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ÖSSZEFOGLALÓ.
Két 100x100 méteres területet, egy erdőt és egy vegyes ültetvényt vizsgáltunk LiDAR pon-
thamaz alapján. A Progressive Morphological Filtering (PMF) és a Local Maximum Filtering
(LMF) módszerek 257 fát azonosítottak az erdőben (módszertől függően) részben véletlen-
szerű, részben szabályos, 47-et a vegyes területen klaszteres eloszlással. A sűrűségmérések
és legközelebbi szomszédok távolságának azonosítása G- és K-statisztikával. Monte Carlo-
módszerrel és kvadrátpróbával jelentős különbségeket mutattak a fák eloszlásában, s jól jelezték
a területek jellege közötti eltéréseket. Az alkalmazott módszer alkalmas az erdőterületek
anomáliáinak azonosítására is.

ABSTRACT. This study processed two 100x100m areas from LiDAR dataset: a forest and
a mixed forest-plantation. Progressive Morphological Filtering (PMF) and Local Maximum
Filtering (LMF) methods identified 257 trees in the forest and 47 in the mixed area, showing
(depending on the method) partly random, partly regular spacing in the forest and clustering
in mixed areas. The density assessments and nearest-neighbour evaluations with G statistic, K
statistic, Monte Carlo method, and quadrat tests revealed a significant difference in tree distri-
bution, highlighting the effectiveness of these methods for detecting spatial patterns in diverse
forest environments, too.

1 Introduction
The accurate identification of individual trees from LiDAR (ALS) measurements is a critical
issue in forestry geoinformatics and statistics. However, the applicability of the frequently used
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local maxima method [21] for tree identification is significantly influenced by the quality and
preprocessing of data, as well as the type and structure of the forest [4]. The problem can be
relatively simply stated: even the best and most widely adopted methods currently available
are not sufficiently reliable, and often, results considered acceptable are not truly satisfactory
[5]. The variable effectiveness of ITD (individual tree detection) methods also impacts the
estimation of other metrics [9].

Several attempts have been made to address these issues. Rasterizing the point-based
method can reduce the number of errors under certain conditions [17]. It can be satisfactory
within a narrow scope but are limited in their applicability for surveying "unknown" forest areas,
which is essentially the ultimate goal. Machine learning methods [12], Monte Carlo methods
[1], principal component analysis [8], object-based labelling [15], and optimization methods
[18] can predict and sometimes reduce the error magnitude for specific tree and forest types,
but this does not necessarily imply that these methods can be generalized to most forest types.
Resizing the TWS (tree window size) used in the analysis has led to more usable results in some
forest types [13], but this also does not seem to be a generalizable method. Using the L function
for refining detections appears to be a more general method [11], but the applied procedure is
still not entirely independent of the expected and known results from field reference data. Of
course, improving technical conditions, such as using high-density, close-range, multispectral
LiDAR recordings [6], can also contribute to increasing the efficiency of the procedure.

In this article, an attempt is made to provide an example of how to outline a procedure
based on the principles of nearest-neighbour distances without relying on precise reference
data. Rather than focusing on the exact identification of individual trees, this method assesses
the overall characteristics of the forest. This approach enables the detection and monitoring of
specific "anomalies" within the forest using almost exclusively LiDAR imagery, thus facilitating
rapid and efficient surveys.

2 Materials and methods

2.1 Data

The data described in Table 1. serve as the source for analysis. This LiDAR dataset was gathered
by NCALM for Paula Figueiredo at North Carolina State University [14].

Features Forest Mixed vegetation
Horizontal Coordinates WGS84 / UTM Zone 17N Metres [EPSG: 32617]
Vertical Coordinates Ellipsoid
Number of Points 800743 528590
Xmin, Ymin 490915, 4038800 491825, 4038310
Xmax, Ymax 491015, 4038900 491925, 4038410

Table 1. Features of LiDAR datasets

The first LiDAR point cloud represents a purely forested area, while the second one depicts
a forest patch and a plantation separated by a road. (Figure 1.) Both areas are 100 by 100
metres in size. Similar to common field conditions, we have a general overview of the area’s
characteristics, but we lack precisely surveyed reference data, such as the exact locations of the
vegetation (trees) [20].
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(a) Forest area (b) Mixed vegetation area

Figure 1. Vegetation areas

2.2 Canopy and tree detection
For ground classification, a Progressive Morphological Filter (PMF) was utilized. The original
raster-based method [22] was modified by the developers of the R lidR package [19] used
for data processing transforming it into a point-based approach [16]. During this process, the
default values (window size = 3, threshold = 5) were used.

After ground classification, the digital terrain model (DTM) was created using the kriging
method, which is more accurate but more resource-intensive than the commonly used triangu-
lation method. Kriging is the most sophisticated approach, employing advanced geostatistical
interpolation techniques that consider the spatial relationships and distances between the re-
turns. Height normalization was ensured using point cloud-based normalization method. This
model is superior in terms of computational accuracy by normalizing with a continuous terrain
instead of a discretized terrain.

In the next step, the canopy height model was created using a point-to-raster method.
From this model, the coordinates of individual trees, along with their corresponding height

values, were computed using a Local Maximum Filter (LMF) with window size = 5. During
each step, various other methods were considered, but upon testing, these methods yielded
essentially identical results [20].

2.3 Spatial statistical analysis
The density-intensity of tree locations was visually analysed. Subsequently, the nearest-
neighbour distances and, more generally, the pairwise distances within each sample plot were
analysed as follows [2].

The cumulative distribution function of the nearest-neighbour distances for a regular point
in the point (tree) pattern in a stationary point process X is

G(r) = P (d(u,X \ {u}) ≤ r |u ∈ X) ,

where u is a random location, and d(u,X\{u}) is the shortest distance between u and the points
of the X pattern, excluding u.

The observed distribution function for the distances to the measured nearest neighbours is

G∗(r) =
1

n(x)

∑
i

1{ti ≤ r}.

Edge corrections based on the empirical cumulative distribution function is
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Ĝ(r) =
∑
i

e(xi, r)1{ti ≤ r}. (1)

The e(xi, r) edge correction weight in the above equation ensures the approximate unbi-
asedness of Ĝ(r).

The distribution function of the nearest-neighbour distances in a homogeneous Poisson point
process with intensity λ is

Gpois(r) = 1− exp(−λπr2). (2)

In the case where Ĝ(r) > Gpois(r), the pattern is considered clustered, while when Ĝ(r) <
Gpois(r), the pattern is classified as regular. In addition to the theoretical Poisson distribution,
the Hanisch estimate [7], the border-corrected estimate, and the Kaplan-Meier estimate [10] for
Ĝ(r) are used.

The biased patterns of sij = ∥xi − xj∥ pairwise distances, namely the overrepresentation of
smaller distances, can be attributed to reasons similar to those mentioned before. The expected
number of other points of the process within a distance r from a typical point of the process is
denoted as

K(r) =
1

λ
E [n (X ∩ b(u, r) \ {u}) | u ∈ X] .

The anticipated number of points within the region b(u, r) is λπr2. For a homogeneous
Poisson process, this is independent of the intensity.

Kpois(r) = πr2. (3)

Estimators for this value are adjusted and normalized as empirical distribution functions of
the pairwise distances, which is

K̂(r) =
1

λ̂2 area(W )

∑
i

∑
j ̸=i

1{∥xi − xj∥ ≤ r} e(xi, xj; r), (4)

where e(u, v, r) is the edge adjustment factor. If K̂(r) > Kpois(r) = πr2, clustering is observed,
while if K̂(r) < Kpois(r) = πr2, a regular pattern is indicated.

In addition to the theoretical Poisson model K(r), boundary-corrected estimation,
translation-corrected estimation, and isotropic correction estimation are computed.

Numerous other metrics and procedures are associated with the statistics of spatial points,
but these appear to be the most important. The previous findings must also be tested using
inferential statistical methods.

Given the significance of the K statistic even within this narrow scope, the results of the K
statistic were tested using a Monte Carlo method suitable for spatial data [3].

A key question in the K statistic is whether there is a difference between K̂ and Kpois.
The initial hypothesis is

H0 : The observed point set is a representation of a random spatial process. (5)

The reference curve for the procedure was the K function under complete spatial random-
ness (CSR). M independent simulations (with M = 39) for a two-sided test at a 5% significance
level, as α = 2

M+1
were run for the study regions W . The estimated K functions K̂(j)(r) for
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j = 1, . . . ,M were calculated for each realization. The lower (L) and upper (U) pointwise
envelopes for these simulated curves are

L(r) = min
j

K̂(j)(r)

and
U(r) = max

j
K̂(j)(r).

For a fixed r, the probability of Kb(r) exceeding the envelope [L(r), U(r)] for simulated
curves indicates rejection of the null hypothesis of a uniform Poisson process, with a signif-
icance level of α = 2

M+1
. Alternatively, using pointwise order statistics provides a test with

exact size α = 2k
M+1

for the k-th largest and k-th smallest values.
In addition to the Monte Carlo test, a quadrat test was conducted. This test does not rely

on the L-K statistic, making it suitable for verifying our previous results. The study regions
are divided into equal-sized quadrats (2x2), and the number of points within each quadrat is
counted. Under the H0, the points (trees) follow a homogeneous Poisson process, meaning they
are randomly distributed, similarly to the previous null hypothesis. The observed frequency
distribution of points per quadrat is compared to the expected Poisson distribution. The chi-
square test statistic is used to quantify the difference is

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

,

where Oi is the observed frequency and Ei is the expected frequency.

3 Results
During the process, 257 trees were identified in the forested area and 47 trees in the mixed
vegetation area (Figure 2).

Figure 2. Canopy and trees

The estimation of G(r) from (1) suggests that the pattern of trees in the forest area is regular.
Specifically, G(r) = 0 for r ≤ 2.5 metres, indicating that there are no nearest-neighbour
distances less than 2.5 metres. The difference between the two plant covers is reflected in the
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G statistic (1) and (2). In the second area, there are no trees within a distance of 2.5 metres as
well, but for r ≥ 3.5, the forest exhibits strong clustering characteristics (Figure 3).

Figure 3. G statistic

Unlike what was observed with the G statistic, the K statistic (3) and (4) indicates that in the
fully forested area, a pattern similar to the Poisson model can be seen. However, in the mixed
vegetation area, clustering is observed, similar to previous findings (Figure 4).

Figure 4. K statistic

In the first case, H0 from (5) of randomness is not definitively rejected, whereas in the
second case, it is unequivocally rejected. This is consistent with our prior findings (Figure 5).

The obtained result was confirmed by the χ2 test (Table 2 and Figure 6).

Area χ2 df p-value
Forest Area (2x2) 2.2529 3 0.9568
Mixed Vegetation Area (2x2) 62.362 3 3.678× 10−13

Table 2. Results of quadrat tests
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Figure 5. Pointwise envelopes

Figure 6. Quadrats with number of trees and contour lines

4 Conclusions

While the current models for individual tree identification using LiDAR data still require re-
finement, the incorporation of known field data and advanced statistical methods like G and
K statistics holds promise for improving survey efficiency and accuracy. The continued devel-
opment and validation of these models are essential for their widespread adoption in forestry
applications, particularly in the context of sustainable forest management and conservation.

The comparison of the two areas using applied identification and statistical methods has
demonstrated that, essentially, valid conclusions can be drawn about the trees covering the area
even without field surveys, given a cost-effective technological background. We believe that the
refinement of models beyond the results of field surveys and the more precise identification of
trees is often impractical, as such methods are generally not generalizable. Reverting to random
distributions and filtering significant anomalies alongside the methods we use offers a limited
but important means of drawing conclusions in forestry and the timber industry. The applied
method provides an opportunity to identify anomalies that have occurred in the forest area (tree
mortality, tree cutting, natural damage) based on previous recordings.
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