our results, we need some auxiliary results. For an integer $k \geqslant 1$, we write

$$
S_{k}(x)=1^{k}+2^{k}+\cdots+(x-1)^{k} .
$$

These expressions are strongly related to the Bernoulli polynomials. In the next lemma, we summarize some of the well-known properties of Bernoulli polynomials. For the proofs, we refer to [12].

Lemma 1. Let $B_{n}(X)$ denote the nth Bernoulli polynomial and put $B_{n}=B_{n}(0)$ for $n=1,2, \ldots$. Further, let D_{n} be the denominator of B_{n}. We then have:
(A) $S_{k}(X)=\frac{1}{k+1}\left(B_{k+1}(X)-B_{k+1}\right)$;
(B) $B_{n}(X)=X^{n}+\sum_{k=1}^{n}\binom{n}{k} B_{k} X^{n-k}$;
(C) $B_{n}(X)=(-1)^{n} B_{n}(1-X)$;
(D) $B_{1}=-\frac{1}{2}$ and $B_{2 n+1}=0$ for $n \geqslant 1$;
(E) (von Staudt-Clausen) $D_{2 n}=\prod_{p-1 \mid 2 n, p}$ prime p;
(F) 0 and 1 are double zeros of $S_{k}(X)$ for odd values of $k \geqslant 3$. Further, 0 and 1 are simple zeros of $S_{k}(X)$ for even values of k.

We shall also need the following lemma (for some results of a similar flavor, see the Appendix to [3]).

Lemma 2. Let p be prime. Assume that the sum of the digits of n in base p is $\geqslant p$. Then there exists an even positive integer $k<n$ such that p divides the denominator of the rational number

$$
\binom{n}{k} B_{k}
$$

when written in reduced form.
Proof. Let first p be odd. Then

$$
n=n_{1} p^{\alpha_{1}}+\cdots+n_{t} p^{\alpha_{t}},
$$

here $0 \leqslant \alpha_{1}<\cdots<\alpha_{t}$ and $n_{1}, \ldots, n_{t} \in\{1, \ldots, p-1\}$. We now select non-negative integers m_{i} for $i=1, \ldots, t$, such that $m_{i} \leqslant n_{i}$ and $\sum_{i=1}^{t} m_{i}=p-1$. It is clear that this can be done since $\sum_{i=1}^{t} n_{i} \geqslant p$. We put

$$
k=\sum_{i=1}^{t} m_{i} p^{\alpha_{i}} .
$$

Then, $k<n$. Further, reducing k modulo $p-1$, we get that $k \equiv \sum_{i=1}^{t} m_{i}(\bmod p-$ $1)$, therefore $(p-1) \mid k$. In particular, k is even and p divides the denominator of B_{k}.

Finally, by a well-known theorem of Lucas (see [8], p. 271, items 76 and 77), we have

$$
\binom{n}{k} \equiv \prod_{i=1}^{t}\binom{n_{i}}{m_{i}} \quad(\bmod p),
$$

therefore p does not divide $\binom{n}{k}$, which completes the proof of the lemma in this case.

If $p=2$, then $n=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{t}}$ with $0 \leqslant \alpha_{1}<\alpha_{2}<\cdots<\alpha_{t}$ and $t \geqslant 2$. Then, taking $k=2^{\alpha_{2}}$, we see that $k<n, k$ is even, and, by Lucas's Theorem, $\binom{n}{k}$ is odd. Since 2 divides the denominator of B_{k}, we get that 2 divides the denominator of $\binom{n}{k} B_{k}$.

The next lemma is based on a recent deep theorem of Bilu and Tichy [4], as well as on the indecomposability of the Bernoulli polynomials proved by Bilu et al. in [3].

To present Lemma 3, we define special pairs $(l, g(X))$ as follows. In the sequel, we let $\delta(X) \in \mathbb{Q}[X]$ be a linear polynomial, and $q(X) \in \mathbb{Q}[X]$ be a non-zero polynomial. Further, for l odd, $S_{l}(X)$ can be written in the form $\phi_{l}\left((X-1 / 2)^{2}\right)$ with some appropriate polynomial $\phi_{l}(X) \in \mathbb{Q}[X]$, see [13]. We now define special pairs $(l, g(X))$ as follows:

Special pair of type $I:\left(l, S_{l}(q(X))\right)$, where $q(X)$ is not constant.
Special pair of type $I I: l$ is odd and $g(X)=\phi_{l}\left(\delta(X) q(X)^{2}\right)$.
Special pair of type III: l is odd and $g(X)=\phi_{l}\left(c \delta(X)^{t}\right)$, where $c \in \mathbb{Q} \backslash\{0\}$ and $t \geqslant 3$ is an odd integer.

Special pair of type $I V: l$ is odd and $g(X)=\phi_{l}\left(\left(a \delta(X)^{2}+b\right) q(X)^{2}\right)$, where $a, b \in$ $\mathbb{Q} \backslash\{0\}$.

Special pair of type V : l is odd and $g(X)=\phi_{l}\left(q(X)^{2}\right)$.
Special pair of type $V I: l=3$ and $g(X)=\delta(X) q(X)^{2}$.
Special pair of type VII: $l=3$ and $g(X)=q(X)^{2}$.

Lemma 3. Let l be a positive integer and $g(X) \in \mathbb{Q}[X]$ be a polynomial of degree greater than 2. Then the equation

$$
S_{l}(x)=g(y)
$$

has only finitely many integer solutions x and y, unless $(l, g(X))$ is a special pair.

Proof. This is Theorem 1 in [13].

We now rewrite equation (1) using the polynomials $S_{k}(x)$ and $S_{l}(y)$ as the Diophantine equation

$$
\begin{equation*}
S_{k}(x)+S_{l}(x+1)=S_{l}(y) \tag{2}
\end{equation*}
$$

Lemma 4. Assume that $k<l$ and put

$$
\begin{equation*}
P(X)=(X+1)^{l}-S_{k}(X) \in \mathbb{Q}[X] . \tag{3}
\end{equation*}
$$

Put x_{0} for the largest real root of $P(X)$. If x and y is an integer solution to the Diophantine equation (2), then $x \leqslant x_{0}$. In particular, if either $P(X)$ has no real root, or $x_{0}<2$, then the Diophantine equation (2) has no integer solutions $x \geqslant 2$ and $y \geqslant x+2$.

Proof. Suppose that the integers $x \geqslant 2$ and $y \geqslant x+2$ satisfy (2). Since $k<l$, it follows that the leading coefficient of $P(X)$ is positive and $\operatorname{deg}(P)=l$.
Clearly, if $P(X)$ does not possess a real root, or if $x_{0}<2$, or if $2 \leqslant x_{0}<x$, then $P(x)=(x+1)^{l}-S_{k}(x)>0$. Then

$$
\begin{equation*}
-x^{l}-S_{k}(x)<0<(x+1)^{l}-S_{k}(x) . \tag{4}
\end{equation*}
$$

Increasing both sides of the inequality (4) by $x^{l}+S_{k}(x)+S_{l}(x)$, we get

$$
\begin{equation*}
S_{l}(x)<x^{l}+S_{k}(x)+S_{l}(x)<(x+1)^{l}+x^{l}+S_{l}(x), \tag{5}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
S_{l}(x)<S_{k}(x)+S_{l}(x+1)<S_{l}(x+2) . \tag{6}
\end{equation*}
$$

Since (x, y) is a integer solution of (2), we get that $S_{k}(x)+S_{l}(x+1)$ can be replaced in (6) by $S_{l}(y)$. Thus,

$$
\begin{equation*}
S_{l}(x)<S_{l}(y)<S_{l}(x+2) . \tag{7}
\end{equation*}
$$

The properties of the polynomial S_{l} together with inequalities (7) imply that $y=$ $x+1$. Thus, by (2), $S_{k}(x)=0$, which is impossible.

The following three results yield information on the structure of zeros of certain polynomials.

Lemma 5. Let $p(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0}$ be a polynomial with integral coefficients for which a_{0} is odd, $4 \mid a_{i}$ for all $i=1, \ldots, n$, and $\operatorname{ord}_{2}\left(a_{n}\right)=3$. Then every zero of p is simple.

Proof. This is Lemma 4 in [6].
One of the most surprising theorem on zeros of certain polynomials related to $S_{k}(x)$ is due to Voorhoeve, Győry and Tijdeman [15]. They proved if $k \notin\{1,3,5\}$ then the polynomial $S_{k}(x)+R(x)$ possesses at least three zeros of odd multiplicities for every polynomial $R(x)$ with rational integer coefficients. Of course, this general statement is not true for some polynomials with rational coefficients, however, we obtain Lemmas 6 and 7.

Lemma 6. Each one of the polynomials

$$
F_{1}(X)=8 S_{k}(X)+(2 X+1)^{2}, \quad k>1,
$$

has at least three zeros of odd multiplicities.
Proof. Let d be the smallest positive integer for which

$$
8 d\left(B_{k+1}(X)-B_{k+1}\right) \in \mathbb{Z}[X] .
$$

Then, by (D) and (E) of Lemma 1, d is an odd square-free integer. We now show that the polynomial

$$
P_{1}(X)=8 d\left(B_{k+1}(X)-B_{k+1}\right)+d(k+1)(2 X+1)^{2}
$$

has at least three zeros of odd multiplicities. Note that the leading coefficient of P_{1} equals $8 d$. Since d is odd and is the smallest positive integer such that $8 d\left(B_{k+1}(X)-\right.$ $\left.B_{k+1}\right) \in \mathbb{Z}[X]$, it follows that the content of $P_{1}(X)$ (i.e. the greatest common divisor of all its coefficients) is a power of 2 dividing 8 .

If k is even, the fact that $P_{1}(X)$ has at least three simple zeros is a simple consequence of Lemma 5 .

Assume now that k is odd. If $P_{1}(X)$ is associated to a complete square in $\mathbb{Q}[X]$, then we get that

$$
\begin{equation*}
P_{1}(X)=a R(X)^{2}, \tag{8}
\end{equation*}
$$

where a is an integer and $R(X) \in \mathbb{Z}[X]$ is a polynomial with positive leading term. By writing $a=a_{1} r^{2}$, with integers a_{1} and r such that a_{1} is square-free, and by replacing $R(X)$ by $r R(X)$, we may assume that a is square-free. It is clear that $a>0$. We also assume that $k \geqslant 5$, since the case $k=3$ can be checked by hand.

If $2 \| k+1$, it is then easy to see that the content of $P_{1}(X)$ is 2 (all the coefficients of $P_{1}(X)$ are even, and the last is $d(k+1)$, therefore it is not a multiple of 4). Hence, by Gauss Lemma, $a=2$ and the content of $R(X)$ is 1 . Writing

$$
R(X)=a_{0} X^{(k+1) / 2}+a_{1} X^{(k-1) / 2}+\cdots+a_{(k+1) / 2}
$$

and identifying the first three coefficients in (8), we get

$$
8 d=a a_{0}^{2}, \quad-4 d(k+1)=2 a a_{0} a_{1}, \quad \frac{2 d k(k+1)}{3}=a\left(a_{1}^{2}+2 a_{0} a_{2}\right)
$$

The first relation above forces $a_{0}=2$ and $d=1$. The third relation above shows that a_{1} is even, therefore $2 a a_{0} a_{1}$ is a multiple of 16 . Now the second relation above contradicts the fact that $2 \| k+1$.

If $4 \mid k+1$, then the content of $P_{1}(X)$ is 4 , unless (see Lemma 2) $k+1$ is a power of 2 , in which case it is 8 . Thus, $a=1$, unless $k+1$ is a power of 2 , in which case $a=2$. Identifying leading terms in (8), we get that $8 d=a a_{0}^{2}$, therefore $d=1$
and $a=2$. Thus, $k+1=2^{\alpha}$, for some $\alpha \geqslant 3$. However, since $d=1$, it follows, by Lemma 2, that the sum of the digits of $k+1$ in base 3 is at most 2 . Thus, since $k+1$ is not a power of 3 (because $k+1$ is even), we get that $k+1=3^{\beta}+3^{\gamma}$ for some $0 \leqslant \beta \leqslant \gamma$. Hence, $2^{\alpha}=3^{\beta}+3^{\gamma}$, therefore $\beta=0$. Since the largest solution of the Diophantine equation $2^{\alpha}=1+3^{\gamma}$ is $\alpha=2, \gamma=1$, we get $k+1=4$, therefore $k=3$, which is a contradiction.

We now have to exclude the remaining case in which

$$
\begin{equation*}
P_{1}(X)=\left(a X^{2}+b X+c\right) R^{2}(X) \tag{9}
\end{equation*}
$$

where both $a X^{2}+b X+c$ and $R(X)$ are in $\mathbb{Z}[X]$, such that $a X^{2}+b X+c$ has two distinct zeros. Up to replacing $R(X)$ by $-R(X)$, we may assume that the leading coefficient of $R(X)$ is positive. Further, because the content of $P_{1}(X)$ is a power of 2 dividing 8 , it follows that $\operatorname{gcd}(a, b, c)$ is a power of 2 . By writing $\operatorname{gcd}(a, b, c)=$ 2^{α} for some non-negative integer α, and replacing $R(X)$ by $2^{\lfloor\alpha / 2\rfloor} R(X)$, we may assume that $\alpha=0$, or 1 . Hence, $\operatorname{gcd}(a, b, c)$ is either 1 or 2 .

If $k+1$ is even but not divisible by 4 , then $P_{1}(X) / 2$ is a polynomial in $\mathbb{Z}[X]$ having odd constant term and all other coefficients even. Thus, $P_{1}(X) / 2 \equiv 1$ $(\bmod 2)$. Hence, it can be factored as

$$
P_{1}(X) / 2=\left(2 S_{1}(X)+1\right)^{2}\left(2 S_{2}(X)+1\right)
$$

with some polynomials $S_{i}(X) \in \mathbb{Z}[X]$ for $i=1,2$. However, the leading coefficient of $P_{1}(X) / 2$ is not divisible by 8 .

Assume now that $4 \mid k+1$. When $k=3$, one can check by hand that $P_{1}(X)$ does not have the form shown at (9). Assume now that $k+1 \geqslant 8$. Note that the content of $P_{1}(X)$ is 4 , unless $k+1$ is power of 2 , when it is 8 . It now follows that $R_{1}(X)=R(X) / 2 \in \mathbb{Z}[X]$. Thus,

$$
\begin{equation*}
P_{1}(X) / 4=\left(a X^{2}+b X+c\right) R_{1}(X)^{2} . \tag{10}
\end{equation*}
$$

We now write

$$
R_{1}(X)=a_{0} X^{(k-1) / 2}+a_{1} X^{(k-1) / 2-1}+a_{2} X^{(k-1) / 2-2}+\cdots+a_{(k-1) / 2} .
$$

Identifying the first three coefficients in $P_{1}(X) / 4$, we get, on the one hand the polynomial

$$
P_{1}(X) / 4=2 d X^{k+1}-d(k+1) X^{k}+\frac{d k(k+1)}{6} X^{k-1}+\cdots,
$$

while on the other hand the polynomial

$$
\begin{aligned}
& \left(a X^{2}+b X+c\right)\left(a_{0}^{2} X^{k-1}+2 a_{0} a_{1} X^{k-2}+\left(a_{1}^{2}+2 a_{0} a_{2}\right) X^{k-3}+\cdots\right) \\
& \quad=a a_{0}^{2} X^{k+1}+\left(b a_{0}^{2}+2 a a_{0} a_{1}\right) X^{k} \\
& \quad+\left(c a_{0}^{2}+2 b a_{0} a_{1}+a\left(a_{1}^{2}+2 a_{0} a_{2}\right)\right) X^{k-1}+\cdots
\end{aligned}
$$

which leads to the relations

$$
a a_{0}^{2}=2 d, \quad b a_{0}^{2}+2 a a_{0} a_{1}=-d(k+1)
$$

and

$$
c a_{0}^{2}+2 b a_{0} a_{1}+a\left(a_{1}^{2}+2 a_{0} a_{2}\right)=\frac{d k(k+1)}{6} .
$$

The first relation above shows that $a_{0}=1, a=2 d$. The second one now becomes

$$
\begin{equation*}
b=-d\left(k+1+4 a_{1}\right), \tag{11}
\end{equation*}
$$

while the third one now reads

$$
\begin{equation*}
c=d\left(2(k+1) a_{1}+6 a_{1}^{2}-4 a_{2}\right)+\frac{d(k(k+1)}{6} . \tag{12}
\end{equation*}
$$

Clearly, $d \mid a$ and the above relations (11) and (12) for b and c, show that $d \mid b$, and if there exists a prime $p>3$ such that $p \mid d$, then $p \mid \operatorname{gcd}(a, b, c)$. Since $\operatorname{gcd}(a, b, c) \in$ $\{1,2\}$, we get that $d=1$ or $d=3$. To rule out the possibility that $d=3$, assume that $3 \mid k+2$. Then the above formula (12) for c shows that $d=3$. Identifying the last coefficient in (9) and using the fact that $S_{k}(0)=0$ (by (F) of Lemma 1), we get

$$
\begin{equation*}
d(k+1)=c\left(2 a_{(k-1) / 2}\right)^{2}, \tag{13}
\end{equation*}
$$

and since 3 divides d but not $k+1$, we get that $3 \mid c$. Since $d \mid a$ and $d \mid b$, we obtain $3 \mid \operatorname{gcd}(a, b, c)$, which is again a contradiction. Thus, 3 does not divide $k+2$, therefore $3 \mid k(k+1)$. Now relation (12), shows again that $d \mid c$. Hence, $d \mid \operatorname{gcd}(a, b, c)$, which implies that $d=1$.

Lemma 2 implies now that the sum of the digits of $k+1$ is base 3 is $\leqslant 2$. Since $4 \mid k+1$, we get that $k+1$ cannot be a power of 3 , therefore $k+1=3^{\alpha_{0}}+3^{\alpha_{1}}$ for some $0 \leqslant \alpha_{0} \leqslant \alpha_{1}$. Since $4 \mid k+1$, and $k+1=3^{\alpha_{0}}\left(3^{\alpha_{1}-\alpha_{0}}+1\right)$, we get that $4 \mid 3^{\alpha_{1}-\alpha_{0}}+1$. This shows that $\alpha_{1}-\alpha_{0}$ is odd. Further, since for an odd positive integer s, we have that $4 \| 3^{s}+1$, we get that $(k+1) / 4$ is odd. Clearly, $2 \| a$ and relation (12) show that c is even. Now relation (13) together with the facts that c is even and $4 \| k+1$ leads to a contradiction.

Lemma 7. Each one of the polynomials

$$
F_{2}(X)=4 S_{k}(X)+X^{2}(X+1)^{2}, \quad k \geqslant 1, k \neq 3,
$$

has at least three zeros of odd multiplicities.
Proof. We follow the same method as in the proof of Lemma 6. We use again d for the least positive integer such that $4 d\left(B_{k+1}(X)-B_{k+1}\right) \in \mathbb{Z}[X]$. By (D) and (E) of Lemma 1 , we have that d is odd and square-free.

For the polynomial $F_{2}(X)$, we have

$$
P_{2}(X)=4 d\left(B_{k+1}(X)-B_{k+1}\right)+d(k+1) X^{2}(X+1)^{2} \in \mathbb{Z}[X] .
$$

Assume first that $k+1$ is odd. We then have to exclude the case when

$$
P_{2}(X)=(a X+b) R^{2}(X),
$$

where $a X+b$ and $R(X) \in \mathbb{Z}[X]$. Since d is square-free and odd, further 0 is a simple zero of $P_{2}(X)$ (by (F) of Lemma 1), we obtain

$$
P_{2}(X)=a X R^{2}(X) .
$$

The coefficient of X in $R^{2}(X)$ is even, thus the coefficient of X^{2} in $P_{2}(X)$ is also even, which is a contradiction.

Assume now that $k+1>4$ is even. Then, we have to exclude that either $P_{2}(X)=$ $a R(X)^{2}$, or $P_{2}(X)=\left(a X^{2}+b X+c\right) R(X)^{2}$ with some polynomial $R(X) \in \mathbb{Z}[X]$, and some integers a, b and c, with $a \neq 0$.

We first look at the case $P_{2}(X)=a R(X)^{2}$. We may assume again that $R(X)$ has positive leading coefficient and that $a>0$ is square-free. The content of $P_{2}(X)$ is a power of 2 , therefore $a=1$ or 2 . We assume that $k+1>8$, since the smaller cases can be checked by hand. Writing

$$
R(X)=a_{0} X^{(k+1) / 2}+a_{1} X^{(k+1) / 2-1}+\cdots
$$

and identifying the first 5 coefficients we get, on the one hand, that $P_{2}(X)$ is the polynomial

$$
\begin{aligned}
& 4 d X^{k+1}-2 d(k+1) X^{k}+\frac{d(k+1) k}{3} X^{k-1} \\
& \quad-\frac{d(k+1) k(k-1)(k-2)}{180} X^{k-3}
\end{aligned}
$$

(note that $k-3>4$, therefore the first 5 terms in $P_{2}(X)$ are the same as the first 5 terms in $4 d S_{k}(X)$), while on the other hand, we get the polynomial

$$
\begin{aligned}
& a a_{0}^{2} X^{k+1}+2 a a_{0} a_{1} X^{k}+a\left(a_{1}^{2}+2 a_{0} a_{2}\right) X^{k-1}+a\left(2 a_{0} a_{3}+2 a_{1} a_{2}\right) X^{k-2} \\
& \quad+a\left(a_{2}^{2}+2 a_{0} a_{4}+2 a_{1} a_{3}\right) X^{k-3}+\cdots .
\end{aligned}
$$

Hence, we obtain the relations

$$
\begin{equation*}
4 d=a a_{0}^{2}, \quad-2 d(k+1)=2 a a_{0} a_{1}, \quad \frac{d(k+1) k}{3}=a a_{1}^{2}+2 a a_{0} a_{2}, \tag{14}
\end{equation*}
$$

as well as

$$
\begin{equation*}
2 a a_{0} a_{3}+2 a a_{1} a_{2}=0 \quad \text { and } \quad a a_{2}^{2}+2 a a_{0} a_{4}+2 a a_{1} a_{3}=-\binom{k+1}{4} \frac{2 d}{15} \tag{15}
\end{equation*}
$$

The first relation in (14) above together with $a \in\{1,2\}$, gives $d=1, a_{0}=2$, and $a=1$. Hence, by Lemma $2, k+1$ is either a power of 3 , or of the form $3^{\alpha}+3^{\beta}$ for some $0 \leqslant \alpha \leqslant \beta$. Since $k+1$ is even, it cannot be a power of 3 , therefore $k+1=$ $3^{\alpha}\left(3^{\beta-\alpha}+1\right)$. If $\beta-\alpha$ is even, then $2 \| k+1$, and if $\beta-\alpha$ is odd, then $4 \| k+1$. Now, the second relation in (14) above gives $a_{1}=-(k+1) / 2$, and the third relation in (14) above together with the fact that $k+1$ is even shows that a_{1} is even. Thus, $4 \| k+1$, which shows that $\binom{k+1}{4}$ is odd. Finally, since a_{0} and a_{1} are both even, reducing the second of relations (15) modulo 4 we get

$$
a_{2}^{2} \equiv 2 \quad(\bmod 4)
$$

which is the desired contradiction in this case.
It remains to deal with the case when

$$
\begin{equation*}
P_{2}(X)=\left(a X^{2}+b X+c\right) R(X)^{2} \tag{16}
\end{equation*}
$$

where a, b, c are integers and $R(X) \in \mathbb{Z}[X]$. As before, we assume that $R(X)$ has positive leading coefficient, that $a>0$, and $\operatorname{gcd}(a, b, c)=1$ or 2 .

We write

$$
R(X)=a_{0} X^{(k-1) / 2}+a_{1} X^{(k-1) / 2-1}+\cdots+a_{(k-1) / 2}
$$

assume that $k \geqslant 5$ and identify the first three coefficients in (16) to get

$$
\begin{equation*}
a a_{0}^{2}=4 d, \quad b a_{0}^{2}+2 a_{0} a a_{1}=-2 d(k+1) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
c a_{0}^{2}+2 b a_{0} a_{1}+a\left(a_{1}^{2}+2 a_{0} a_{2}\right)=\frac{d k(k+1)}{3} . \tag{18}
\end{equation*}
$$

The first relation (17) shows that $d \mid a$ and then the second relation (17) shows that $d \mid b$. Now relation (18) shows that if there exists a prime $p>3$ dividing d, then $p \mid \operatorname{gcd}(a, b, c)$, which is a contradiction. Thus, d is a divisor of 3 . To rule out the case $d=3$, suppose that $3 \mid k+2$. Then, relation (18) shows that $d=3$. Evaluating relation (16) at $x=1$ and using (F) of Lemma 1 (for $S_{k}(1)=0$), we get

$$
4 d(k+1)=(a+b+c) R(1)^{2} .
$$

Since $3 \mid k+2$, we get that 3 does not divide $k+1$. Hence, $3 \mid(a+b+c)$, and since 3 divides both a and b, we get that it divides also c, which is again a contradiction. Thus, $d=1$, and since $k+1$ is even, we get that $k+1=3^{\alpha}+3^{\beta}$ with $0 \leqslant \alpha \leqslant \beta$. If $\beta-\alpha$ is even, then $2 \| k+1$ and if $\beta-\alpha$ is odd, then $4 \| k+1$.

If $4 \| k+1$, then $4\binom{k+1}{4} B_{4}$ is the coefficient of X^{k-3} in $P_{2}(X)$ and it is even but not a multiple of 4 , while if $2 \| k+1$, then $4\binom{k+1}{2} B_{2}$ is the coefficient of X^{k-1} in $P_{2}(X)$, and is also even but not a multiple of 4 . In conclusion, the content of $P_{2}(X)$ is 2 , which means that $\operatorname{gcd}(a, b, c)=2$.

We now return to relations (17) and (18) and note that $a_{0} \in\{1,2\}$. If $a_{0}=2$, then $a=1$, which is false. Thus, $a_{0}=1$ and $a=4$. Now the second relation (17) shows that $4 \mid b$. Relation (18) shows that $4 \mid c$ too, which leads to the contradiction $4=\operatorname{gcd}(a, b, c)$, unless $2 \| k+1$. So, let us assume that $2 \| k+1$. Note that in this case relation (18) implies that $c \equiv 2(\bmod 4)$.

Now let us note that by (F) of Lemma 1 , we have that 0 is a double roots of $S_{k}(X)$. Thus, 0 is also double root of $P_{2}(X)$. Hence, $a_{(k-1) / 2}=0$. Put $F(X)=P_{2}(X) / X^{2}$, and $R_{1}(X)=R(X) / X$. Identifying the last two coefficients in the equation

$$
\begin{aligned}
F(X) & =\left(a X^{2}+b X+c\right) R_{1}(X)^{2} \\
& =\left(a X^{2}+b X+c\right)\left(\cdots+2 a_{(k-3) / 2} a_{(k-5) / 2} X+a_{(k-3) / 2}^{2}\right),
\end{aligned}
$$

we get

$$
\begin{align*}
& 2 k(k+1) B_{k-1}+k+1=c\left(a_{(k-3) / 2}\right)^{2}, \\
& 2(k+1)=2 c a_{(k-3) / 2} a_{(k-5) / 2}+b a_{(k-3) / 2}^{2} \tag{19}
\end{align*}
$$

The first relation (19) shows that $2 k(k+1) B_{k-1} \in \mathbb{Z}$. Since B_{k-1} is a rational number whose denominator is an even square-free integer, it follows that $2 k(k+1) B_{k}$ is congruent to 2 modulo 4 . Since $2 \| k+1$, we get that the left-hand side of the first equation (19) is a multiple of 4 . Since $2 \| c$, we get that $a_{(k-3) / 2}$ is even. We now immediately get that the right-hand side of the second equation (19) is a multiple of 8 , whereas its left-hand side is not. This final contradiction concludes the proof of this lemma.

Finally, we recall a special case of a result by Brindza [5].
Lemma 8. Let $f(X) \in \mathbb{Q}[X]$ be a polynomial having at least three zeros of odd multiplicities. Then the equation

$$
f(x)=y^{2}
$$

in integers x and y implies that $\max (|x|,|y|)<c$, where c is an effectively computable constant depending only on the coefficients and degree of f.

Proof. See Theorem in [5].
3. PROOFS

We start with the proof of Theorem 2 since it will be needed in the proof of Theorem 1.

Proof of Theorem 2. Since

$$
S_{1}(x)=\frac{x(x-1)}{2} \quad \text { and } \quad S_{3}(x)=\left(\frac{x(x-1)}{2}\right)^{2}
$$

equation (1) leads to the equations

$$
8 S_{k}(x)+(2 x+1)^{2}=(2 y-1)^{2}
$$

and

$$
4 S_{k}(x)+(x(x+1))^{2}=(y(y-1))^{2}
$$

respectively. Now, apart from the case when in the second equation $k=3$, the fact that such equations have only finitely many effectively computable integer solutions is a simple consequence of Lemmas $6-8$. We recall that Finkelstein resolved the case $(k, l)=(3,3)$. Thus, our proof is complete.

Proof of Theorem 1. We first assume that $k=l>3$.
If x is a (k, k)-balancing number for y, then, from (1), we have

$$
2 S_{k}(x)+x^{k}=S_{k}(y) .
$$

Recall that for odd values of $k, S_{k}(X)=\phi_{k}\left((X-1 / 2)^{2}\right)$ with an appropriate polynomial $\phi_{k}(X)$ with rational coefficients, and the leading coefficient of $S_{k}(X)$ and $\phi_{k}(X)$ is $1 /(k+1)$. We show that the identities

$$
2 S_{k}(X)+X^{k}=S_{k}(\delta(X))
$$

and, for odd k,

$$
2 S_{k}(X)+X^{k}=\phi_{k}(q(X))
$$

where $\delta(X)$ and $q(X)$ are polynomials with rational coefficients of degree 1 and 2 , respectively, are impossible. Indeed, if the leading coefficient of $\delta(X)$ or $q(X)$ is $a \in \mathbb{Q}$, then the leading coefficient of $S_{k}(\delta(X))$ or $\phi_{k}(q(X))$ is $a^{k+1} /(k+1)$ or $a^{\frac{k+1}{2}} /(k+1)$, respectively, which cannot be $2 /(k+1)$. Thus, $\left(k, 2 S_{k}(X)+X^{k}\right)$ is not a standard pair, and now Lemma 3 completes the proof.

We follow a similar approach for $k>l \geqslant 1$. By Theorem 2, we may assume that $l \notin\{1,3\}$.

Since k is fixed, and there are only finitely many such l, we may assume that l is also fixed. Then, from (2), we have

$$
S_{k}(x)+S_{l}(x+1)=S_{l}(y)
$$

We prove that the identities

$$
\begin{equation*}
S_{k}(X)+S_{l}(X+1)=S_{l}(q(X)) \tag{20}
\end{equation*}
$$

and, for odd l,

$$
\begin{equation*}
S_{k}(X)+S_{l}(X+1)=\phi_{l}(q(X)), \tag{21}
\end{equation*}
$$

where $q(X)$ is a polynomial with rational coefficients, are impossible. Let d and a be the degree and leading coefficient of $q(X)$. On comparing the degrees and the leading coefficients in (20) and (21), we obtain

$$
k+1=(l+1) d \quad \text { and } \quad \frac{1}{k+1}=\frac{a^{d}}{l+1},
$$

and

$$
\begin{equation*}
k+1=\frac{l+1}{2} d \quad \text { and } \quad \frac{1}{k+1}=\frac{a^{d}}{l+1} \tag{22}
\end{equation*}
$$

respectively. From these relations, we get $a^{d}=1 / d$ or $2 / d$. Since $d>1$, we see that $a=1 / b$, where b is an integer, and $b^{d}=d$ or $b^{d}=d / 2$. The first equation has no integer solutions with $d>1$, while the only solution in integers of the second equation with $d>1$ is $d=2, b= \pm 1$. However, when $d=2$, the first relation (22) shows that $k=l$, which is not allowed.

We now deal with the case $l>k$.
In this case, the fact that equation (2) has no positive integer solutions x and y is a direct consequence of Lemma 4. By that lemma, it is sufficient to show that the polynomial $P(X)=(X+1)^{l}-S_{k}(X)$ has no real zero $\geqslant 2$. The estimate

$$
S_{k}(x)=1^{k}+2^{k}+\cdots+(x-1)^{k}<\int_{0}^{x} t^{k} d t=\frac{x^{k+1}}{k+1} \leqslant \frac{x^{l}}{2}
$$

provides

$$
P(x)=(x+1)^{l}-S_{k}(x)>(x+1)^{l}-\frac{x^{l}}{2}>0
$$

for all $x \geqslant 0$. Thus, there is no (k, l)-balancing number with $k<l$.

ACKNOWLEDGEMENTS

The authors are grateful to the referee for his/her remarks and suggestions.

REFERENCES

[1] Adams J.P. - Puzzles for Everybody, Avon Publications, New York, 1955, p. 27.
[2] Behera A., Panda G. - On the square roots of triangular numbers, Fibonacci Quart. 37 (1999) 98-105.
[3] Bilu Yu., Brindza B., Kirschenhofer P., Pintér Á., Tichy R. - Diophantine equations and Bernoulli polynomials (with an appendix by Schinzel, A.), Compos. Math. 131 (2002) 173-188.
[4] Bilu Yu., Tichy R. - The diophantine equation $f(x)=g(y)$, Acta Arith. 95 (2000) 261-288.
[5] Brindza B. - On S-integral solutions of the equations $y^{m}=f(x)$, Acta Math. Hungar. 44 (1984) 133-139.
[6] Brindza B., Pintér Á. - On equal values of power sums, Acta Arith. 77 (1996) 97-101.
[7] Cassels J.W. - Integral points on certain elliptic curves, Proc. London Math. Soc. 3 (1965) 55-57.
[8] Dickson L.E. - History of the Theory of Numbers, vol. I, New York, Chelsea, 1952.
[9] Finkelstein R.P. - The House problem, Amer. Math. Monthly 72 (1965) 1082-1088.
[10] Ingram P. - On k-th power numerical centres, C. R. Math. Acad. Sci. R. Can. 27 (2005) 105-110.
[11] Ljunggren W . - Solution complète de quelques équations du sixième degré à deux indéterminées, Arch. Math. Naturv. 48 (1946) 177-211.
[12] Rademacher H. - Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1973.
[13] Rakaczki Cs. - On the diophantine equation $S_{m}(x)=g(y)$, Publ. Math. Debrecen 65 (2004) 439460.
[14] Steiner R. - On k th-power numerical centers, Fibonacci Quart. 16 (1978) 470-471.
[15] Voorhoeve M., Győry K., Tijdeman R. - On the Diophantine equation $1^{k}+2^{k}+\cdots+x^{k}+R(x)=$ y^{z}, Acta Math. 143 (1979) 1-8.
(Received November 2007)

[^0]: * K. Liptai was supported by the Hungarian National Foundation for Scientific Research Grant No. T 048945 MAT. F. Luca was supported by Grant SEP-CONACyT 46755 and a Guggenheim Fellowship. Á. Pintér was supported by the Hungarian National Foundation for Scientific Research Grants Nos. K 75566, K 067580 and by the Bolyai Scholarship. L. Szalay was supported by the Hungarian National Foundation for Scientific Research Grant No. T 048945 and by the Eötvös Scholarship of Hungary.

 E-mails: liptaik@gemini.ektf.hu (K. Liptai), fluca@matmor.unam.mx (F. Luca), apinter@math.klte.hu (Á. Pintér), laszalay@ktk.nyme.hu (L. Szalay).

