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ABSTRACT

The positive integer x is a (k, l)-balancing number for y (x � y − 2) if

1k + 2k + · · · + (x − 1)k = (x + 1)l + · · · + (y − 1)l ,

for fixed positive integers k and l. In this paper, we prove some effective and ineffective finiteness
statements for the balancing numbers, using certain Baker-type Diophantine results and Bilu–Tichy
theorem, respectively.

1. INTRODUCTION

Let y, k and l be fixed positive integers with y � 4. We call the positive integer x

(� y − 2) a (k, l)-power numerical center for y, or a (k, l)-balancing number for y

if

1k + · · · + (x − 1)k = (x + 1)l + · · · + (y − 1)l .(1)
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The special case k = l of this definition is due to Finkelstein [9] who proved that
infinitely many integers y possess (1,1)-power centers (see also [2]), and that there
is no integer y > 1 with a (2,2)-power numerical center. The proofs depend on the
theory of Pell equations and the resolution of the Thue equations X3 + 2Y 3 = 11
and 33, respectively, in integers X,Y . We note that the particular case k = l = 1
is strongly related to another problem called the house problem (see, for example,
[1]). In his paper, Finkelstein conjectured that if k > 1, then there is no integer
y > 1 with a (k, k)-power numerical center. Later, using a result of Ljunggren
[11] and Cassels [7] on triangular numbers whose squares are also triangular,
Finkelstein [14] confirmed his own conjecture for k = 3. Recently, Ingram [10]
proved Finkelstein’s conjecture for k = 5.
In this paper, we prove a general result about (k, l)-balancing numbers. Unfortu-

nately, we cannot deal with Finkelstein’s conjecture in its full generality. However,
we obtain the following theorem.

Theorem 1. For any fixed positive integer k > 1, there are only finitely many
positive pairs of integers (y, l) such that y possesses a (k, l)-power numerical
center.

The case k = l has already been dealt with recently by Ingram [10] with a method
similar to ours. The proof splits naturally in two cases. The first case is when 1 �
l � k. Since k is fixed and there are only finitely any such l, we may assume that
l is also fixed. Our proof now uses an ineffective statement of Rakaczki [13]. The
second case is when k < l, and here we show by Runge’s method that there are no
positive integers y possessing a (k, l) numerical center.
Because of the use of the result from [13], our Theorem 1 is ineffective in case

l � k in the sense that we cannot provide an upper bound for possible numerical
centers x in terms of k unless l = 1 or l = 3. In these cases, we have the following
theorem.

Theorem 2. Let k be a fixed positive integer with k � 1 and l ∈ {1,3}. If
(k, l) �= (1,1), then there are only finitely many (k, l)-balancing numbers, and these
balancing numbers are bounded by an effectively computable constant depending
only on k.

We note that some numerical centers do exist. For example, in the case (k, l) =
(2,1), we can rewrite equation (1) as

2x3 + 4x = 3y2 − 3y,

which is an elliptic curve whose shortWeierstrass normal form is u3 +72u+81 = v2

(via the bi-rational transformation v = 18y − 9 and u = 6x). Using the program
package MAGMA, we solved this elliptic equation and its solutions lead to three
(2,1)-balancing numbers x, namely 5,13 and 36.
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2. AUXILIARY RESULTS

For the proofs of our results, we need some auxiliary results. For an integer k � 1,
we write

Sk(x) = 1k + 2k + · · · + (x − 1)k.

These expressions are strongly related to the Bernoulli polynomials. In the next
lemma, we summarize some of the well-known properties of Bernoulli polynomials.
For the proofs, we refer to [12].

Lemma 1. Let Bn(X) denote the nth Bernoulli polynomial and put Bn = Bn(0)

for n = 1,2, . . . . Further, let Dn be the denominator of Bn. We then have:

(A) Sk(X) = 1
k+1 (Bk+1(X) − Bk+1);

(B) Bn(X) = Xn + ∑n
k=1

(
n
k

)
BkX

n−k;
(C) Bn(X) = (−1)nBn(1 − X);
(D) B1 = − 1

2 and B2n+1 = 0 for n � 1;
(E) (von Staudt–Clausen) D2n = ∏

p−1|2n,p prime p;
(F) 0 and 1 are double zeros of Sk(X) for odd values of k � 3. Further, 0 and 1 are

simple zeros of Sk(X) for even values of k.

We shall also need the following lemma (for some results of a similar flavor, see
the Appendix to [3]).

Lemma 2. Let p be prime. Assume that the sum of the digits of n in base p is � p.
Then there exists an even positive integer k < n such that p divides the denominator
of the rational number

(
n

k

)
Bk

when written in reduced form.

Proof. Let first p be odd. Then

n = n1p
α1 + · · · + ntp

αt ,

here 0 � α1 < · · · < αt and n1, . . . , nt ∈ {1, . . . , p − 1}. We now select non-negative
integers mi for i = 1, . . . , t , such that mi � ni and

∑t
i=1 mi = p − 1. It is clear that

this can be done since
∑t

i=1 ni � p. We put

k =
t∑

i=1

mip
αi .

Then, k < n. Further, reducing k modulo p − 1, we get that k ≡ ∑t
i=1 mi (mod p −

1), therefore (p−1) | k. In particular, k is even and p divides the denominator of Bk .
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Finally, by a well-known theorem of Lucas (see [8], p. 271, items 76 and 77), we
have

(
n

k

)
≡

t∏
i=1

(
ni

mi

)
(mod p),

therefore p does not divide
(
n
k

)
, which completes the proof of the lemma in this

case.
If p = 2, then n = 2α1 + 2α2 + · · · + 2αt with 0 � α1 < α2 < · · · < αt and t � 2.

Then, taking k = 2α2 , we see that k < n, k is even, and, by Lucas’s Theorem,
(
n
k

)
is

odd. Since 2 divides the denominator of Bk , we get that 2 divides the denominator
of

(
n
k

)
Bk . �

The next lemma is based on a recent deep theorem of Bilu and Tichy [4], as
well as on the indecomposability of the Bernoulli polynomials proved by Bilu et al.
in [3].
To present Lemma 3, we define special pairs (l, g(X)) as follows. In the sequel,

we let δ(X) ∈ Q[X] be a linear polynomial, and q(X) ∈ Q[X] be a non-zero
polynomial. Further, for l odd, Sl(X) can be written in the form φl((X − 1/2)2)

with some appropriate polynomial φl(X) ∈ Q[X], see [13]. We now define special
pairs (l, g(X)) as follows:

Special pair of type I: (l, Sl(q(X))), where q(X) is not constant.
Special pair of type II: l is odd and g(X) = φl(δ(X)q(X)2).
Special pair of type III: l is odd and g(X) = φl(cδ(X)t ), where c ∈ Q \ {0} and

t � 3 is an odd integer.
Special pair of type IV : l is odd and g(X) = φl((aδ(X)2 +b)q(X)2), where a, b ∈

Q \ {0}.
Special pair of type V : l is odd and g(X) = φl(q(X)2).
Special pair of type VI: l = 3 and g(X) = δ(X)q(X)2.
Special pair of type VII: l = 3 and g(X) = q(X)2.

Lemma 3. Let l be a positive integer and g(X) ∈ Q[X] be a polynomial of degree
greater than 2. Then the equation

Sl(x) = g(y)

has only finitely many integer solutions x and y, unless (l, g(X)) is a special pair.

Proof. This is Theorem 1 in [13]. �
We now rewrite equation (1) using the polynomials Sk(x) and Sl(y) as the

Diophantine equation

Sk(x) + Sl(x + 1) = Sl(y).(2)
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Lemma 4. Assume that k < l and put

P(X) = (X + 1)l − Sk(X) ∈ Q[X].(3)

Put x0 for the largest real root of P(X). If x and y is an integer solution to the
Diophantine equation (2), then x � x0. In particular, if either P(X) has no real
root, or x0 < 2, then the Diophantine equation (2) has no integer solutions x � 2
and y � x + 2.

Proof. Suppose that the integers x � 2 and y � x + 2 satisfy (2). Since k < l, it
follows that the leading coefficient of P(X) is positive and deg(P ) = l.
Clearly, if P(X) does not possess a real root, or if x0 < 2, or if 2 � x0 < x, then

P(x) = (x + 1)l − Sk(x) > 0. Then

−xl − Sk(x) < 0 < (x + 1)l − Sk(x).(4)

Increasing both sides of the inequality (4) by xl + Sk(x) + Sl(x), we get

Sl(x) < xl + Sk(x) + Sl(x) < (x + 1)l + xl + Sl(x),(5)

which leads to

Sl(x) < Sk(x) + Sl(x + 1) < Sl(x + 2).(6)

Since (x, y) is a integer solution of (2), we get that Sk(x)+Sl(x +1) can be replaced
in (6) by Sl(y). Thus,

Sl(x) < Sl(y) < Sl(x + 2).(7)

The properties of the polynomial Sl together with inequalities (7) imply that y =
x + 1. Thus, by (2), Sk(x) = 0, which is impossible. �
The following three results yield information on the structure of zeros of certain

polynomials.

Lemma 5. Let p(X) = anX
n + · · · + a1X + a0 be a polynomial with integral

coefficients for which a0 is odd, 4 | ai for all i = 1, . . . , n, and ord2(an) = 3. Then
every zero of p is simple.

Proof. This is Lemma 4 in [6]. �
One of the most surprising theorem on zeros of certain polynomials related to

Sk(x) is due to Voorhoeve, Győry and Tijdeman [15]. They proved if k /∈ {1,3,5}
then the polynomial Sk(x)+R(x) possesses at least three zeros of odd multiplicities
for every polynomial R(x) with rational integer coefficients. Of course, this general
statement is not true for some polynomials with rational coefficients, however, we
obtain Lemmas 6 and 7.
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Lemma 6. Each one of the polynomials

F1(X) = 8Sk(X) + (2X + 1)2, k > 1,

has at least three zeros of odd multiplicities.

Proof. Let d be the smallest positive integer for which

8d
(
Bk+1(X) − Bk+1

) ∈ Z[X].

Then, by (D) and (E) of Lemma 1, d is an odd square-free integer. We now show
that the polynomial

P1(X) = 8d
(
Bk+1(X) − Bk+1

) + d(k + 1)(2X + 1)2

has at least three zeros of odd multiplicities. Note that the leading coefficient of P1

equals 8d . Since d is odd and is the smallest positive integer such that 8d(Bk+1(X)−
Bk+1) ∈ Z[X], it follows that the content of P1(X) (i.e. the greatest common divisor
of all its coefficients) is a power of 2 dividing 8.
If k is even, the fact that P1(X) has at least three simple zeros is a simple

consequence of Lemma 5.
Assume now that k is odd. If P1(X) is associated to a complete square in Q[X],

then we get that

P1(X) = aR(X)2,(8)

where a is an integer and R(X) ∈ Z[X] is a polynomial with positive leading term.
By writing a = a1r

2, with integers a1 and r such that a1 is square-free, and by
replacing R(X) by rR(X), we may assume that a is square-free. It is clear that
a > 0. We also assume that k � 5, since the case k = 3 can be checked by hand.
If 2‖ k + 1, it is then easy to see that the content of P1(X) is 2 (all the coefficients

of P1(X) are even, and the last is d(k+1), therefore it is not a multiple of 4). Hence,
by Gauss Lemma, a = 2 and the content of R(X) is 1. Writing

R(X) = a0X
(k+1)/2 + a1X

(k−1)/2 + · · · + a(k+1)/2,

and identifying the first three coefficients in (8), we get

8d = aa2
0, −4d(k + 1) = 2aa0a1,

2dk(k + 1)

3
= a

(
a2

1 + 2a0a2
)
.

The first relation above forces a0 = 2 and d = 1. The third relation above shows
that a1 is even, therefore 2aa0a1 is a multiple of 16. Now the second relation above
contradicts the fact that 2‖ k + 1.
If 4 | k + 1, then the content of P1(X) is 4, unless (see Lemma 2) k + 1 is a power

of 2, in which case it is 8. Thus, a = 1, unless k + 1 is a power of 2, in which
case a = 2. Identifying leading terms in (8), we get that 8d = aa2

0 , therefore d = 1
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and a = 2. Thus, k + 1 = 2α , for some α � 3. However, since d = 1, it follows, by
Lemma 2, that the sum of the digits of k + 1 in base 3 is at most 2. Thus, since
k + 1 is not a power of 3 (because k + 1 is even), we get that k + 1 = 3β + 3γ for
some 0 � β � γ . Hence, 2α = 3β + 3γ , therefore β = 0. Since the largest solution
of the Diophantine equation 2α = 1+3γ is α = 2, γ = 1, we get k +1 = 4, therefore
k = 3, which is a contradiction.
We now have to exclude the remaining case in which

P1(X) = (
aX2 + bX + c

)
R2(X),(9)

where both aX2 + bX + c and R(X) are in Z[X], such that aX2 + bX + c has two
distinct zeros. Up to replacing R(X) by −R(X), we may assume that the leading
coefficient of R(X) is positive. Further, because the content of P1(X) is a power of
2 dividing 8, it follows that gcd(a, b, c) is a power of 2. By writing gcd(a, b, c) =
2α for some non-negative integer α, and replacing R(X) by 2�α/2�R(X), we may
assume that α = 0, or 1. Hence, gcd(a, b, c) is either 1 or 2.
If k + 1 is even but not divisible by 4, then P1(X)/2 is a polynomial in Z[X]

having odd constant term and all other coefficients even. Thus, P1(X)/2 ≡ 1
(mod 2). Hence, it can be factored as

P1(X)/2 = (
2S1(X) + 1

)2(
2S2(X) + 1

)
,

with some polynomials Si(X) ∈ Z[X] for i = 1,2. However, the leading coefficient
of P1(X)/2 is not divisible by 8.
Assume now that 4 | k + 1. When k = 3, one can check by hand that P1(X)

does not have the form shown at (9). Assume now that k + 1 � 8. Note that the
content of P1(X) is 4, unless k + 1 is power of 2, when it is 8. It now follows that
R1(X) = R(X)/2 ∈ Z[X]. Thus,

P1(X)/4 = (
aX2 + bX + c

)
R1(X)2.(10)

We now write

R1(X) = a0X
(k−1)/2 + a1X

(k−1)/2−1 + a2X
(k−1)/2−2 + · · · + a(k−1)/2.

Identifying the first three coefficients in P1(X)/4, we get, on the one hand the
polynomial

P1(X)/4 = 2dXk+1 − d(k + 1)Xk + dk(k + 1)

6
Xk−1 + · · · ,

while on the other hand the polynomial

(
aX2 + bX + c

)(
a2

0Xk−1 + 2a0a1X
k−2 + (

a2
1 + 2a0a2

)
Xk−3 + · · ·)

= aa2
0Xk+1 + (

ba2
0 + 2aa0a1

)
Xk

+ (
ca2

0 + 2ba0a1 + a
(
a2

1 + 2a0a2
))

Xk−1 + · · ·
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which leads to the relations

aa2
0 = 2d, ba2

0 + 2aa0a1 = −d(k + 1)

and

ca2
0 + 2ba0a1 + a

(
a2

1 + 2a0a2
) = dk(k + 1)

6
.

The first relation above shows that a0 = 1, a = 2d . The second one now becomes

b = −d(k + 1 + 4a1),(11)

while the third one now reads

c = d
(
2(k + 1)a1 + 6a2

1 − 4a2
) + d(k(k + 1)

6
.(12)

Clearly, d | a and the above relations (11) and (12) for b and c, show that d | b, and if
there exists a prime p > 3 such that p | d , then p | gcd(a, b, c). Since gcd(a, b, c) ∈
{1,2}, we get that d = 1 or d = 3. To rule out the possibility that d = 3, assume that
3 | k + 2. Then the above formula (12) for c shows that d = 3. Identifying the last
coefficient in (9) and using the fact that Sk(0) = 0 (by (F) of Lemma 1), we get

d(k + 1) = c(2a(k−1)/2)
2,(13)

and since 3 divides d but not k + 1, we get that 3 | c. Since d | a and d | b, we
obtain 3 | gcd(a, b, c), which is again a contradiction. Thus, 3 does not divide
k + 2, therefore 3 | k(k + 1). Now relation (12), shows again that d | c. Hence,
d | gcd(a, b, c), which implies that d = 1.
Lemma 2 implies now that the sum of the digits of k + 1 is base 3 is � 2. Since

4 | k + 1, we get that k + 1 cannot be a power of 3, therefore k + 1 = 3α0 + 3α1

for some 0 � α0 � α1. Since 4 | k + 1, and k + 1 = 3α0(3α1−α0 + 1), we get that
4 | 3α1−α0 + 1. This shows that α1 − α0 is odd. Further, since for an odd positive
integer s, we have that 4‖3s + 1, we get that (k + 1)/4 is odd. Clearly, 2‖a and
relation (12) show that c is even. Now relation (13) together with the facts that c is
even and 4‖ k + 1 leads to a contradiction. �
Lemma 7. Each one of the polynomials

F2(X) = 4Sk(X) + X2(X + 1)2, k � 1, k �= 3,

has at least three zeros of odd multiplicities.

Proof. We follow the same method as in the proof of Lemma 6. We use again d for
the least positive integer such that 4d(Bk+1(X) − Bk+1) ∈ Z[X]. By (D) and (E) of
Lemma 1, we have that d is odd and square-free.
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For the polynomial F2(X), we have

P2(X) = 4d
(
Bk+1(X) − Bk+1

) + d(k + 1)X2(X + 1)2 ∈ Z[X].

Assume first that k + 1 is odd. We then have to exclude the case when

P2(X) = (aX + b)R2(X),

where aX+b and R(X) ∈ Z[X]. Since d is square-free and odd, further 0 is a simple
zero of P2(X) (by (F) of Lemma 1), we obtain

P2(X) = aXR2(X).

The coefficient of X in R2(X) is even, thus the coefficient of X2 in P2(X) is also
even, which is a contradiction.
Assume now that k +1 > 4 is even. Then, we have to exclude that either P2(X) =

aR(X)2, or P2(X) = (aX2 + bX + c)R(X)2 with some polynomial R(X) ∈ Z[X],
and some integers a, b and c, with a �= 0.
We first look at the case P2(X) = aR(X)2. We may assume again that R(X) has

positive leading coefficient and that a > 0 is square-free. The content of P2(X) is a
power of 2, therefore a = 1 or 2. We assume that k + 1 > 8, since the smaller cases
can be checked by hand. Writing

R(X) = a0X
(k+1)/2 + a1X

(k+1)/2−1 + · · ·

and identifying the first 5 coefficients we get, on the one hand, that P2(X) is the
polynomial

4dXk+1 − 2d(k + 1)Xk + d(k + 1)k

3
Xk−1

− d(k + 1)k(k − 1)(k − 2)

180
Xk−3

(note that k − 3 > 4, therefore the first 5 terms in P2(X) are the same as the first 5
terms in 4dSk(X)), while on the other hand, we get the polynomial

aa2
0Xk+1 + 2aa0a1X

k + a
(
a2

1 + 2a0a2
)
Xk−1 + a(2a0a3 + 2a1a2)X

k−2

+ a
(
a2

2 + 2a0a4 + 2a1a3
)
Xk−3 + · · · .

Hence, we obtain the relations

4d = aa2
0, −2d(k + 1) = 2aa0a1,

d(k + 1)k

3
= aa2

1 + 2aa0a2,(14)

as well as

2aa0a3 + 2aa1a2 = 0 and aa2
2 + 2aa0a4 + 2aa1a3 = −

(
k + 1

4

)
2d

15
.(15)
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The first relation in (14) above together with a ∈ {1,2}, gives d = 1, a0 = 2, and
a = 1. Hence, by Lemma 2, k + 1 is either a power of 3, or of the form 3α + 3β for
some 0 � α � β . Since k + 1 is even, it cannot be a power of 3, therefore k + 1 =
3α(3β−α + 1). If β − α is even, then 2‖ k + 1, and if β − α is odd, then 4‖ k + 1.
Now, the second relation in (14) above gives a1 = −(k + 1)/2, and the third relation
in (14) above together with the fact that k + 1 is even shows that a1 is even. Thus,
4‖ k + 1, which shows that

(
k+1

4

)
is odd. Finally, since a0 and a1 are both even,

reducing the second of relations (15) modulo 4 we get

a2
2 ≡ 2 (mod 4),

which is the desired contradiction in this case.
It remains to deal with the case when

P2(X) = (
aX2 + bX + c

)
R(X)2,(16)

where a, b, c are integers and R(X) ∈ Z[X]. As before, we assume that R(X) has
positive leading coefficient, that a > 0, and gcd(a, b, c) = 1 or 2.
We write

R(X) = a0X
(k−1)/2 + a1X

(k−1)/2−1 + · · · + a(k−1)/2,

assume that k � 5 and identify the first three coefficients in (16) to get

aa2
0 = 4d, ba2

0 + 2a0aa1 = −2d(k + 1),(17)

and

ca2
0 + 2ba0a1 + a

(
a2

1 + 2a0a2
) = dk(k + 1)

3
.(18)

The first relation (17) shows that d | a and then the second relation (17) shows that
d | b. Now relation (18) shows that if there exists a prime p > 3 dividing d , then
p | gcd(a, b, c), which is a contradiction. Thus, d is a divisor of 3. To rule out the
case d = 3, suppose that 3 | k + 2. Then, relation (18) shows that d = 3. Evaluating
relation (16) at x = 1 and using (F) of Lemma 1 (for Sk(1) = 0), we get

4d(k + 1) = (a + b + c)R(1)2.

Since 3 | k + 2, we get that 3 does not divide k + 1. Hence, 3 | (a + b + c), and since
3 divides both a and b, we get that it divides also c, which is again a contradiction.
Thus, d = 1, and since k + 1 is even, we get that k + 1 = 3α + 3β with 0 � α � β . If
β − α is even, then 2‖ k + 1 and if β − α is odd, then 4‖ k + 1.
If 4‖ k + 1, then 4

(
k+1

4

)
B4 is the coefficient of Xk−3 in P2(X) and it is even but

not a multiple of 4, while if 2‖ k + 1, then 4
(
k+1

2

)
B2 is the coefficient of Xk−1 in

P2(X), and is also even but not a multiple of 4. In conclusion, the content of P2(X)

is 2, which means that gcd(a, b, c) = 2.
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We now return to relations (17) and (18) and note that a0 ∈ {1,2}. If a0 = 2,
then a = 1, which is false. Thus, a0 = 1 and a = 4. Now the second relation (17)
shows that 4 | b. Relation (18) shows that 4 | c too, which leads to the contradiction
4 = gcd(a, b, c), unless 2‖ k + 1. So, let us assume that 2‖ k + 1. Note that in this
case relation (18) implies that c ≡ 2 (mod 4).
Now let us note that by (F) of Lemma 1, we have that 0 is a double roots of Sk(X).

Thus, 0 is also double root of P2(X). Hence, a(k−1)/2 = 0. Put F(X) = P2(X)/X2,
and R1(X) = R(X)/X. Identifying the last two coefficients in the equation

F(X) = (
aX2 + bX + c

)
R1(X)2

= (
aX2 + bX + c

)(· · · + 2a(k−3)/2a(k−5)/2X + a2
(k−3)/2

)
,

we get

2k(k + 1)Bk−1 + k + 1 = c(a(k−3)/2)
2,

(19)
2(k + 1) = 2ca(k−3)/2a(k−5)/2 + ba2

(k−3)/2.

The first relation (19) shows that 2k(k+1)Bk−1 ∈ Z. Since Bk−1 is a rational number
whose denominator is an even square-free integer, it follows that 2k(k + 1)Bk is
congruent to 2 modulo 4. Since 2‖ k + 1, we get that the left-hand side of the first
equation (19) is a multiple of 4. Since 2‖ c, we get that a(k−3)/2 is even. We now
immediately get that the right-hand side of the second equation (19) is a multiple of
8, whereas its left-hand side is not. This final contradiction concludes the proof of
this lemma. �
Finally, we recall a special case of a result by Brindza [5].

Lemma 8. Let f (X) ∈ Q[X] be a polynomial having at least three zeros of odd
multiplicities. Then the equation

f (x) = y2

in integers x and y implies that max(|x|, |y|) < c, where c is an effectively
computable constant depending only on the coefficients and degree of f .

Proof. See Theorem in [5]. �
3. PROOFS

We start with the proof of Theorem 2 since it will be needed in the proof of
Theorem 1.

Proof of Theorem 2. Since

S1(x) = x(x − 1)

2
and S3(x) =

(
x(x − 1)

2

)2

,
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equation (1) leads to the equations

8Sk(x) + (2x + 1)2 = (2y − 1)2

and

4Sk(x) + (
x(x + 1)

)2 = (
y(y − 1)

)2
,

respectively. Now, apart from the case when in the second equation k = 3, the fact
that such equations have only finitely many effectively computable integer solutions
is a simple consequence of Lemmas 6–8. We recall that Finkelstein resolved the
case (k, l) = (3,3). Thus, our proof is complete. �
Proof of Theorem 1. We first assume that k = l > 3.
If x is a (k, k)-balancing number for y, then, from (1), we have

2Sk(x) + xk = Sk(y).

Recall that for odd values of k, Sk(X) = φk((X − 1/2)2) with an appropriate
polynomial φk(X) with rational coefficients, and the leading coefficient of Sk(X)

and φk(X) is 1/(k + 1). We show that the identities

2Sk(X) + Xk = Sk

(
δ(X)

)

and, for odd k,

2Sk(X) + Xk = φk

(
q(X)

)
,

where δ(X) and q(X) are polynomials with rational coefficients of degree 1 and
2, respectively, are impossible. Indeed, if the leading coefficient of δ(X) or q(X)

is a ∈ Q, then the leading coefficient of Sk(δ(X)) or φk(q(X)) is ak+1/(k + 1) or

a
k+1

2 /(k + 1), respectively, which cannot be 2/(k + 1). Thus, (k,2Sk(X) + Xk) is
not a standard pair, and now Lemma 3 completes the proof.
We follow a similar approach for k > l � 1. By Theorem 2, we may assume that

l /∈ {1,3}.
Since k is fixed, and there are only finitely many such l, we may assume that l is

also fixed. Then, from (2), we have

Sk(x) + Sl(x + 1) = Sl(y).

We prove that the identities

Sk(X) + Sl(X + 1) = Sl

(
q(X)

)
(20)

and, for odd l,

Sk(X) + Sl(X + 1) = φl

(
q(X)

)
,(21)
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where q(X) is a polynomial with rational coefficients, are impossible. Let d and a

be the degree and leading coefficient of q(X). On comparing the degrees and the
leading coefficients in (20) and (21), we obtain

k + 1 = (l + 1)d and
1

k + 1
= ad

l + 1
,

and

k + 1 = l + 1

2
d and

1

k + 1
= ad

l + 1
,(22)

respectively. From these relations, we get ad = 1/d or 2/d . Since d > 1, we see
that a = 1/b, where b is an integer, and bd = d or bd = d/2. The first equation has
no integer solutions with d > 1, while the only solution in integers of the second
equation with d > 1 is d = 2, b = ±1. However, when d = 2, the first relation (22)
shows that k = l, which is not allowed.
We now deal with the case l > k.
In this case, the fact that equation (2) has no positive integer solutions x and y is

a direct consequence of Lemma 4. By that lemma, it is sufficient to show that the
polynomial P(X) = (X + 1)l − Sk(X) has no real zero � 2. The estimate

Sk(x) = 1k + 2k + · · · + (x − 1)k <

x∫
0

tk dt = xk+1

k + 1
� xl

2
,

provides

P(x) = (x + 1)l − Sk(x) > (x + 1)l − xl

2
> 0

for all x � 0. Thus, there is no (k, l)-balancing number with k < l. �
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