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Abstract: We give a method to determine an explicit solution to a system of two inhomogeneous linear recursive
sequences of higher order. Our approach can be used efficiently in solving certain combinatorial problems. We finish the
paper by considering a tiling problem with black and white dominoes, and we use the method as a demonstration to find

the solution.
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1. Introduction

Recurrence sequences appear in several combinatorial problems. Time by time, there are more recurrences in
the solution that possess the same recurrence relation. In this case, a suitable vector recurrence can simplify the
description and the solution of the problem. Faye, Németh, and Szalay [2] investigated the question of linear
vector recurrences in general. Now we introduce some basic notations in order to formulate the problem.

Let s > 1 and k£ > 2 denote two positive integers. Assume that there are given the matrices A; =

[a,z(tj)] € CP*k for t =1,2,...,s. We define the vector recurrence
vp=A1vp 1+ Agvy ot AV, nx>s (1]-)
with initial column vectors vo,vi,...,vs_1 € CF.
In [2] the authors developed a procedure to separate the component sequences (vit))tzo fori=1,2,...,k,

and to give their own common recursive relation. The crucial point was to find the characteristic polynomial
of a matrix derived from the initial conditions. If one finds the zeros of the characteristic polynomial, then the
zeros, together with the initial values, can provide an explicit form for each component sequence. The difficulty
that may arise in practice is finding the zeros precisely. The situation changes when we have restrictions on
(1.1). In particular, we are able to gain a more precise final result if the size of matrices appearing in (1.1) is

2 x 2. This paper studies the vector recurrences with coefficient matrices A; € C2*2 (t =1,2,...,s).

*Correspondence: nemeth.laszlo@Quni-sopron.hu
2010 AMS Mathematics Subject Classification: 11B37, 056B45, 52C20.
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Clearly, the simplest version of (1.1) is
Vy = Alvn_l, (12)

when we have only one matrix, i.e. the order of vector recurrence is 1. Hence, the combination of component
recurrences goes back only to one term. In this case, the characteristic polynomial of the matrix A; implies
a recurrence rule of order k valid for any of the separated component sequences of the vectors v,, (see, for
example, [4, Lemma 2.1], or [3]). (Note that the basic field in [4, Lemma 2.1] is R, but the statement can
be extended without changes for the field C as well.) For nonhomogeneous version of (1.2), see [2] (with two

sequences) and [4] (generally).

If we have the matrices A; € C2*2 in (1.1), then (1.1) can be also given in the form

an = ag%%an—l + aggbn—l + afian—Q + afgbn—2+ R aflan—s + agf%bn—sa (1 3)
bn = ag%an—l + aggbn—l + ag?ian—2 + Oég;bn—2+ e+ aé‘flan—s + ag?%bn—sa

where a;, b; (0 <i<s—1) are the initial values. Clearly, now

for 0<iand 1 <t<s.
We will find explicitly the solution of (1.3) for the recurrence sequences (a,)5, and (b,)22, in the form
k
Zn = c§S>zn_1 + c(QS)zn_g 4o+ cgf)zn_k = chs)zn_i, n>k (1.4)

i=1

2(-5) (1 < i< k). Here the usage of upper index (s) of o (s is the order of (1.1))

i

with suitable coefficients ¢
does not seem justified, but it becomes useful later when we find connection between different systems (see

Theorem 1.1). Obviously, (1.4) is equivalent to
o = ()T, (15)

where (c(s))T = (cgs)7 cgs), o c,(f)) and zT = (zn_l, Zp—2,y ... ,zn_k) .

We even define additional matrices as follows. Let A; ; (1 <4,j <s) be a linear combination of A; and

A; given by
(@) (4)
A (L0 (0 0\ _ [oq1 og5
ao=a(y D)o 8- (o)
Furthermore, we define the function |.| as the sum
[ACD] = Aij|+ Al
of determinants of two associated matrices. Trivially, |A(®9) | = |AU?| and |A®D| = 2|A;|. Finally, as

usual, let tr(A;) denote the trace of matrix A;.

Now we are ready to present the main result of this paper.
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Theorem 1.1 (Main theorem) Sequences (a,)5, and (b,)S%, defined in (1.3) satisfy the homogeneous

linear recurrence relation

2s
= Vi n>2s, (1.6)

i=1
of order k = 2s, or equivalently
Zy = (c(s))Tz7
where (c(s))T = (cgs), Cgs)’ . ,é‘?) and z7 = (zn,l, Zn—2y ..., zn,gs) . The coefficient vector c(*) (s >2) can

be recursively given by

0 0
0 0
R . tr(Ay) 0
C( ) — cls—1) 4 _”A(l,s) " + 0 (1.7)
0 —|AL=L) 0
0 0 _|As|

with the initial vector
RO <tf(A1)>
A1)

2. Proof of the main theorem

Proof First we rewrite (1.3) into a system of 2s homogeneous linear recurrences of order 1 applying the

substitutions al(-j) = a;—; and bgj) i=b;—; for 0<j <s—1and 1< in the following way:

o = apay +aih) e +adb i+ e+ apa T + el

9 = ofla®, +olh®, 4 o+ ol o+ ol o b

a1(11) = Qan-1,

b'gzl) bn—l

a’gls—l) = Qp—s+1,

b'gls_l) bn—s—i—l-
Using [4, Lemma 2.1] (or [3]) the matrix form of the system above is

w, = MOw,_; = (M®)"wy, (2.1)
where for 1 > s—1
T
w; = (ago)’ b§0)7 agl), bl(-l), . ,al(s*l), bgsfl)) = (@i, bis @i—1,bi—1, ..., Gimst1, bi_s_H)T.
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The initial vector is obviously

Wo = (as—17 bs—la As—2, bs—27 .5 00, bO)Ta
furthermore

1 1 2 2 s—1 s—1 s s

) o

Qgq Qoo (Qgj 2,2 azsl 0‘252 a251 252

1
1 Al A2 i Asfl‘As
M — 1 N oo ,
1 I 0
1
1 25X2s

a block matrix with suitable unit matrix I and zero matrix 0 (We do not indicate usually the zero entries of

the matrices).

Applying Lemma 6 of [3] again, the characteristic polynomial of the coefficient matrix M) and the
characteristic polynomial of any component sequence coincide. Consequently, we have to determine the char-
acteristic polynomial

P (@) = M® — a1

of M(®) | which yields the common recurrence relation for the sequences (a,) and (b,). Thus

1 1 2 2 s—1 s—1) ' s s

e e o

Qg Q9o —T Qg7 Qoo - 042?1 0‘2?2 [ a;l 02?2
1 —z :
1 —x |

P! (z) = 1 | . (2.2)
1 [
|
|
”””””””””””” A SR
1 ] —x

If s =1, then we can easily have

(1) Ofﬁ - 0451%
pr@ =1 o
2,2

1 1 1 1 1 1
; — 2~ (oY + ) o+ aflafl - affal)
2,1

xT

= I2 - tI‘(Al)l‘ + |A1|,

hence
o [tr(Aq)
—|Aq] )"
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Now we prove (1.7) by induction on s > 2. If s =2, then

) ) @ L)

%%;x (?2 %ﬁ %ﬁ

PP (z) = .1 Qoo =T Qg Qo3
1 0 —x 0

1 0 —x

=2t —tr(A)z® + (|A1] — tr(Ag))z? + ||A(1’2) |z + |As]

with
tr(Al) C(l) 0 0
@2) _ —|A1| —‘rtl‘(Ag) _ tI‘(Ag) 0
¢ —|AG2)] o | T{-1aep T o
—|A,| 0 0 —|As|
Moreover, a straightforward calculation shows that
tI‘(Al) 0 0
—|A1|+tr(Asg) c® 0 0
—|A®2) A tr(Asz) 0
3) _ JAS2] +tr(As) _ r(A3
¢ ~|As| —|ACD)] B T I
LVl I N B V) 0
—|As] 0 0 —|As

holds for k = 3.
Suppose now that (1.7) is true for up to s — 1. Expand the determinant of (2.2) along the last two rows

consecutively. We distinguish three cases.

Case 1 If we choose —x from both of the last two rows, then we obtain (—z)2[M®=D| = 22 . p(s=D(z). This

results in the first vector in the sum (1.7).

Case 2 If we choose twice 1, then we have to choose 1 again from the rows 2s —2,2s —3,...,4,3 step by step

(to avoid the product becoming zero), and we have |A|. This yields the last vector of (1.7).

Case 3 Now, we choose exactly one —zx entry from the last two rows.

Firstly, we chose —x from the last row and 1 from the penultimate row, as M; shows. We denoted the
chosen items with rounded squares. To proceed, we have two possibilities to find a nonzero entry in row
(2s — 2). If we have —z, then the next nonzero element is necessarily 1 from row (2s — 3). Similarly, in

row (2s —4), we have again two choices, and so on.

Assume that the pair (—z,1) was chosen consecutively (s —¢) times in total, where 0 < ¢ < s —1. Then,
apart from rows 2 and 1, we continue by opting for only value 1. Note that a double 1 choice predestinates
the ending in order to obtain a nonzero product (see Case 2). This is the green minor matrix of M,

having determinant 1. Lastly, from the first two rows, the minor matrix is

4 s 1 s
either a%é% O‘é% or (?ﬁ’% 0{1% .
Qg o 0‘2?1 Qg o — T 0‘2?1

(The second matrix occurs when no double 1 appears in the expansion only pairs (—z,1).)
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1 [x—x * % * o+ a9 « x o+ x  x [@al®)
1,1/%1,2 1,1%1,2
2 x x—z * % Sl [ o+ o+ x aal®)
2,1 %22 2,1)%22
3 1 —x :
=
Y.
'].j‘(/,}] =
gy .
. '~_éoo . —T
. °, ‘9@
20—1 - 1 —T
- :
20 1 —x
2041 —x
2042 1 R
. ... (
. (s Dy
: .\(Q . .'.JOIE.
2s—4 - lfo;@ . —Z ".80,5
. . %,
25—3 A7 1 —x %
25—2 e, 1 s
25—1 - —x ..
2s . 1
Summarizing this particular way (the first subcase of Case 3) we have
s—1 () (s) (1) (s)
_ 1] @ @ _ T « o
D G B B A O e O L Bl T B &
—2 Qg o (o1 Q9o =T Qg3
s—1 (s) (6) (s) (1)
25t Qi Q1o | e Q11 X2 + a:oz(s) _
(s) (©) (s) 1) L1 =
=2 Q21 P22 Q51 Qg9
s—1
Yo a A - 2tal.
=1

Secondly, we switch the roles of —x and 1, i.e.
row (2s — 1) as My shows. Analogously to the
consecutively for a while, and then proceed with

the first two rows. Finally, we find

first choose 1 from the last row and then —z from
previous description, we keep choosing the pair (1, —z)

the remaining entries 1. Then finish the procedure with

= Vi —¢ agz)l ags% 0 0 Oéﬁ—fﬂ ags%
D G M G ) Rl B B il o O R G DRl I &) | =
1—2 Qg Qg9 Qg 2,2
s—1 YA s 1 S

B e Y et S S S A N

z @& (5 |TT d) ¢ | 7T | =
1—2 Qg Qg5 Qgq Qg9
s—1
Z 25t | A 5] xsa;‘g.
(=1
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20-1 oL

M
2 2

20+1

20+2

254
25—3
25—2
2s—1

Hence, Case 3 finally returns with

which gives the second vector in (1.7).

Now the proof is now complete.

s—1
Y @) ALY | 2t A,
=1

£k x oy q|0g g
Lo el
. .'...(
..@.\'@‘3‘
= R
—r '--0,6006,
) __-z - .
i
%
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Remark 2.1 Theorem 1.1 makes it possible to give the vector c¢®) explicitly as follows:

tI"(Al)
— ‘Al | —+ tI’(AQ)
—[AC2)] + tr(As)

”AL(S 1)/2Js 1 L(S 1)/2Jj)‘ ..

—[As| — JATY] + tr(Ay)
—[AZD] — JACD] + tr(As)
—[As| — [AGY] — JATD] + tr(Ag)
—[ABD] —JAC| — JATO] + tr(A7)

—[Ay] — [AGD] — JARD] — JALD] 4 tr(Asg)
—[AED] — ABO] — JABD] — JALS] + tr(Ay)
—[As| - [A®O] - ||A(3’7) H — o= AT+ tr(Agp)

c+tr(Ag_2)

: \A(“ 2 + tr(A

-1)

W = | —[A|ygy| = [ACTTE2IE/D| o AR A 1)|| + tr(A,)
o JAGD] - JAGD] AL
A6 - |AGD] - |AC)]
— [AGs=2] — JAGD ] — | AB)]
~JAGD] [AGD] _ [AG)]
~ [ACD]  ACD] — |AG)]
—[As—a| = JALTSTD] — JALTSSTD] — ALT6S)
_||A(s—3,s—2) " _ ”A(s—4,s—1)” _ A(s—5,s) "
—Asp| — JALTESTD] — AL
SJA=2a| — JAC)
—|As—i| - JALT2I)
CJAC-L0)
—| A
3. Example
The binary recurrence (uy,) is defined by
Up = QUp—1 + DUp_2, (n>2) (3.1)

with initial values ug = 1, u3 = a (or u—; = 0). The term u, is interpreted in the work [1] as the number of
ways to tile a (1 X n)-board (or square grid) using squares with a different colors and dominoes with b colors.

Obviously, if a =b =1 then w,, = F,, 41, the shifted Fibonacci sequence.

3.1. Tiling with black and white dominoes

Now we present a variant of the problem above. Fix a positive integer £ > 1 as the maximal size of the dominoes
we will use. Then consider a (1 x n)-board and tile it from left to right with black and white dominoes such
that black domino never follows white domino. Let t,, ;, denote the number of such tiles.

Under the conditions above, let a, ; and b, ; denote the number of different tilings ending with black
and white dominos, respectively. Now %, 1 = @y i + bpr. The tiles in Figure 1 shows the possible cases when
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n=123and k>3. It admits a1, =1, b1 =1, asx =2, bap =3, agr =4, b3 = 8. Assume that we let

aox =1 and by, =0 for any &.

B [

Figure 1. Tiling with black and white dominoes if n < 3 and k > 3.
It is easy to see by the constraint that

Qnk = QAn—1k + An—2 k I Qn—k, k>

2
bn,k: = GOn-1,k + bnfl,k + Gp—2,k + bn72,k: + -+ Qn—k,k + bnfk,lw (3 )
a specific example of the system (1.3). Here, for 4, j > 1 we have A; = (} (1)> , further |A;| =1, tr(A;) = 2,
and |A(47) | = 2. Moreover, we find for the coefficients of the recurrence sequences that
tI‘(Al) 2
1 _ (tr(A)) _ [ 2 @ — —[Arttr(Ag) | ] 1
—|A] -1 —[A®2)] -2’
—|Ag| -1
and generally
0
0
c® = | -1 | & 32 . (3.3)
0 —2
0 -1

Writing the vectors (¢*))T in triangle form we have the coefficient triangle C (see Table 1), where row k

contains the components of ¢*). Thus, the common recurrence relation of sequences (ank), (bngk), and (t,.x)
for k=1,2,3 (in form (1.5)) are

ifk = 1, Zn,1 = 22’”,1,1 — Zn—2,1 (’rL > 2),
iftk=2, 2zp2=22,_12+2n—22—22,-32 — Zn—4,2, (n>4),

ifk=3, zn2=22-12+2n-22—3%n-42 — 2252 — Zn-62 (1 >6).
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The initial values are agr = 1, bop =0, tor =1, a1 =1, b1y =1, t1x =2, and for 2 <n < k-1,

Qp.k = An k-1, bn,k = bn,k717 tn,k = tn,kfl .

2 1 0 -1 -4 -3 -2 -1
2 1 0 -1 -2 -5 -4 -3 -2 -1
2 1 0 -1 -2 -3 -6 -5 -4 -3 -2 -1
2 1 o0 -1 -2 -3 -4 -7 -6 -5 -4 -3 -2 -1

Table 1. Coefficient triangle C

Remark 3.1 From the first row of the system (3.2) it can be seen that the sequences (ani) are the (nonzero)
k-generalized Fibonacci sequences (or k-bonacci sequences), and in case of the first few k, they are appear in
The On-Line Encyclopedia of Integer Sequences (OFIS) [5], see the sequences A000007, A000012, A000045,
A000073, A00007S, A001591, A001592, A066178, A122189, A079262. Moreover, (ano), (an1); (ans2), and
(tn,0)s (tn1)s (tn2), (tn,3), (tn,a) are also in OEIS [5] as sequences A000004, A001477, A025610, and A000007,
A000027, A001629, A0T3778, A118898.
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