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Abstract: Agroforestry systems are recognized as sustainable land use practices that foster envi-
ronmental health and promote adaptive responses to global change. By harnessing the synergies
between trees and agricultural activities, agroforestry systems provide multiple benefits, including
soil conservation, biodiversity enhancement, and carbon sequestration. Windbreaks form integral
elements of Hungarian agricultural landscapes, and the enhanced agroforestry subsidy framework
might have a favorable impact on their expansion, underscoring the importance of evaluating their
potential for carbon sequestration. In the present study, we assess the implications of doubling the
extent of windbreak plantations in Hungary by planting an additional 14,256 hectares of windbreaks.
We evaluate the total carbon sequestration and the annual climate change mitigation potential of the
new plantations up to 2050. For the modeling, we use the recently developed Windbreak module
of the Forest Industry Carbon Model, which is a yield table-based model specific to Hungary and
allows for the estimation of living biomass, dead organic matter, and soil carbon balance. We project
that new windbreak plantations will sequester 913 kt C by 2050, representing an average annual
climate change mitigation potential of 144 kt CO2 eq. Our findings reveal that doubling the extent of
windbreak plantations could achieve an extra 5% carbon sequestration in forested areas as compared
to business-as-usual (BAU) conditions. We conclude that new windbreak plantations on agricultural
field boundaries have substantial climate change mitigation potential, underscoring agroforestry’s
contribution to agricultural resilience and achieving Hungary’s climate goals set for the land-use
(LULUCF) sector.

Keywords: climate change mitigation; carbon sequestration; agroforestry; shelterbelts; windbreaks;
modeling

1. Introduction

The land-based sector plays a pivotal role in climate change mitigation efforts, par-
ticularly within the frameworks outlined by the Paris Agreement, EU climate law, and
overarching net zero targets [1]. This sector encompasses a range of activities, including
agriculture, forestry, and land-use management, which collectively contribute to both green-
house gas emission reduction and carbon sequestration [2]. EU climate law sets ambitious
emission reduction targets, with specific emphasis on the land-use and forestry sectors as
integral components of achieving net zero emissions by 2050 [1,3]. Leveraging the potential
of the land-based sector for climate change mitigation entails implementing sustainable
agricultural practices, afforestation and reforestation initiatives, and enhancing soil carbon
sequestration [2]. Agroforestry, the integration of trees and shrubs into agricultural land-
scapes, is regarded as a sustainable approach to climate change mitigation and resource
management [4]. By incorporating trees or shrubs alongside crops or livestock, agroforestry
systems create microclimates that promote beneficial interactions among plants, animals,
and soil organisms [5]. This results in enhanced nutrient cycling, reduced wind erosion,
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improved soil health and water retention, and increased habitat diversity, contributing
to overall ecosystem health and resilience [6]. In Europe, the most common forms of
agroforestry include windbreaks, alley cropping, silvopasture, and forest farming [7,8].
Agroforestry also plays a crucial role in climate change mitigation by sequestering carbon
dioxide (CO2) from the atmosphere, which is then stored in biomass, soils, litter, and woody
debris [2].

According to Lal [9], in temperate climate zones, replacing natural ecosystems with
conventional agriculture can lead to carbon losses of up to 60%. Advances in cultivation
technology, including mechanization and widespread monocultures, have contributed to
declines in soil organic carbon (SOC) levels in recent decades [10,11]. Expanding agro-
forestry practices offers an opportunity to counteract this harmful trend by reducing soil
CO2 emissions and increasing carbon sequestration in both soil and woody biomass [12–14].
The potential for carbon sequestration varies depending on the agroforestry practice used.
According to Kay et al. [15], 8.9% of arable land in the 27 member states of the European
Union is suitable for agroforestry practices. Converting these areas to agroforestry sys-
tems could lead to carbon sequestration between −7.78 and −234.85 Mg CO2 eq per year,
representing 1.4% to 43.4% of the total greenhouse gas emissions in Europe. Therefore,
expanding agroforestry on a larger scale offers significant opportunities for achieving
zero-emission agriculture in the future. In support of these findings, Hart et al. [16] and
Aertsens et al. [17] advocated agroforestry as the most promising tool for climate change
mitigation and adaptation in agriculture.

Estimating the carbon sequestration capacity of agroforestry systems requires robust
methodologies and models. Common methods include direct measurement of biomass
and soil carbon stocks, as well as indirect approaches such as remote sensing and model-
ing approaches. Agroforestry system models offer the potential for advancing ecological
understanding while providing improved directions for future experimentation [18]. Agro-
forestry model forecasts can also be utilized to aid decision-makers in the formulation of
climate change mitigation strategies and interventions. Nonetheless, the complex interac-
tions within agroforestry systems across spatial and temporal domains pose challenges
in model development [19]. The principal objectives of agroforestry models include the
ability to replicate above- and belowground dynamics concerning light, water, and nutrient
interactions; diverse potential yields encompassing food, fiber, and fuel; and provisioning
of ecosystem services such as excess nutrient capture, soil erosion mitigation, and carbon
sequestration [20]. Preferably, process-based models, rather than empirical ones, are fa-
vored for agroforestry systems owing to their ability to simulate the intricate dynamics of
tree–crop interactions and facilitate extrapolations beyond available data for parameteriza-
tion [21–23]. Despite the richness of process-based models in the forestry and agronomy
domains, their availability for agroforestry remains constrained [18,20].

Basic agroforestry models were initially adapted from preexisting crop models. For
example, CROPGRO [24] and STICS [25] have been employed to simulate agroforestry
systems by merely diminishing the light exposure accessible to crops [26,27]. Similarly,
adaptations of CROPGRO and EPIC [28] were utilized to assess the impact of windbreaks
on crops by adjusting crop exposure to wind and radiation [29,30]. Additionally, the
WIMISA model integrates belowground water competition between trees and crops [31].
Nevertheless, none of these basic models forecast tree growth or simulate crop productivity
across numerous seasons. Certain process-based models have been specifically developed
to accommodate agroforestry systems. Among agroforestry models, WaNuLCAS [32]
stands out as the most commonly and effectively utilized model and is capable of integrat-
ing light, water, and nitrogen competition throughout an entire system rotation. While
successfully applied in various tropical agroforestry contexts [33–36], WaNuLCAS was
not originally tailored for temperate systems. As another example, Yield-SAFE is a one-
dimensional biophysical model designed to simulate agroforestry system productivity
throughout an entire tree rotation, considering light and water interactions, coupled with
a bioeconomic model for profitability assessment [37,38]. The APSIM crop model was
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adapted to simulate hedge growth and competition for water and light with neighboring
crops in a two-dimensional context [39]. The HyPAR model [40], a fusion of the Hybrid
forest model [41] and the PARCH crop model [42], has been utilized for predicting agro-
forestry system productivity across diverse aridity gradients [43]. The Hi-sAFe model
was developed as part of the Silvoarable Agroforestry for Europe (SAFE) project. It is a
three-dimensional, process-based biophysical model that integrates tree–crop interactions
within agroforestry systems [19,44,45]. Additionally, models such as the AFOLU Carbon
Calculator [46] and the Integrated Farm System Model [47] of the United States Department
of Agriculture can be used to predict the yield and carbon sequestration potential of differ-
ent agroforestry configurations under varying environmental conditions. The application
of all existing agroforestry models to date has been hampered by limitations in flexibility,
complexity in simulating interactions, or challenging parameterization requirements [20].
The Forest Industry Carbon Model (FICM) [48] is a yield table-derived carbon model devel-
oped in the context of the ForestLab project conducted at the University of Sopron [49] to
evaluate the carbon balance of the Hungarian forestry and wood industry sector.

In Hungary, windbreaks are the most common agroforestry landscape elements,
comprising rows of trees and forest strips positioned to shield fields from wind and prevent
soil erosion. Gál [50,51] carried out extensive experiments on the effects of windbreaks
in preventing erosion and improving crop productivity, concluding that the harsher the
conditions or the drier the climate, the greater the beneficial impact on the microclimate
and crop yields. Windbreaks are highly effective in preventing wind erosion, especially
in the sandy soils found in the Hungarian lowlands. They also enhance soil moisture
content, which is essential in the country’s dry climate regions characterized by forest
steppe and steppe climate. Given these positive impacts and the ongoing climate change,
it can be expected that windbreaks will become increasingly important in agriculture. In
Hungary, the area covered by windbreaks was more extensive in the 1970s, with around
35,000 hectares [52,53], compared to an estimated 14,000 hectares today, as reported by
Király et al. [54]. An important innovation in the Hungarian agricultural subsidy system
starting in 2023 is that the agricultural land occupied by agroforestry systems remains
eligible for direct area-based subsidies [55]. In addition, agroforestry systems can be
considered agro-ecology program elements and landscape elements. Given these favorable
changes in the subsidy system, it is likely that the area of windbreaks in Hungary will
expand. Thus, it is increasingly important to assess the carbon sequestration potential of
these areas, as they are an additional means of land-based climate change mitigation.

In the Eighth National Communication and Fifth Biennial Report of Hungary [56],
agroforestry systems are identified as potential solutions for mitigating climate change.
However, the report does not provide numerical estimates of the carbon sequestration
achieved by existing agroforestry systems, nor does it quantify the climate change mitiga-
tion potential of establishing additional agroforestry systems. Király et al. [54] estimated
the total annual carbon sequestration realized in the aboveground biomass pool of Hungar-
ian windbreaks to be −33 ktCO2/year, which is equal to 0.7% of the total annual carbon
sequestration of the aboveground biomass pool of all Hungarian forests, as reported by the
Hungarian Greenhouse Gas Inventory [57].

Nonetheless, the potential for future carbon sequestration and climate mitigation
through agroforestry measures in Hungary remains unexplored, and there is no available
information on how agroforestry systems might contribute to achieving the 2030 and
2050 land-use sector (LULUCF) carbon removal targets. Recognizing this research gap,
we are evaluating the impact of agroforestry systems on climate change mitigation and
adaptation within the framework of the ForestLab project. For this purpose, we developed
the Windbreak module of the FICM model [58,59]. The objective of our current study
is to assess the impact of doubling the extent of windbreak plantations in Hungary by
estimating the total amount of carbon sequestered and the total annual climate change
mitigation potential up to 2050. For the modeling, we use the newly developed Windbreak
module of the FICM. The assumptions behind the study objectives are as follows: (i) newly
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established windbreak plantations sequester a significant amount of carbon and store it in
their biomass, dead organic matter, and soil pools; (ii) the establishment of new windbreak
systems can be an effective climate change mitigation measure in Hungary.

2. Materials and Methods
2.1. The Specifics of the Proposed Measure

Király et al. [54] estimated the total area and biomass carbon sequestration of wind-
breaks in Hungary. They reported that approximately half of the area of windbreaks is
under forest management planning and is recorded in the National Forestry Database
(NFD). In this study, we used their estimates of the total area of existing windbreak planta-
tions and assumed that this area would double in the upcoming years (Figure 1).
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Figure 1. The area of windbreaks under forest management planning, as recorded in the National
Forestry Database (NFD). Lower right corner: The area of all forest stands under forest management
planning. Data from these forests were used for the BAU projection.

In other words, we assumed that the size of new windbreak plantations would be
equal to the already existing windbreak area. Thus, it was hypothesized that a cumulative
total of 14,256 hectares of windbreak plantations (Figure 2) would be established over a
five-year period, spanning 2025–2029, with the initial planting distributed evenly across
the five years. The introduction of a new agroforestry subsidy system in Hungary supports
this hypothesis. It is also worth noting that even with the assumed initial planting, the total
area of windbreaks would reach 28,512 hectares, which is still below their historical extent
in the 1970s. Therefore, the assumption remains realistic.

Throughout the modeling process, we assumed that all timber harvested from these
plantations between 2025 and 2050 would be utilized for firewood. The carbon balance of
harvested wood products (HWPs) and substitution effects were modeled in accordance
with this assumption.
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2.2. Methodological Framework

In this study, we used the FICM (Figure 3), which is a country-specific carbon balance
model developed in the context of the ForestLab project [48]. The model is designed to
estimate the carbon balance of the forest biomass, dead organic matter (DOM), and soil
pools, as well as the carbon storage, product, and energy substitution effects and net
emissions arising from HWPs. The FICM model was selected for this assessment, as it is
a country-specific model aligned with the Hungarian Greenhouse Gas Inventory and the
NFD data. Additionally, its results would be comparable to previous assessments, such as
those by Borovics et al. [48] and Király et al. [60].
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The FICM model uses 20 different country-specific yield tables [61], and each tree
species group is modeled with the corresponding tree species-specific table, which is also
used by the Hungarian Forest Authority for forest management planning purposes. Each
yield table uses 6 yield classes and a specific parameter called the mean annual increment
of total production at the reference age. This value is expressed in m3/ha/year units and
provides information on the productivity of the stand. The reference ages are 25 years and
75 years for tree species with short rotation periods and long rotation periods, respectively.
Yield table-driven volume stock estimates are always corrected with the respective canopy
closure values of the stands. Biomass carbon stock and carbon sink estimates are derived
from volume stock data via country-specific wood density values [57] and carbon fraction
values as defined by the IPCC [62,63]. The soil, dead wood, litter, and harvested wood
product carbon stock change values are also estimated in accordance with the Hungarian
Greenhouse Gas Inventory [57].

The FICM model estimates the magnitude of emissions avoided through product and
energy substitution on the basis of the methodology given by Leskinen et al. [64]. For
energy substitution, a substitution factor of 0.67 ktCO2/kt CO2 was used in accordance
with Myllyviita et al. [65], Knauf et al. [66,67], Härtl et al. [68], and Schweinle et al. [69].

To create an FICM submodule specific to Hungarian windbreaks, we conducted an
assessment based on data from the NFD, and we studied the yield class distribution and
canopy closure of all forest subcompartments of the NFD with a windbreak function.
The assessment is described in detail in two dedicated studies [58,59]. Figures 4 and 5
summarize the results of the assessment of Király and Borovics [58,59]. As the mean
productivity and canopy closure differ for windbreaks compared with the country average,
we parametrized the biomass carbon sequestration equations of the FICM using the average
values specific for windbreaks.
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Figure 4. Mean annual increment of the total production at a reference age by tree species group. The
average values for all forest subcompartments in Hungary (total country group) and the average
values for the windbreaks are shown separately for each tree species group. Data are based on the
assessments by Király and Borovics [58,59].

The original soil carbon sequestration equations of the FICM model were also changed
and parametrized based on the study of Wenzel et al. [70], which is specific to field pro-
tection forest strips. The results of Wenzel et al. [70] align with the soil measurement
data from Szabó et al. [71], who examined the carbon content in soils under a Hungarian
windbreak plantation and in the neighboring agricultural field. Based on these data, we
created the windbreak-specific module of the FICM and used this module to quantify
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the amount of carbon that could be sequestered by doubling the extent of windbreak
plantations in Hungary.
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as well as in the windbreaks. Data are based on the assessments by Király and Borovics [58,59].

To assess the mitigation effect of the proposed measure, we also conducted business-
as-usual (BAU) modeling for Hungary’s entire forested area using the FICM model. This
analysis focused on the carbon balance of forest land remaining forest land, a category
also used in the Hungarian Greenhouse Gas Inventory [57]. The modeling employed BAU
harvest and regeneration matrices, as defined by Kottek [61]. Based on the BAU projection,
the average annual carbon sequestration for forest land remaining forest land was calculated
for 2025–2050, and it was compared with the projected annual average carbon sequestration
of the proposed windbreak plantations. The methodological framework is detailed in
Figure 6.
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3. Results

A cumulative amount of 913 kilotons of carbon (kt C) is projected to be sequestered
by the windbreak plantations established across a combined expanse of 14,256 hectares
(Figures 6 and 7). Thus, by 2050, a mean carbon stock of 64.04 t C/ha will be reached in
the new windbreak areas, while the average tree biomass carbon stock is projected to be
38.44 t C/ha at that time. Black locust (Robinia pseudoacacia) plantations contribute 42% of
the total carbon sequestration, while oaks (Quercus robur, Quercus petraea, Quercus pubescens,
Quercus rubra), other hard broadleaved species, and hybrid poplars account for 19%, 17%,
and 11%, respectively, of the total carbon sequestered (Figure 7). The modeling results
reveal that 60% of the carbon sequestered would be stored in the biomass pool by 2050,
whereas 24% would be stored in the soil pool, and 16% would be stored in the DOM pools
(litter plus dead wood) (Figure 8).
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The total projected annual carbon sequestration of the windbreak plantations is esti-
mated to range between −18 and −167 kt CO2 eq (Figure 9). Meanwhile, the average annual
carbon sequestration is projected to be −10.10 t CO2 eq/ha/year during the 2025–2050
period. According to the model, the majority of litter and deadwood accumulation occurs
within the initial 20 years, after which the stocks gradually reach saturation.
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Figure 9. Annual carbon sequestration of newly planted windbreak plantations by carbon storage
pools. (Negative values indicate carbon sequestration expressed in kt CO2.).

According to our presumption, only firewood is produced from the thinning of wind-
break plantations. This means that no carbon stock accumulation in the HWP pool is taking
place, as firewood is assumed to be combusted in the year after harvest. Figure 10 shows
the carbon content of firewood and the energy substitution effect associated with the heat
production process.
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When considering the establishment of new windbreak plantations as a climate change
mitigation measure, we can estimate the average annual mitigation potential for the
2025–2050 period. Figure 11 presents the mean annual climate change mitigation po-
tential across carbon pools in kt CO2 eq, where positive values indicate additional carbon
sequestration compared to a scenario without this measure. According to model estimates,
the newly established plantations offer an annual mitigation potential of 144 kt CO2 eq,
with the majority of carbon sequestration occurring in the biomass pool.
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Figure 11. Total annual climate change mitigation potential values associated with newly planted
windbreak plantations for the period of 2025–2050 sorted by carbon pools.

Figure 12 illustrates the projected carbon sequestration from the proposed windbreak
plantations in comparison with the BAU projection for forest land remaining forest land.
The graph does not include energy substitution effects, as these cannot be accounted
for within the LULUCF sector. The results indicate that during the 2025–2050 period, the
assessed measure could enhance BAU forest land carbon sequestration by an additional 5%.
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4. Discussion

We estimate that the total annual mitigation potential of establishing new windbreak
plantations is 144 kt CO2 eq, which is equivalent to 2% of the total land-use sector (LU-
LUCF) carbon sequestration reported in the 2021 Hungarian Greenhouse Gas Inventory
(GHGI) [57]. According to the GHGI, only forests and HWPs produce net carbon seques-
tration among the subsectors of the LULUCF sector. For the cropland subsector, a total of
119 kt CO2 emissions are reported for 2021 under the LULUCF sector. These emissions
originate from the soil pool and are attributable to land use changes in croplands. Accord-
ing to our estimate, these emissions could be offset by the plantation of 14,256 hectares
of windbreaks. However, it is to be noted that the majority of emissions related to crop-
lands are not reported under the LULUCF sector in the GHGI; instead, they are recorded
within the agriculture sector. These emissions could not be offset in total by the assessed
agroforestry measures.

The modeling results indicate a declining forest carbon sink for the period up to 2050
for forest land remaining forest land under BAU conditions. This underscores the need
for additional climate change mitigation measures, such as the one evaluated in this study.
Our findings reveal that doubling the extent of windbreak plantations could achieve an
extra 5% carbon sequestration in forested areas as compared to BAU conditions.

Our results indicated an average net carbon sequestration of −10.1 t CO2 eq/ha/year in
newly established windbreak plantations. This aligns with the findings of Kay et al. [15], who
estimated the carbon sequestration potential of suitable agroforestry practices in Europe to range
between −0.33 and −26.73 t CO2 eq/ha/year. According to Ma et al. [72], agroforestry systems,
on average, contain 46.1 t C/ha (95% confidence interval, 36.4–55.8 t C/ha) more carbon in
tree biomass than cropland or pastureland systems without trees. These findings support
our results, as we project that the average biomass carbon sequestered by 2050 will be
38.44 t C/ha, which represents the additional tree biomass carbon compared with the initial
cropland. Ma et al. [72] emphasized that incorporating multiple tree species in agroforestry
systems is crucial for increasing carbon sequestration levels. Therefore, examining the
effects of tree species diversity on carbon sequestration and storage in windbreaks would
also be important in Hungary.

Our results show that black locust is the most important tree species in the context
of carbon sequestration associated with windbreaks, accounting for more than 40% of the
total projected carbon sink. This is attributable to its significant portion of the presumed
initial planting area, along with its fast-growing nature. In Hungary, black locust stands out
as the most significant non-native tree species [73]. It serves as a suitable choice for erosion
control, amelioration, and restoration of disturbed sites owing to its drought tolerance. It
constitutes approximately 35% of newly afforested land [74] and accounts for 44% of the
total windbreak area across Hungary [54].

According to our estimate, in addition to carbon sequestration in the biomass pool,
SOC uptake and storage in the soil pool also have significant effects; moreover, carbon
accumulation in the DOM pool tends to increase, followed by saturation. The importance of
SOC sequestration is increasingly acknowledged within the global community [70,75], em-
phasizing that practices enhancing SOC will play a pivotal role in mitigating and adapting
to climate change [75,76]. Given the expansive spatial coverage of agricultural produc-
tion, agroecosystems possess substantial potential for SOC sequestration and biodiversity
enhancement [70]. Thus, implementing strategies that foster biodiversity and SOC seques-
tration is imperative for agriculture to contribute to sustainable development [70]. The
establishment of windbreaks serves as a noteworthy example of such endorsed measures.

In line with our findings, Szabó et al. [71], who carried out soil carbon content mea-
surements in a windbreak plantation in the Hungarian Great Plain, found increased SOC
concentrations under the trees compared to the adjacent agricultural fields. Bidló et al. [77],
in their case study, compared the soil carbon content of black locust and oak afforestation
in Hungary with that of nearby fields sharing similar site conditions. The study revealed
that newly afforested croplands have a higher carbon content than adjacent agricultural
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fields, primarily due to the accumulation of litter and humus. They concluded that forest
plantations, with their abundant leaf litter and humus, can considerably boost carbon
storage in the soil within a relatively short time frame (5–20 years). These findings are
likely applicable to windbreak plantations composed of the same tree species.

Dmuchowski et al. [14] identified SOC sequestration as the most evident contribu-
tion of agroforestry systems to climate change mitigation. Our projection revealed that
15.60 t C/ha would be sequestered in newly planted windbreaks by 2050. Shi et al. [78] as-
sessed carbon sequestration across various agroforestry systems, including alley cropping,
home gardens, silvopastures, and windbreaks, in all climate zones. Their research indicated
that agroforestry systems in tropical and subtropical regions store significantly more carbon
compared to those in temperate zones. In temperate regions, the soil carbon stocks were
reported as follows: home gardens (10 t C/ha) > alley cropping (2.2 t C/ha) > windbreaks
(0.90 t C/ha) > silvopastures (0.70 t C/ha) [14]. These values are lower than our estimate.
In contrast, Baah-Acheamfour et al. [79] analyzed data from Canada and reported that
hedgerows had the highest carbon storage in soil (106.5 t C/ha), followed by shelterbelts
(98.4 ± 14 t C/ha) and tree-based intercropping (83.6 ± 4 t C/ha). These findings suggest
that shelterbelts have a much higher carbon storage capacity. This highlights the need for
further investigation into the carbon sequestration and storage capacity of windbreaks in
Hungary. It is important to note that our model’s parameters are not exclusively based
on country-specific data, resulting in greater uncertainties in our soil carbon sequestration
estimates. To refine our model with country-specific data, extensive field measurements in
windbreak plantations and control of arable land parcels are necessary.

Our results show that the energy substitution effect accounts for 11% of the total
annual mitigation potential projected for the period 2025–2050. This amount is equal to
the emissions avoided by using firewood instead of fossil fuels [64], and its share could
be increased by using timber extracted from windbreaks to produce long-lived wood
products that store carbon for decades and, in the meantime, substituted for other carbon-
intensive materials.

The conducted modeling shows that the FICM Windbreak module is suitable for
medium-term carbon projections related to agroforestry situations. The development of this
new country-specific Windbreak module within the FICM constitutes a novel contribution
to evaluating potential measures for meeting climate targets and developing and assessing
nationally determined contributions (NDCs) to Hungary’s LULUCF sector.

A limitation of our study is the lack of extensive country-specific soil carbon seques-
tration data for windbreaks. To enhance the accuracy and relevance of our model, it is
essential to conduct soil measurements that reflect Hungary’s specific conditions. These
measurements would allow for precise parameterization of the model with localized data,
thereby increasing the reliability of our findings on the soil carbon sequestration potential
of windbreaks in Hungary.

Moreover, the current version of the model only projects carbon sequestration in soil,
dead organic matter, and tree biomass while excluding the carbon balance of herbaceous
plants and shrubs. Further development is required to model alley cropping systems,
where the dynamics of intercrops must be considered. We also plan to expand the FICM
framework by developing additional agroforestry submodels, specifically for alley cropping
systems and standalone trees in croplands. This expansion will facilitate a more compre-
hensive evaluation of various agroforestry practices and their potential contributions to
climate change mitigation in Hungary.

5. Conclusions

We conclude that by harnessing the synergies between trees and agricultural activities,
agroforestry systems provide multiple benefits, including carbon sequestration in living
biomass, dead organic matter, and soil pools. Our results show that in Hungary, a significant
climate change mitigation potential is inherent in the establishment of new windbreak
plantations on agricultural field boundaries. This highlights that agroforestry practices
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can foster resilient and productive agricultural landscapes while contributing to national
efforts to combat climate change and promote sustainable development.
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