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A B S T R A C T

Understanding historical patterns of forest cover change (FCC) is critical for predicting future trends and 
informing sustainable management strategies. This study quantified and analyzed historical and projected FCC in 
the Mount Kenya Ecosystem (MKE), central Kenya. Land Use Land Cover (LULC) maps for 2000, 2014, and 2023 
were classified using Random Forest (RF) in Google Earth Engine (GEE). Explanatory factors of LULC change 
(slope, aspect, population density, proximity to rivers, roads, and towns) were used to project LULC for 2035 
using Cellular Automata and Markov Chain Analysis (CA-MCA).

Six LULC types (open forest, closed forest, cropland, bareland, built-up, shrubland and grassland) were suc-
cessfully classified with accuracies exceeding 82.5% and Kappa coefficients above 0.77. Between 2000 and 2023, 
open forest (+201.12 km2), cropland (+218 km2), bareland (+290.09 km2), and built-up areas (+0.27 km2) 
expanded, while closed forest (− 141.55 km2) and shrubland and grassland (− 567.93 km2) declined. An overall 
Kappa coefficient value of 0.78 and an accuracy of 82% indicated good results for LULC statistics and projected 
map for 2035. LULC projections for the year 2035 under the Business as Usual (BAU) scenario suggest continued 
expansion of cropland (+174.70 km2), built-up areas (+0.49 km2), and open forest (+471.72 km2), with declines 
in closed forest (− 423.53 km2) and shrubland and grassland (− 357.79 km2).

These results highlight the ongoing pressures on the MKE’s biodiversity and ecosystem services. The study’s 
methods offer a replicable framework for assessing FCC in similar ecosystems to inform evidence-based con-
servation and land management policies.

1. Introduction

Forests are significant self-regulating natural resources that offer a 
broad range of terrestrial functions in addition to providing multiple 
ecosystem goods and services to human society (Krieger, 2001; Mishkin 
and Pacheco, 2022; Simeon and Wana, 2024). Forest Cover Change 
(FCC) affects the delivery of important ecosystem services, including 
climate regulation, biodiversity richness, water supplies, and carbon 
sequestration (Balthazar et al., 2015; Foley et al., 2005). Changes in 
forest cover are driven by multifaceted processes that are dependent on 

biophysical, political, social, economic, and conservation conditions 
(Vanonckelen and Van Rompaey, 2015). Globally, different patterns of 
losses and gains in forest cover have been documented (FAO, 2015; Guo 
et al., 2022; Margono et al., 2014; Paradis, 2021; Rotich and Ojwang, 
2021; Saranya et al., 2022; Tesfay et al., 2023; Yahya et al., 2020). 
Forest cover gains are mainly driven by favorable afforestation policies, 
intensive forestry, natural forest regrowth on abandoned croplands, and 
tree planting for the provision of timber or fuelwood (Baumann et al., 
2011; Guo et al., 2022; Townshend et al., 2012; Winkler et al., 2021). 
Forest losses, on the other hand, have been linked to the expansion of 
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agricultural and grazing lands, unsustainable wood extraction, rapid 
population growth, and urbanization at the expense of forestlands (FAO, 
2020; Geist and Lambin, 2002; Hosonuma et al., 2012; Lambin et al., 
2001; Rudel et al., 2009).

Deforestation, forest degradation, and forest fragmentation are 
fundamental concerns in forest conservation and management. Infor-
mation on the drivers and the extent of FCC is essential for the devel-
opment of appropriate forest cover restoration strategies (Agariga et al., 
2021; Reddy et al., 2013). The analysis of historical trends of forest 
cover, structure, and temporal changes is also paramount in predicting 
future FCC and designing future forest management interventions for 
Sustainable Forest Management (SFM) (Karahalil et al., 2009). The 
combination of remote sensing (RS), geographical information system 
(GIS), and Land Use Land Cover (LULC) modelling has been recognized 
and used as a contemporary tool for investigating historical, present, 
and future changes in land and forest cover. The commonly used 
modelling techniques include the Cellular Automata (CA) (Kamusoko 
et al., 2013), Markov chain (Kumar et al., 2014), CA–Markov chain 
(Mengist et al., 2021; Munthali et al., 2020; Mwabumba et al., 2022; 
Tadese et al., 2021; Yue et al., 2024), Land Change Modeler (LCM) 
(Armenteras et al., 2019; Munsi et al., 2012), STCHOICE (Reddy et al., 
2017), and GEOMOD (Giriraj et al., 2008; Sakieh and Salmanmahiny, 
2016). These tools are vital in forest management, conservation and 
monitoring since they provide insights into deforestation patterns and 
hotspots cost-effectively and promptly (Abad-Segura et al., 2020; Alabi 
et al., 2021; DeFries, 2013; Dewan et al., 2012; Mishkin and Pacheco, 
2022).

Land use change has increased globally over the years through the 
conversion of the world’s forest land to other uses due to the growth of 
the human population and increasing demand for food and land (FAO, 
2015; Lambin et al., 2001). A three-decade land cover change analysis 
using satellite-based observations in seven East African (EA) nations 
(Tanzania, Ethiopia, Kenya, Uganda, Zambia, Malawi, and Rwanda) 
showed a 189,400 square kilometers (km2) decline in naturally vege-
tated lands comprising forests, grasslands, and wetlands (Bullock et al., 
2021). A spatial analysis of Kenya’s LULC changes from 1990 to 2015 
revealed a 24.7% loss of forest cover between 1990 and 2000, with a 
subsequent 9.04% increase in forest cover between 2005 and 2015 
(FAO, 2015). Results from the most recent wall-to-wall mapping of 
Kenya’s forest resources carried out in the year 2021 showed the 
country’s forest cover stood at 8.83% of the total land area, a rise from 
the previous forest cover figure of approximately 7% recorded in the 
year 2010 (Kenya Forest Service, 2021). This represents a significant 
improvement in the country’s forest cover; however, existing competi-
tion from other land uses still poses a threat to Kenya’s forest resources 
(Ministry of Environment and Natural Resources, 2016).

The Mount Kenya Ecosystem (MKE) is a designated biosphere reserve 
and a world heritage site in central Kenya that offers exceptional 
resource values of scenic, biodiversity, and cultural and social nature 
(Kenya Wildlife Service, 2010). It comprises forest reserves (FRs) and a 
national park (NP) that comprises both natural and plantation forests, 
providing a wide range of ecosystem services. FRs in the MKE are among 
the most threatened forests in Kenya due to their commercially valuable 
reserves of indigenous timber, and the large human population living 
around its land-scarce boundaries (Emerton, 1999). The MKE forests 
face immense pressure from human activities and natural factors, 
threatening its ecosystem integrity and potential to continue providing 
ecosystem goods and services (Kenya Forest Service, 2010; Kenya 
Wildlife Service, 2010; Nature Kenya, 2019).

While previous studies have documented deforestation and forest 
degradation in the MKE (Bussmann, 1996; Kariuki, 2006; Kinoti and 
Mwende, 2019), they have focused on historical periods and the isolated 
drivers of FCC, leaving significant gaps in understanding the implica-
tions of these changes and the interplay of natural and anthropogenic 
factors in forest recovery processes. Moreover, limited attention has 
been given to how modern technologies, community-based initiatives, 

and broader policy frameworks collectively influence forest dynamics. 
This study addresses these gaps by providing a comprehensive analysis 
of historical (2000–2023) and projected FCC (2035), integrating RS and 
GIS methodologies with socio-environmental data. It explores the 
simultaneous roles of human interventions, and natural regeneration in 
forest recovery, offering a nuanced understanding of the drivers behind 
forest transitions and the socio-economic implications of the changes. 
Our objectives in this study are threefold. First, we detect, quantify, and 
map the spatio-temporal FCC trends in the MKE from 2000 to 2023 using 
GIS and RS. Secondly, we predict FCC for the years 2035 using the 
cellular automata and Markov chain analysis (CA–MCA) model, and 
finally, we assess the implications of these FCC on SFM in the MKE. The 
findings of this study will offer targeted recommendations for SFM, 
directly addressing the drivers of deforestation and identifying effective 
recovery strategies. It will further equip policymakers and conserva-
tionists with actionable insights to enhance forest resilience and carbon 
sequestration in similar tropical montane ecosystems.

2. Materials and methods

2.1. Study area

The MKE bestrides the equator in the central part of Kenya, spanning 
six administrative counties of Kirinyaga, Laikipia and Nyeri to the west 
and Embu, Tharaka Nithi, and Meru to the East (Fig. 1). It is 
geographically located within longitudes 37◦ 0′ and 37◦ 48′ E and lati-
tudes 0◦ 36′ S and 0◦ 18′ N, covering an estimated area of about 4779.52 
km2. The MKE comprises Mt Kenya Forest Reserve (MKFR), Mt Kenya 
National Park (MKNP), Ngare Ndare Forest Reserve (NNFR), Lower and 
Upper Imenti forest reserves, Thunguru Hill Forest Reserve, Timau 
Forest Reserve and a 5 km buffer zone around the forested zones. The 
three important and closely linked forest reserves in the MKE (Mt Kenya, 
Ngare Ndare, and Imenti) form the core of this study (Fig. 1).

The MKE ecosystem has a bimodal rainfall pattern, with long rains 
occurring from March to May while short rains are experienced from 
October to December. Rainfall is moderate on the lower slopes and gets 
heavier higher up the slope. The wettest part of the mountain is to the 
Southeast, with up to an average of 2500 mm precipitation per year, 
while the Northern part of the ecosystem is the driest, with less than 
1000 mm mean rainfall annually (Gichuhi et al., 2014). The altitude of 
the MKE ranges from 1100 m above the sea level (asl) in the North-
eastern parts to 5199 m asl in the central part of the study area, which 
comprises the peak of Mt Kenya. The study area experiences varied 
temperatures ranging from about 5 ◦C in the upper zones, above 3000 m 
asl to 25 ◦C in the lower zones, with an average temperature reduction of 
about 0.6 ◦C for every 100 m increase in altitude. An afro-alpine climate, 
typical of the tropical East African high mountains, characterizes the 
higher ranges of the MKE (Kenya Forest Service, 2010). The dominant 
soils of the MKE region include Nitisols, Ferralsols, Andosols, Histosols, 
and Acrisols (Muchena and Gachene, 1988). The lower slopes of Mt 
Kenya are covered with montane forest, which includes both indigenous 
closed canopy and indigenous open canopy forest. The vegetation 
changes to bamboo, scrub, and moorland on the intermediate slopes, 
then to bare rock, ice, and snow on the upper slopes, with the highest 
point being 5199 m asl (Nature Kenya, 2019).

MKE is one of Kenya’s five main water towers and is a significant 
water catchment for the country. Kenya’s largest river, the Tana River, 
has its catchment area in the Northeastern to the Southwestern part of 
Mt Kenya, while the Ewaso Nyiro River has its catchment area in the 
Western and Northwestern slopes of the mountain. The Tana River 
provides water to several hydroelectric power plants as well as large 
irrigation schemes such as the Tana Delta irrigation scheme, the Mwea 
rice scheme, and the Bura irrigation and settlement scheme (Kenya 
Wildlife Service, 1999). MKE is rich in biodiversity in terms of both plant 
and animal species as it provides habitat to many globally threatened 
mammals, including the African elephant (Loxodonta Africana), 
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mountain bongo (Tragelaphus eurycerus), black-fronted duiker (Cepha-
lophus nigrifrons) giant forest hog (Hylochoerus meinertzhageni), and the 
endangered king African mole rat (Tachyoryctes rex). An estimated 880 
plant species belonging to 479 genera in 146 families have also been 
recorded in the ecosystem in the past (Kenya Forest Service, 2010).

Administratively, MKE is primarily managed by two government 
agencies, the Kenya Forest Service (KFS) and the Kenya Wildlife Service 
(KWS). KWS is responsible for MKNP, the innermost area (>3,200m asl), 
while KFS manages the MKFR and Imenti forest reserves. The NNFR is 
maintained by local communities, such as the Ngare Ndare Forest Trust, 
under the supervision of KFS (Kenya Forest Service, 2010; Kenya 
Wildlife Service, 2010). A predominantly agricultural production pop-
ulation surrounds the Mt Kenya forest reserve. The forest also provides 
water, wood, and non-wood forest products to the surrounding com-
munities living within the 5 km buffer zone (Kenya Forest Service, 2015; 
Nature Kenya, 2019).

2.2. Data acquisition

In this study, we used two sets of data to classify the historical and 
predict the future LULC in the MKE. The first set was the Landsat data 
processed from the Google Earth Engine (GEE) platform to characterize 
the LULC classes within the study area. GEE delivers multi-petabyte 
archives of geospatial data, including satellite data, which can be used 
for planetary-scale analysis. Therefore, we accessed atmospherically 
corrected surface reflectance images for Landsat 7 Thematic Mapper, 
Landsat 8 OLI/TIRS, and Landsat 9 OLI-2/TIRS-2 for the years 2000, 
2014, and 2023, respectively. Landsat sensors provide an extensive 
regular time series data for monitoring forest cover changes and other 
land dynamics across space and time on earth (Shravan Kumar et al., 
2024). Data pre-processing involved several steps, such as filtering data 
by the specific season of each epoch and applying a cloud masking 
function to eliminate the inclusion of data with contamination effects. 

Therefore, we used quality assessment bands combined with a 
compositing approach to only retain cloud-free pixels for further anal-
ysis. The resulting image composite was generated from the median 
value of the time series data analyzed in each season.

All the Landsat products used in this study were surface reflectance 
products which were atmospherically corrected, analysis-ready without 
requiring sensor-specific geometric or radiometric adjustments. There-
fore, we processed spectral bands (Blue, Red, Near Infrared, Short wave 
infrared) and derived indices such as the Normalized Difference Vege-
tation Index (NDVI), Normalized Difference Bareland Index (NDBI), and 
Normalized Difference Moisture indices (NDMI). The formulas, refer-
ences and justification for the used indices are summarized in Table 1.

The spectral bands and indices were used as input features for the 
subsequent supervised classification process. The bands and the indices 
used have shown a great potential of characterizing natural land covers 
and artificial environments across different environments (Allam et al., 
2019; Pham-Duc et al., 2023). The bands have a spatial resolution of 30 
m. The acquisition of the RS images for the different epochs was con-
ducted within the same season of the year (Tilahun et al., 2024). This 
was necessary to minimize the effects of moisture and phenology 

Fig. 1. Map of the study area. (a) Location of Kenya in Africa; (b) Location of MKE in Kenya; (c) Map of the MKE.

Table 1 
Table showing the vegetation indices used in the study.

Vegetation 
Index

Formula Justification References

NDVI NIR − RED
NIR + RED

Detects vegetation health 
and canopy density

(Huang et al., 
2021; Rouse 
et al., 1974)

NDBI SWIR 1 − NIR
SWIR 1 + NIR

Identifies bare land and 
impervious surfaces to 
assess land-use changes

(He et al., 2010; 
Zha et al., 2003)

NDMI NIR − SWIR
NIR + SWIR

Measures vegetation 
moisture content and water 
stress in forest ecosystems

(Gao, 1996; 
Taloor et al., 
2021)
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differences in the utilization of images acquired in different seasons. 
Subsequently, we selected satellite images captured from January to 
March as this period coincides with the driest period in the study area, 
thus reducing the probability of encountering cloudy images.

The second set of data used in this article was raster maps of the 
spatial covariates. Spatial variables such as slope, aspect, distance to 
rivers, population density and proximity to roads and towns were used 
as factors that condition LULC changes in the region (Fig. 2). Slope and 
aspect variables were derived from a 30-m shuttle radar topographic 
mission Digital Elevation Model (DEM). The DEM was derived from the 
Open Topography plugin in the QGIS software by specifying the extent 
of the study area. Proximity to rivers, roads and towns was computed 
using the cost distance functions as specified by Kipkulei et al. (2022). 
All the conditioning surfaces were resampled to the same resolution as 
the RS satellite images and projected to WGS UTM Zone 37 N. The 
spatial covariates were used as inputs to the Modules for Land-Use 
Change Simulation (MOLUSCE) plugin in QGIS.

2.3. Remote sensing images processing and classification

The satellite images were processed in the GEE platform and 
exported as classified GeoTIFF files for final LULC change maps. The 

processing included classification of the raw images to obtain the 
dominant LULC classes of the region (Table 2). We used a supervised 
classification approach, where the Random Forest Classifier (RF) was 
adopted. The RF classifier was chosen over other classifiers for this 
particular study due to its effectiveness, flexibility and robustness 
against overfitting and outliers, its ability to handle large datasets with 
high dimensionality, and its capacity to provide feature importance, 
offering a good balance between accuracy and interpretability 
(Parracciani et al., 2024; Rodriguez-Galiano et al., 2012; Thonfeld et al., 
2020). The algorithm is also a non-parametric machine learning lan-
guage requiring no prior assumptions for the data or special consider-
ations. The RF algorithm was parameterized by specifying a default Mtry 
value, which is the square root of the number of variables. We also 
selected 500 as the number of trees (Ntree), which has demonstrated its 
suitability for stabilizing the internal classification (Rotich and Ojwang, 
2021). A total of 232 samples were collected for the year 2000, 230 for 
2014, and 206 for 2023. Stratified random sampling was then applied 
within each land cover class to train and test the classifier, with 70% of 
the data being used for training and 30% for testing. This allocation 
ensured sufficient data for model training while maintaining an 
adequate proportion for accuracy assessment. The analysis was carried 
out in the GEE environment using the function ee.Classifier. 

Fig. 2. LULC conditioning factors (a) Slope, (b) Aspect, (c) Proximity to roads, (d) Proximity to towns (e) Proximity to rivers and (f) Population density.
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smileRandomForest. GEE offers a cost-effective platform for processing 
voluminous satellite data therefore significantly reducing computational 
costs incurred in conventional download, storage and processing 
mechanisms (Kipkulei et al., 2022). Subsequently, the RF algorithm was 
trained using reference data acquired from a combination of methods 
such as field work, existing base maps (Topographical maps) and digi-
tization of features from the Google Earth software using elements of 
interpretation such as size, texture, tone, and shapes.

2.4. Accuracy assessments

An accuracy assessment was conducted to determine the perfor-
mance of the RF classifier in characterizing the LULC classes. Accuracy 
assessment performance is recommended in image classification to 
determine the robustness of the classifier in representing various earth 
features (Ahmed et al., 2024; Kindu et al., 2018). This study used various 
accuracy metrics, including the user accuracy (UA),producer accuracy 
(PA), F-score, kappa coefficient (K) and overall accuracy (OA).

The UA determines the proportion of corrected classified pixels in 
each LULC category to the total number of reference pixels in that 
category (row). To calculate the UA for a specific class, the number of 
correctly classified pixels in the corresponding column (true positives) is 
divided by the total number of pixels in that column from the confusion 
matrix, then multiplied by 100 as shown in equation (1) (Wahelo et al., 
2024). 

UA=
Correctly classified pixels

Column total
× 100 (1) 

The PA determines the proportion of correctly classified pixels in 
each LULC category to the total number of pixels in that category (col-
umn) (Becker et al., 2021). The PA is calculated by dividing the number 
of correctly classified pixels by the sum of the row totals and multiplied 
by 100 (equation (2)). 

PA=
Correctly classified pixels

Row total
× 100 (2) 

To evaluate the accuracy of LULC classifications comprehensively, 
the F-score was also calculated as the harmonic mean of the PA and UA 
for each LULC class as depicted in equation (3) (Goutte and Gaussier, 
2005; Sokolova and Lapalme, 2009). The F-score provides a balanced 
measure of classification performance, especially when there are im-
balances between PA and UA (Powers, 2020). 

F= 2 ×
PA × UA
PA + UA

(3) 

Where: F = F score; PA= Producer Accuracy; UA= User Accuracy.
The K is a numerical measure of agreement between raters, factoring 

in the possibility of agreement occurring by chance. It contrasts the 
actual classification accuracy with the expected accuracy based solely 
on chance (Wahelo et al., 2024). The K was calculated using equation 
(4). 

K=
OA − EA
1 − EA

(4) 

Where K = Kappa coefficient; OA = proportion of actual agreement 
between raters; EA = proportion of agreement expected by chance.

The OA is the ratio of the total number of pixels that is correctly 
classified to the sum of all pixels multiplied by 100 (equation (5)). It 
provides an overall assessment of the classification performance (Pal 
et al., 2013). 

OA=
Total number of correctly classified pixels

Total number of pixels
× 100 (5) 

2.5. Land use/landcover change analysis

The LULC change analysis was conducted to determine the pro-
portions of changes within the LULC categories. The analysis involved 
determining the magnitude of change of a particular land cover in two 
consecutive epochs. The analysis provides a sense of growth and decline 
in the specific classes and allows for the interpretation of the LULC dy-
namics across the epochs.

The analysis was computed using Equation (6) (Blissag et al., 2024): 

RC (%)=
Af − Ai

Ai
*100 (6) 

Where RC = % LULC rate change; Af is the area of the final year, Ai is the 
area of the area of the initial year.

Annual Rate of Change (ARC) analysis was also conducted using 
equation (7) to obtain the percentage ARC for each LULC class 
(Muhammad et al., 2022). 

ARC (%)=
Fy − Iy
Iy × t

× 100 (7) 

where ARC = % annual rate of change in the LULC classes; Iy = Initial 
year area; Fy = final year area, and t = time interval.

2.6. Projected LULC analysis

The LULC projection for the study region was conducted for the year 
2035 under the Business as Usual (BAU) scenario. The analysis was done 
to inform the future LULC proportions in the study area and, hence, 
predict the dynamics of LULC categories in the future. The assumption in 
such analysis is that future LULC characterizations will be governed by 
transitions that have occurred in the past and interrelation between 
various land covers. The projected LULC for 2035 was performed using 
the MOLUSCE plugin in QGIS software version 2.18.24. The MOLUSCE 
plugin integrates some well-known algorithms for transition potential 
modeling, such as the artificial neural network (ANN), logistic regres-
sion, multicriteria evaluation, weights of evidence, and CA algorithm, 
for future simulation (Muhammad et al., 2022). The steps include add-
ing inputs, evaluating the correlation of spatial covariates, computing 
area changes, transition potential modelling, CA simulation and vali-
dation. The addition of inputs requires raster files for the initial period 
LULC classified maps and the spatial covariates.

All the raster files should have uniform extents and the same coor-
dinate projection and should be resampled to uniform spatial resolution. 

Table 2 
Description of land use land cover classes in the MKE.

LULC class Description

Cropland Areas under annual and perennial crops.
Shrubland and 

grassland
Terrain adorned with miniature trees (<2m), herbaceous 
covers, shrubs, and bushes, occasionally intermingled with 
grasses, displaying a canopy cover density lower than 
traditional forests (<15%).

Open forest Locations characterized by the prevalence of trees (>2m), 
woodlands, and bamboo with a crown cover ranging from 15 
to 65%. Comprises younger regenerating forests or disturbed 
ecosystems, hosting a mix of pioneer and secondary species. 
Common species include Croton megalocarpus, Dombeya 
torrida, Acacia abyssinica, and Arundinaria alpina.

Closed forest Areas characterized by the prevalence of trees (>2m), and 
woodlands with a crown cover above 65%. Includes old- 
growth or primary forests dominated by climax species. 
Common species include Podocarpus latifolius, Prunus africana, 
Juniperus procera, and Ocotea usambarensis.

Bareland Land devoid of vegetation including rocks, snow, rough roads 
and temporary cultivable land which may remain 
uncultivated for more than one season.

Built-up area Buildings, tarmac roads, settlements and other artificial 
structures that occupy the land.
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The correlation process evaluates the relationship of geographic vari-
ables between the two raster images. In the present study, we used 
Pearson’s correlation method. Step three on area changes computation 
determines the shifts of LULC between the initial and the final year 
specified in the inputs section. The transition potential modelling pro-
cessing is the fourth step whereby the plugin uses a Multi-Layer 
Perception artificial neural network (MLP-ANN), Weights of Evidence 
(WoE), Logistic Regression (LR), and Multi-Criteria Evaluation (MCE) to 
calculate the potential transition maps. For the transition potential 
modelling, we selected a neighborhood of one pixel, a learning rate of 
0.01, a momentum of 0.06, and 10 hidden layers and performed 1000 
iterations. The Kappa coefficient was used to verify the accuracy of the 
projected LULC maps. The fifth step is CA processing, where the dynamic 
CA model incorporates both the spatial and temporal dimensions of the 
LULC classes, thereby enhancing the modelling process. The model 
simulates the complex interplay of time and space effects while 
considering the discrete nature of space, time, and state variables. The 
CA modelling considers the neighborhood, and thus, the proximity of 
the central pixel relative to the neighbors is of relative importance in 
assigning weights which govern the pixel changes in the future period. 
In this study, we evaluated Cramer’s V, which is a measure of association 
between the LULC and the spatial drivers. The statistic varies from 0 to 
1, with 1 representing a ‘perfect relationship’ and 0 representing ‘no 
association’. Cramer’s V is critical in choosing whether to include 
transition potential modelling or not, with values greater than 0.1 
deemed beneficial (Muhammad et al., 2022). The final step in the LULC 
projection is validation, which endeavors to assess the agreement be-
tween the projected and the actual LULC. The process establishes 
various metrics such as the percentage of correctness, overall kappa, 
histogram kappa, and location kappa coefficients to assess the accuracy 
of the projected maps. The indices range from 0 to 1, with values close to 
1 revealing a high accuracy of the prediction (Blissag et al., 2024). The 
methodological workflow of this study is presented in Fig. 3.

3. Results

3.1. Accuracy assessment

The accuracy metrics (producer, user, F-score, and overall 

accuracies) revealed a satisfactory performance of the RF classifier in 
characterizing LULC classes in the study region (Table 3). Producer ac-
curacies and the F-scores were above 65%, with the built-up area 
depicting the lowest accuracy. Similarly, user accuracies were greater 
than 60% for all classes, with built-up areas revealing the same trend. 
Overall accuracies were 88.71% for 2000, 82.79% for 2014 and 86.62% 
for 2023 revealing that a high proportion of the cumulative LULC pixel 
classes were well characterized. The Kappa coefficient for 2000 was 
0.85, 0.78 for 2014, and 0.83 for 2023 (Table 3). The performance of the 
RF model in depicting various classes in the study area revealed its 
relevance in projection analysis to explore future dynamics.

In the RF model, NDVI index, bands 2, 4, and 5 were the most 
important variables contributing to the characterization in variability of 
the LULC classes in the study area across the studied period (Fig. 4).

3.2. LULC area statistics and maps

The LULC maps (Fig. 5) and statistics (Table 4) for the MKE highlight 
variations in the composition and coverage of different LULC classes 
over the study period. In 2000, shrubland and grassland dominated the 
MKE landscape, covering 28.17% (1346.36 km2), followed closely by 
cropland at 27.25% (1302.23 km2). Closed forest accounted for 21.79% 
(1041.66 km2), while open forest covered 19.04% (909.85 km2). Bare-
land and built-up areas had the least area coverage, occupying 3.74% 
(179.12 km2) and 0.01% (0.30 km2), respectively (Table 4). By 2014, 
open forest emerged as the dominant LULC type, covering 30.90% 
(1477 km2). Cropland followed at 28.43% (1358.68 km2), with shrub-
land and grassland occupying 15.61% (746.18 km2). The area covered 
by closed forest was 13.42% (641.36 km2), while bareland comprised 
11.63% (555.94 km2) of the study area. Built-up areas remained mini-
mal at 0.01% (0.36 km2). In 2023, cropland became the predominant 
LULC class, covering 31.81% (1520.23 km2), followed by open forest at 
23.24% (1110.97 km2) and closed forest at 18.83% (900.12 km2). 
Shrubland and grassland covered 16.29% (778.43 km2), while bareland 
had the second least area coverage at 9.82% (469.21 km2). Built-up 
areas remained the least significant LULC category, covering 0.01% 
(0.57 km2) of the MKE (Table 4).

Fig. 3. Study methodology flowchart.
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3.3. LULC changes and annual rate of change

The analysis of LULC changes and annual rate of change (ARC) in the 
MKE from 2000 to 2023 revealed distinct patterns across the different 
LULC classes (Table 5). Open forest experienced substantial growth 
between 2000 and 2014, increasing by 567.15 km2 (62.33%), followed 
by a decline of 366.03 km2 (− 24.78%) between 2014 and 2023, 
resulting in a net gain of 201.12 km2 (22.10%) over the entire period. 
The ARC for open forest was 0.96% over the 23 years. Closed forest, on 
the other hand, saw a notable decrease of 400.31 km2 (− 38.43%) from 
2000 to 2014, followed by a recovery of 258.76 km2 (40.35%) from 
2014 to 2023, leading to an overall loss of 141.55 km2 (− 13.59%). 
Closed forest had an annual decline rate of − 0.59%.

Shrubland and grassland exhibited a decline from 2000 to 2014, 
losing 600.17 km2 (− 44.58%), followed by a minor increase of 32.25 
km2 (4.32%) from 2014 to 2023. This culminated in a net reduction of 
567.93 km2 (− 42.18%) over the study period. Shrubland and grassland 
had the highest annual decline rate with the ARC averaging − 1.83%. 
Cropland expanded steadily, gaining 56.45 km2 (4.33%) between 2000 
and 2014 and 161.55 km2 (11.89%) between 2014 and 2023, amounting 
to a total increase of 218.00 km2 (16.74%). The cropland annual growth 
rates were modest, at 0.73%. Bareland exhibited dramatic changes, 

expanding by 376.82 km2 (210.36%) from 2000 to 2014 before 
shrinking by 86.73 km2 (− 15.60%) from 2014 to 2023, resulting in a net 
gain of 290.09 km2 (161.94%). Bareland had the highest annual growth 
rate with an average ARC of 7.04% over the 23 years. Built-up areas, 
while occupying the smallest area, displayed consistent growth, with an 
increase of 0.07 km2 (23.39%) between 2000 and 2014 and 0.20 km2 

(55.77%) between 2014 and 2023. This resulted in an overall increase of 
0.27 km2 (92.20%) over the study period, with an ARC of 4.01% 
(Table 5). The LULC gains and losses in the MKE are presented in Fig. 6.

We used a Sankey plot (Fig. 7) to depict the dynamics of LULC 
changes in the two epochs. A Sankey plot provides an intuitive visuali-
zation of the LULC transformations. The LULC coverage for specific 
years is represented by nodes, with the heights showing the relative size 
of the LULC class within the whole graph. The nodes are interconnected 
with links that depict a flow from one set of values to another. Notable 
transformations in the MKE include changes from bareland to cropland, 
shrubland and grassland to cropland, shrubland and grassland to open 
forest, closed forest to open forest and vice versa, and cropland to open 
forest and vice versa. In the first epoch, the closed forests were largely 
converted to open forests, while shrubland and grasslands were majorly 
converted to croplands (Fig. 7). Croplands were transformed into 
bareland, shrubland and grassland, and open forest in different 

Table 3 
Classification accuracies for the years 2000, 2014, and 2023 in the MKE.

2000 2014 2023

LULC class PA UA F-Score PA UA F-Score PA UA F-Score

Open forest 93.28 92.78 93.03 88.91 91.98 90.42 87.32 97.10 91.96
Closed forest 96.68 95.69 96.18 83.44 90.30 86.74 97.35 93.49 95.38
Shrubland and Grassland 91.90 85.30 88.47 90.01 71.98 80.06 72.60 97.72 83.53
Cropland 84.57 85.19 84.88 79.98 80.66 80.32 96 73.01 83.12
Bareland 83.89 78.71 81.22 77.17 69.32 73.02 99.46 74.33 85.26
Built up area 72.86 60.00 65.54 69.98 100 82.34 65.39 100 79.06
Overall accuracy 88.71   82.79   86.62  
Kappa Coefficient 0.85   0.78   0.83  

Note: PA – producer accuracy, UA – user accuracy.

Fig. 4. Variable importance of wavelength bands for Landsat 7, Landsat 8, and Landsat 9 datasets converted into percentages.
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magnitudes. In the second epoch, open forest was converted to closed 
forests and cropland while bareland were transformed into cropland. 
Cropland changes were not dominant, except for some areas converted 
to open forests and bareland (Fig. 7).

3.4. Selection of spatial variables, projected LULC simulation and map

The LULC dynamics investigation was based on physical and socio-
economic drivers. Slope, aspect, proximity to roads, proximity to rivers, 
population density, and proximity to market centers/towns were used as 
spatial covariates to simulate the future LULC changes in the study area. 
Table 6 shows the prospective Cramer’s V value of each spatial variable. 
Cramer’s V value suggests that the variables were ideal for transition 
potential modeling, as all their values were significant (>0.1). Human- 
related factors including proximity to towns (0.62) and population 
density (0.57) were the most significant drivers of LULC changes in the 

Fig. 5. LULC maps of the MKE for the years 2000, 2014, and 2023.

Table 4 
LULC statistics for the years 2000, 2014 and 2023 in the MKE.

LULC classes 2000 2014 2023

km2 % km2 % km2 %

Open forest 909.85 19.04 1477.00 30.90 1110.97 23.24
Closed forest 1041.66 21.79 641.36 13.42 900.12 18.83
Shrubland 

and 
Grassland

1346.36 28.17 746.18 15.61 778.43 16.29

Cropland 1302.23 27.25 1358.68 28.43 1520.23 31.81
Bareland 179.12 3.74 555.94 11.63 469.21 9.82
Built-up area 0.30 0.01 0.36 0.01 0.57 0.01
Total 4779.52 100 4779.52 100 4779.52 100

Table 5 
LULC changes and annual rate of change in the MKE.

LULC classes LULC changes ARC

2000–2014 2014–2023 2000–2023 2000–2023

km2 % km2 % km2 % %

Open forest 567.15 62.33 − 366.03 − 24.78 201.12 22.10 0.96
Closed forest − 400.31 − 38.43 258.76 40.35 − 141.55 − 13.59 − 0.59
Shrubland and Grassland − 600.17 − 44.58 32.25 4.32 − 567.93 − 42.18 − 1.83
Cropland 56.45 4.33 161.55 11.89 218.00 16.74 0.73
Bareland 376.82 210.36 − 86.73 − 15.60 290.09 161.94 7.04
Built-up area 0.07 23.39 0.20 55.77 0.27 92.20 4.01

Note: ARC– Annual rate of change (%).
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MKE, with proximity to roads (0.49) also playing a significant role. 
Slope, rivers and aspect were also significant but had a relatively lesser 
influence on LULC changes in this study (Table 6). These simulations 
were conducted over a decade to obtain likely LULC characterizations in 
2035. Before the projection, the capability of the CA-Markov projection 
model was assessed by comparing the observed and the predicted LULC 
map for the year 2023. The observed and simulated LULC were validated 
and visualized using the multiple-resolution budget displayed in Fig. 8. 
The validation statistics revealed good agreement between the observed 
and the predicted map of the MKE. The kappa (histogram) of 0.84, the 
kappa (overall) of 0.78, the kappa (location) of 0.84, and the % of 
correctness of 81.87% all point to a promising agreement between 
forecasted and observed 2023 LULC conditions. This indicates that the 
model is performing well for the MKE ecosystem watershed.

The overall Kappa coefficient value of 0.78 and an accuracy of 82% 
indicated good results for LULC changes and projected maps for 2035. 

Based on the change percentage of area in the studied epochs, the 
transition potential modeling was conducted using a Multi-layer per-
ceptron Artificial Neural Network (MLP-ANN) to forecast the LULC 
classes in the MKE. The ANN learning curve is indicated in Fig. 9a and 
the projected LULC map is in Fig. 9b. Upon validation of the model, 
prediction of future LULC for the MKE was conducted.

3.5. LULC statistics, changes and annual rate of change for 2035

The projection statistics for the year 2035 revealed varied trends in 
the various LULC classes under the BAU scenario. Open forest is ex-
pected to increase substantially by 471.72 km2 (42.46%), with an ARC 
of 3.54%. Conversely, closed forest is projected to decline sharply by 
− 423.53 km2 (− 47.05%), at an ARC of − 3.92%, highlighting ongoing 
pressures on dense forest cover. Similarly, shrubland and grassland are 
anticipated to decrease significantly by − 357.79 km2 (− 45.96%), with 
an ARC of − 3.83% (Table 7).

Cropland, a dominant LULC class, is projected to expand moderately 
by 174.70 km2 (11.49%), with an ARC of 0.96%, reflecting continued 
agricultural intensification. Bareland is also expected to increase by 
134.40 km2 (28.64%), with an ARC of 2.39%, indicating potential land 
degradation or exposure. While the built-up area will remain a minor 
category in overall coverage, it is predicted to grow rapidly by 0.49 km2 

Fig. 6. LULC gains and losses in the MKE.

Fig. 7. Sankey plot showing LULC transformations in the MKE.

Table 6 
Cramer’s V values of spatial variables.

Spatial Variables Cramer’s V

Slope 0.19
Aspect 0.16
Population density 0.57
Proximity to roads 0.49
Proximity to rivers 0.32
Proximity to towns 0.62
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(86.07%), with an ARC of 7.25%, signaling accelerated urbanization 
trends (Table 7).

4. Discussion

4.1. Historical LULC change patterns

Based on the study findings, it is apparent that the MKE has under-
gone various changes in recent years, which are driven by both human 
and natural influences. The analysis shows that agricultural land 
appeared to have increased coverage in the two studied epochs. This 
finding is in line with past studies in the Mt. Kenya region, which have 
documented agricultural encroachment and intensification caused by 
changing demographics and agricultural ventures in the region (Eckert 
et al., 2017; Notter et al., 2007). The earlier studies confirmed increased 
agricultural intensification at the beginning of the century in the 

foothills of Mt. Kenya, which lies squarely within the ecosystem. Simi-
larly, other studies have found intensified commercial horticulture in 
regions surrounding Mt. Kenya in recent decades (Muriithi, 2016). 
Likewise, studies in Kenya focusing on land use dynamics in sensitive 
environments, especially water towers, have shown rapid expansion of 
croplands at the expense of other LULC types (Jebiwott et al., 2021; 
Kipkulei et al., 2022; Rotich et al., 2022; Sitati et al., 2024). These areas 
have been put under the production of various horticultural produce by 
national and multi-national companies, with both rainfed and irrigated 
farming intensively practiced (Ministry of Agriculture Livestock and 
Fisheries, 2017; The county government of Meru, 2018).

Various factors have also contributed to forest cover dynamics. The 
decline in closed forest cover in the first epoch (2000–2014) can be 
attributed to deforestation and forest degradation mainly driven by 
human activities in the form of encroachment for agricultural activities, 
illegal timber logging, firewood collection, forest fires, marijuana 
(Cannabis sativa) cultivation and charcoal production (Bussmann, 1996; 
Kariuki, 2006; Kenya Forest Service, 2010; Nature Kenya, 2019; Nyon-
gesa and Vacik, 2018). A surveillance conducted by the KWS revealed 
encroachment by smallholder agriculture in the lower fringes of MKFR, 
while cultivation of Cannabis sativa was evident deep inside the forest 
(Kenya Wildlife Service, 1999). The MKE experiences frequent forest 
fires dating back to at least 26,000 years which in most cases, are set by 
humans accidently or intentionally (Henry et al., 2019). The Major 
causes of forest fires in the MKE include charcoal burners, honey col-
lectors, arsonists, cigarette smokers, cattle grazers and hunters 
(Nyongesa and Vacik, 2018). The dense population around the MKFR 
often encroach into the forest for timber logging, firewood collection 
and charcoal production as the latter two are the major energy sources 
for most households in the region (Kenya Forest Service, 2010, 2015).

Fig. 8. Validation graph between observed 2023 and predicted 2023 LULC map.

Fig. 9. (a) ANN learning curve and (b) projected LULC map for 2035.

Table 7 
Predicted LULC statistics for 2035 and LULC changes (2023–2035) in the MKE.

LULC classes LULC 2035 LULC changes 
2023–2035

ARC 
2023–2035

km2 % km2 % %

Open forest 1582.69 33.12 471.72 42.46 3.54
Closed forest 476.59 9.97 − 423.53 − 47.05 − 3.92
Shrubland and 

Grassland
420.65 8.80 − 357.79 − 45.96 − 3.83

Cropland 1694.94 35.46 174.70 11.49 0.96
Bareland 603.61 12.63 134.40 28.64 2.39
Built-up area 1.06 0.02 0.49 86.07 7.25
Total 4779.52 100   
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In the later epoch (2014–2023), closed forest coverage increased due 
to various reasons including natural forest regeneration, broader policy 
initiatives, fencing the ecosystem, intensified surveillance, community 
involvement, monitoring and enforcement, and the use of modern 
technologies in forest alerts (Kenya Forest Service, 2015; Kinyili, 
2023a). First, the responsible agencies managing the MKE ecosystem 
(KFS, KWS) improved the enforcement of the ban on illegal activities in 
the forest, reducing the rate of deforestation (Kinoti and Mwende, 
2019). Secondly, community involvement in conservation activities 
through the Community Forest Associations (CFAs) largely contributed 
to the improved state of the natural forest in the ecosystem (Downing 
et al., 2023). Other studies show that the communities surrounding the 
MKE had positive perceptions of forest conservation and are slowly 
developing a positive attitude towards protecting the forests through 
fencing (David Mbuba, 2019; Kinyili, 2023b). Although it is difficult to 
quantify the influence of these community initiatives, studies show that 
locally adapted strategies and conservation efforts of communities exert 
a lot of influence on the trajectory efforts and course of natural envi-
ronments in other regions (Reed et al., 2019; Surya et al., 2020). 
Furthermore, other initiatives, including the International Small Group 
and Tree Planting Program (TIST), have realized positive greening 
trends in the MKE through their financial incentives to farmers inte-
grating trees into their farms. The increased closed forest area can also 
be partly credited to the ongoing fencing of Mt Kenya forest which was 
launched in 2012 and spearheaded by the Rhino Ark Trust, a charitable 
conservation organization, in partnership with the Kenya Forest Service, 
Kenya Wildlife Service, Space for Giants, Mount Kenya Trust, and the 
British Army Training Unit Kenya (Kenya Forest Service, 2021). Phase 
one of the fencing comprising a 50 km stretch of electric fence covering 
sections of the MKE in Kirinyaga and Embu counties has already been 
completed with phase two covering Tharaka Nithi and Meru counties set 
to commence soon. In total, the 450 km long perimeter fence aims to 
border off 2700 km2 of the MKE upon completion which will further 
reduce encroachment into the forest and incidences of human-wildlife 
conflicts in the study area (Kenya Forest Service, 2021).

The increase in closed forest area in the second epoch can also be 
attributed to natural forest regeneration in previously degraded forest 
areas as a result of reduction in disturbances from illegal logging and 
encroachment for agriculture following improved monitoring, enforce-
ment, and the use of modern technologies in forest alerts (Kinyili, 
2023a). The region’s favorable climatic conditions in the form of 
increased precipitation in the second study period also played a signif-
icant role in forest recovery (Jia et al., 2024; Schmocker et al., 2016). 
Broader policy initiatives at the national and regional levels, such as 
Kenya’s commitment under the African Forest Landscape Restoration 
Initiative (AFR100) and projects like the Mount Kenya Forest Restora-
tion Program, have been pivotal in increasing tree cover between 2014 
and 2023. These programs focus on replanting indigenous tree species to 
promote MKE recovery, and enhance biodiversity (Kenya Forest Service, 
2021).

Changes in other land cover over the epochs are also attributed to 
human influences. For instance, the surge in bareland areas in the first 
epoch might be due to deforestation, overgrazing, and agricultural land 
degradation resulting from unsustainable land use practices (Maina and 
Nzengya, 2021; Nature Kenya, 2019). Encroachment into forested and 
vegetated areas for charcoal production, subsistence farming, and con-
struction likely exacerbated land cover changes, leaving vast areas bare. 
In addition, localized natural events such as droughts which occurred 
between 2008 and early 2010 and high intensity of fires during the 
period notably in the year 2012 could have intensified land degradation, 
hence increased bareland areas (County Government of Tharaka Nithi, 
2023). Wildfires are common in mountainous regions and their sur-
roundings especially during the dry season due to their rich biomass 
(Poletti et al., 2019; Rotich et al., 2020). The decline in the shrubland 
areas is a result of an increase in bareland, open forests, and cropland 
areas. These changes appear to be the key transformations occurring in 

the class. The finding is in line with other studies covering part of the 
ecosystem, which revealed a decline in shrubland areas during the study 
period (Gichuhi et al., 2014; Sang et al., 2023).

The rapid increase in the built-up areas throughout the study period 
and specifically in the first study period (2000–2014) aligns with 
broader regional trends and socio-economic factors. Built-up areas 
expanded due to steady population growth in all the six study counties 
(Fig. 10) and urban sprawl, driven by rural-to-urban migration and 
infrastructure development in regions bordering the MKE. Increased 
population leads to increased settlements and growth of trading and 
urban centers. This finding aligns with that by Shukla et al. (2018), who 
identify population growth as the primary driver behind industrializa-
tion, gradual urbanization, infrastructural development and agricultural 
intensification in the Upper Ganga River basin of India. The devolution 
of most national government functions to the County level after the 
promulgation of the new constitution in the year 2010 has also triggered 
industrial and infrastructural development in the relevant counties 
hence the observed increase in built-up areas (Embu County Govern-
ment, 2019).

4.2. Projected LULC change patterns

Based on the historical LULC dynamics, projections for the MKE 
ecosystem reveal varied trajectories for different LULC classes. The 
findings indicate that built-up areas, bareland, grasslands, and open 
forests are expected to expand. These projected trends align with 
ongoing processes of agricultural intensification, urbanization, and 
deforestation, which have historically driven LULC changes globally 
(Hou et al., 2022). The anticipated growth of built-up areas mirrors 
global trends, where urbanization increasingly encroaches on croplands 
and natural ecosystems such as forests and pastures (Muhammad et al., 
2022; Nayak et al., 2024). Urban sprawl, driven by population growth 
and socio-economic development, leads to the conversion of rural and 
peri-urban landscapes into urban footprints (Biney and Boakye, 2021; 
Biswas et al., 2020; Munthali et al., 2020). This trend is also visible in 
Kenya, where expanding urban centers and infrastructure projects 
compete with other land uses (Kipkulei et al., 2022; Kogo et al., 2021; 
Rotich et al., 2022). Similarly, the projected expansion of bareland re-
flects land degradation processes exacerbated by deforestation, over-
grazing, and changing climatic conditions. Comparable multi-decadal 
studies in Zambia and Ethiopia have similarly documented bareland 
increases at the expense of grasslands and forests (Chisanga et al., 2023; 
Kindu et al., 2018).

Closed forest cover is expected to decline further, likely transitioning 
into open forest due to ongoing deforestation and forest degradation. 
The reduction of closed forests underscores the need for urgent con-
servation efforts. Current initiatives, such as Kenya’s ambitious plan to 

Fig. 10. Human population trends in the six MKE counties (Kenya National 
Bureau of Statistics, 2019).
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plant 15 billion trees by 2032 under the African Landscape Restoration 
Initiative, represent critical steps toward reversing forest loss (Kenya 
Forest Service, 2021). However, without robust enforcement and com-
munity engagement, these efforts may struggle to offset deforestation 
drivers such as illegal logging and land conversion for agriculture.

Shrubland and grassland areas are projected to decrease, driven by 
increasing demand for arable land to support the ever-growing popu-
lation (County Government of Tharaka Nithi, 2023). The competition 
between food security and ecosystem conservation remains a pressing 
challenge globally and in the MKE region (Jouzi et al., 2022; Kenya 
Forest Service, 2010). To make these projections actionable for policy-
makers, it is essential to integrate considerations of ongoing conserva-
tion programs, climate adaptation strategies, and socio-economic plans 
specific to the MKE region. Enhancing the capacity of community-based 
forest management programs, promoting sustainable agriculture, and 
investing in climate-resilient land-use planning could help mitigate the 
adverse impacts of the LULC changes. By aligning these projections with 
regional development goals, this study can provide a framework for 
balancing economic growth with ecological sustainability in the MKE.

4.3. Implications for sustainable forest management and conservation

The MKE exemplifies one of the crucial natural resources in Kenya, 
with huge significance to important sectors such as forestry, water, and 
tourism. The dynamics of LULC and the projected LULC changes are 
likely to induce landscape alterations at various magnitudes. The 
changes will have profound impacts on terrestrial gross productivity, 
provision of ecosystem services, biodiversity and the exchange of water, 
energy, and carbon fluxes if the trend continues unchecked.

The MKFR is crucial for carbon sequestration, water balance, and 
biodiversity conservation. Deforestation and forest degradation trans-
late to loss of the carbon sequestration value of land and contribute to 
global emissions hence climate change (Reay et al., 2007). The MKE 
appears in the United Nations Educational, Scientific and Cultural Or-
ganization (UNESCO) World Heritage list. It is also a vital biosphere 
reserve (Kenya Forest Service, 2010). If the decline in the forest area is 
not checked, there is a likelihood of future collapse of the whole 
ecosystem and its capacity to generate goods and services such as food, 
water, medicinal herbs, and timber.

Encroachment and destruction of the forest is a threat to wildlife 
habitat and biodiversity. A study by Fundi (2020) notes that farming, 
timber extraction, grazing and access to firewood are detrimental to 
wildlife habitat and are bound to affect the reintroduced endangered 
endemic mountain bongo (Tragelaphus eurycerus isaaci) population. A 
comparative study in the MKE also established that natural forests had 
the highest overall avian species richness and relative species richness 
compared to plantation forests and farmlands (Mahiga et al., 2019). The 
feedback loop related to declining wildlife habitat might cause extir-
pation of certain key organisms like honeybees, butterflies and other 
insects that play the critical role of pollination due to the conversion of 
grasslands and shrublands and forestland into cropland and settlements 
thereby promoting treeless landscapes as it is in the current situation. 
This might further lead to loss of livelihoods for residents by degradation 
of scenery characteristics of the region and its potential to attract 
tourists. The loss of grassland may lead community members to put 
more pressure on the remaining forest land for grazing, resulting in a 
further loss of forestland.

Agricultural expansion in the highland zones of the MKE results in 
the over-abstraction of water from rivers and streams for irrigation 
purposes (Wiesmann et al., 2000; Zaehringer et al., 2018). This results in 
water scarcity in the lower dry areas like the Laikipia plateau setting the 
stage for increased conflicts over water resources (Wiesmann et al., 
2000). Water quality is likely to be negatively impacted by discharges 
from the agricultural fields emanating from the use of inorganic fertil-
izers, pesticides and herbicides. A study in the upper Ganga basin of 
India similarly reported water pollution due to agricultural practices, 

mainly fertilizers (Shukla et al., 2018). Destruction of forests which is a 
key water catchment also reduces the water flow downstream and re-
sults in increased soil erosion and land degradation (Zaehringer et al., 
2018). Basha et al. (2024) assert that clearing of forests for farming 
activities may result in negative effects, such as low infiltration rates, 
increased water yield and surface runoff, and a reduction in accessible 
groundwater from wells and reservoirs.

Encroachment into the forest also threatens the co-existence of 
human and wildlife populations in the region. This is evident through 
frequent incidences of human-wildlife conflict reported in the area due 
to settlement in the wildlife movement corridors and utilization of the 
buffer areas adjacent to the protected areas in the region (Kiria et al., 
2019). Animal incursions on nearby farmlands are identically common 
due to the proximity of human settlements to the MKE (Kenya Wildlife 
Service, 2010).

4.4. Recommendations for resource managers and policymakers

From this research, it is evident that the sustainable management of 
MKE forests is not only vital for biodiversity conservation and ecosystem 
services but also for the livelihoods and well-being of local communities. 
The following measures therefore ought to be taken to achieve SFM. 

• Increase community-based surveillance and stricter implementation 
and enforcement of forest laws and penalties to curb illegal logging, 
marijuana (Cannabis sativa) cultivation and charcoal production in 
the Mount Kenya forest.

• Subsidize and distribute alternative energy sources, such as solar 
cookers and biogas, to reduce overdependence on firewood and 
charcoal. Encourage residents in the MKE to adopt energy-efficient 
cooking stoves to reduce firewood and charcoal consumption.

• Adequate allocation of financial, human, and technological resources 
to support forest monitoring, data collection, and management ac-
tivities is imperative. Adequate resources are fundamental for the 
completion of the remaining 400 km perimeter fence around the 
MKFR to help maintain the integrity of the ecosystem.

• Initiate large-scale reforestation and afforestation programs in the 
MKE to restore degraded forest areas and expand forest cover. 
Planting of native tree species like Podocarpus latifolius and Juniperus 
procera that are well-suited to the local ecological conditions and 
contribute to biodiversity conservation should be prioritized.

• Enhancing collaboration and partnerships among government 
agencies, research institutions, civil society organizations, and local 
communities in the MKE region is vital for a comprehensive 
approach to forest management. Joint initiatives will facilitate data 
sharing, joint monitoring efforts, and collaborative research, ulti-
mately enhancing collective understanding of forest dynamics.

• Encourage the adoption of agroforestry practices among the local 
farmers to promote sustainable land use while maintaining forest 
cover. Provide training, technical support, and incentives to farmers 
for implementing agroforestry systems that integrate trees with crop 
and livestock production to reduce their overdependence on the 
forest for timber, building poles, charcoal and firewood.

• Deploy remote sensing and GIS technologies for real-time fire 
monitoring and early warning, establish and maintain firebreaks in 
fire hotspot areas, and provide adequate equipment and training for 
forest rangers and community members in the MKE to ensure swift 
and efficient responses to forest fires.

• Encourage sustainable tourism practices that support local liveli-
hoods while minimizing negative impacts on the environment in the 
MKE. Develop ecotourism initiatives that raise awareness about the 
importance of forest conservation and generate revenue for conser-
vation efforts.
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5. Conclusions

The current study is the first attempt to quantify and map historical 
and projected FCC in the MKE, central Kenya using RS, GIS, and the CA- 
MCA modeling techniques. Results revealed significant LULC changes 
over the past two decades, including expansion of cropland, built-up 
areas, and open forest, alongside declines in closed forest coverage. 
Projected analysis suggests that under the BAU, these trends are likely to 
persist.

These trends highlight the urgent need for proactive management 
measures to mitigate further degradation and deforestation and enhance 
forest recovery in the MKE, given its ecological significance. This study 
outlines the interplay of natural and anthropogenic factors in forest 
cover dynamics, and serves as a call to action, urging policymakers, 
practitioners, and citizens to prioritize the protection and sustainable 
management of MKE. By delivering actionable insights for sustainable 
forest management and linking findings to global conservation prior-
ities, this study advances the current knowledge on tropical montane 
ecosystems and their role in mitigating climate change.

Recommendations outlined in the study emphasize the need for 
improved resources allocation, enhanced collaboration, capacity build-
ing, and technological innovation to strengthen forest monitoring, 
management, and conservation efforts. By implementing the recom-
mendations outlined in this study, Kenya can forge a path towards a 
more resilient, equitable, and environmentally sustainable future. We 
further recommend future studies in the MKE on how these LULC 
changes affect carbon stock dynamics.
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