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Shifted poly-Cauchy numbers*
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Abstract. Recently, the first author introduced the concept of poly-Cauchy numbers as a generalization of the classical
Cauchy numbers and an analogue of poly-Bernoulli numbers. This concept has been generalized in various ways, in-
cluding poly-Cauchy numbers with a ¢ parameter. In this paper, we give a different kind of generalization called shifted
poly-Cauchy numbers and investigate several arithmetical properties. Such numbers can be expressed in terms of original
poly-Cauchy numbers. This concept is a kind of analogous ideas to that of Hurwitz zeta-functions compared to Riemann
zeta-functions.
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1 Introduction

Recently, the first author (see [10]) introduced the poly-Cauchy numbers cﬁf) for a positive integer k and

a nonnegative integer n, given by
oo :[jn
; — (k)
Lif; (In(1 + z)) = n§:0 n) T (1.1)

where
o0
Zm

Lify(z) = zo T T

are the polylogarithm factorial functions. This concept is an analogue of poly-Bernoulli numbers B,(lk) intro-

duced by Kaneko [9], where B}lk) are defined by

Lig(1—e™) = (2
R\ T ) B~
l1—e® T;) n!
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Shifted poly-Cauchy numbers 167

where
o m
z
Lin2) = D o
m=1
is the kth polylogarithm function. When k = 1, B,(ZI) = B,, is the classical Bernoulli number with B%l) =1/2.
When k =1, cg) = ¢, are the Cauchy numbers (see [5]) defined by

The numbers ¢, /n! are sometimes called the Bernoulli numbers of the second kind (see, e.g., [1,17]). Such
numbers have been studied by several authors (see [4, 14, 15,16, 18]) because they are related to various special
combinatorial numbers, including Stirling numbers of both kinds, Bernoulli numbers, and harmonic numbers.
The poly-Cauchy numbers cﬁf are also given by

1 1
/ /xlxg k) (Tixe. . xp— 1) (z122. .. 2 —n+ 1)dzy day ... dag.
U 0

k

Denote by [ } the (unsigned) Stirling numbers of the first kind [ } arising as the coefficients of the rising
factorial

x(m—i—l)---(m—l—n—l):zn: {”]xm

m=0

(k)

(see, e.g., [7]). Then, as seen in [10, Thm. 1], the poly-Cauchy numbers ¢;,” can be expressed in terms of the
(unsigned) Stirling numbers of the first kind [;”l] .
Proposition 1.

n nm

Z[ ] (n>0, k>1).
m+1
(k)

As one general case of the poly-Cauchy numbers, the poly-Cauchy numbers with a ¢ parameter c; g4
(see [11]) are defined by

1 1
/ /:1:13:2 xlxg...xk—q)--‘(:rlscg...xk—(n—1)q)dm1dx2...dxk
0 0

k:
and expressed as

k

ngzzn:{;]w,: (n>0,k>1)

‘ (m+1)

m=0

(see [11, Thm. 1]). In this paper, we give a different kind of generalization of poly-Cauchy numbers.
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168 T. Komatsu and L. Szalay

The Hurwitz zeta-function (s, q) = > .- ,1/(q + n)® is a generalization of the famous Riemann zeta-
function ((s) = Y 7, 1/n® since {(s) = ((s,1). A similar directed extension can be seen in the function
in [6] as a natural extens1on of the Arakawa—Kaneko function, which is closely related to poly-Bernoulli
numbers By, (k) (see [2]). One strong motivation in [6] was to generalize the Arakawa—Kaneko function, which
is related to poly-Bernoulli numbers and multiple zeta values (see [2]). Some functions like poly-Cauchy
numbers and/or polynomials corresponding to the Arakawa—Kaneko function have been considered too. For
instance, Shibukawa and the first author [13] consider the function

S—O[

1
Ck(s, 2) /t 11— )1 (~log(1 — #))° Lify (In(1 — ¢)) dt ~ (Re(s) > Re(a)),
0

yielding ¢, (1, 2) = Cz( )(1 — z). Kamano and the first author [8] consider the function

1
1 S—
= W /t 1L1fk- ln 1-— t)) dt (me(s) > 0),
0

yielding Zj,(—n) = ¢\ (n > 0).
Hence, as a different direction of generalization of poly-Cauchy numbers c,(f>, consider the value

) n nm
C"]fa Z[ ]m—i—a

=0
for a positive real number a.. For example, if n = 5 and a = 3, then

k) 24 50 35 10 1 24 50 35 10+1

k)
T TE TR AT TR g 7k gk

In this paper, we give a different kind of generalization called shifted poly-Cauchy numbers, using the general-
ized polylogarithm factorial function Lify,(z; ) = Y oc_; 2™ /m! (m + «)*, which is relevant to the Hurwitz
zeta-function and a general Lerch zeta-function @(z, s, o) = > 7 1 2" /(n+ «)® (see [3]). We also investigate
several arithmetical properties and formulae related with the Stirling numbers of the first and second kind and
with some generalizations of Bernoulli numbers.

2 Definitions and basic properties
(k)

Letn > 0 and k > 1 be integers, and « # 0 be a positive real number. Define ¢, , by

1 1
cnk / / 1...xp—1) - (x1...2p —n+1)dxy ... dz.
0 0

k

Then, cﬂ can be expressed in terms of the Stirling numbers of the first kind MLL] .

Theorem 1. Let o be a positive real number. Then

cn'fg:i ["}(_l)nm (>0, k>1).

m | (m+ )k
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Remark. Without the definition of integrals, k£ may be any integer. When o = 1, Theorem 1 is reduced to
Proposition 1.

Proof. By
n n _
z(x—1)---(x —n+1) [ ] (=) ma™
m=0 m
we have
1 L n n ( 1)n—m
(k) )™ dey L dag = [l
¥ / / 0[ } D" (2 ... xp) T Tp ZO {m] (m+ )k
0 0o m= m=

k

For an integer &k and a positive real number «, define the function Lify(z; «) by

. > 2™
Lifi(z0) = ) —ro—agF
m=0

When « = 1, Lify(z; 1) = Lify(2) is the polylogarithm factorial function (see [10]).

Theorem 2. The generating function of the number cﬁf& is given by

o0
"
Lify (In(1 + z); a) = chff)lﬁ
m=0

Remark. When o = 1, Theorem 2 is reduced to [10, Thm. 2].

Proof.  Since

(ln(l:;y mg[ ] )"

by Theorem 1 we have

SUCEAE SR ol KAV S e Vil S E [
T;ma! ;mzo[m](vaa)kn! mz::O(m—Fa)k;n[m]
= Z TM = Lif (In(1 4+ 2); ). O

m=0

Remark. The value k is not necessarily positive as seen in the proof. Namely, according to the definition by
the integrals, k£ should be a positive integer. But, after Theorem 1, k can be nonpositive.

(k )

The generating function of the number ¢;, ,, can be written in the form of iterated integrals.

Corollary 1. Let « be a positive real number. For k = 1, we have
o0 n
e = unr
ln 1 + ) / v “na)
0 n=0
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170 T. Komatsu and L. Szalay

For k > 1, we have

/ / /1n1+x ldx...dx
ln1+:n —1—33111 1+x) 1n —

0 0 k

[e=]

k

mwi
=3

n=0
Remark. When o = 1, Corollary 1 is reduced to [10, Cor. 1].

Proof. Fork =1,

00 om 1 o) Zm—l—a
if1(z; @) va(m+a) Zazm (m + )
m=0 m=0
z
1 > Smta— 1 1 .
= = ] a/f e*d
o m=0 0
-2 (—D)%(a =1 +e* i(—l)iuza_i_l (if « is an integer)
2@ ' pard (a—i—1)! '
For k > 1, we have
z
. 1 & LMt 1 > Lmta=1 1 ol
L) =5 Y e = 1 [ Y e = o [ L (e
m=0 o m=0 0
Hence,
z z z z
1 1 a—1_z
Lifg(z;0) = — [ = [ - - [z dz ...dz
z z z z —
0 0 0 0 k

Putting z = In(1 4 z), we get the result. O

The numbers cﬁl’% also have a relation with the Stirling numbers of the second kind {::L }, determined by

(see, e.g., [7]).

Theorem 3. Let k be an integer, and o be a positive real number. Then

i nlw 1
— |m Y (n+ )k
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Remark. When o = 1, Theorem 3 is reduced to [10, Thm. 3].
Proof. Using the inversion formula

max{l,n}

(- e e - R e 2o [T

|
—

|
—_
~—
3
—

|
d

3 Shifted poly-Cauchy numbers in terms of original poly-Cauchy numbers

Shifted poly-Cauchy numbers can be expressed in terms of original poly-Cauchy numbers. For example,
putting o« = 1,2,...,6, we have

o
5 =l el

cfﬂ),) = 02]22 + (2n+ 1) n+1 +n2cl®),

) =™ 13+ 1)), + (30 + 30+ 1))+ nde®),

=™ (dn 4 6)cl), + (60 + 120+ 7)), + (4n® + 602 + dn+ 1)), + ntel®,
cg%:cgl5+5(n+2)cq(ﬂ4+5(2n +6n+5)c£ﬁ23+5(2n +6n* + Tn + 3) ,(112

+ (5n4 + 1003 +10n% + 5n + 1)65521 + ).

In general, we can state the following relation.

Theorem 4. For a positive integer o, we have

where

i=0
We need the following lemma in order to prove Theorem 4. Let « be a positive integer.

Lemma 1.
_1 .
QZ(—l)“Q 1 (n a)[”““—”—l}_ [" ] ifm=01,...,n-1,
n=0 a—[ ) n-l—a—m—l 0 Ul‘m:n,n_i_l,’a_‘_n_Q
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Proof. By the definition, if m > n or m = n # 0, then

)=

Put
a—1 + — -1
f(a) = ;(_I)MQ&—#—l(nv a) |:Z+ 3_ 7/;2 _ 1:| :

Notice that Q,_1(n,a) = 1 and Qo(n,a) = n®!. When o = 1,

ﬂU—QMmULn ]—["]

—-m n—m
By
{a—i—2} {a—i—2} {a—i—l}
Y + =
@ p—1 %
and
<a—1> <a—2> (a—2>
) = ) + 1 .
1 ) 1—1
we have

Therefore, putting u = o — 2, — 3,...,2,11in

Qu(n,a) = (n+ p)Qun,a —1) + Qu-1(n,a — 1),
for o > 1, we obtain

n+a—1

n+aoa—2
n—m+a—1

n—m+aoa—1

@) = Qoo | - Qoo

+Qa3(n,a)[ n+o—3 }_

n—m+a—1
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n+1
n—m+a—1

T (—1)a2Q1(n,a)[ } ()"0, a)[ 0 ]

n—m+a—1

B n+toa—1 5 n+a—2
a [n—m-l-oé—l} ~(nta )[n—m—l-a—l}
n—+a-—2 n+a—3
_Qa_3(n,a—1)<[n_m+a_1]—(n+a—3)[n_m+a_1}>

n+a—3 n+oa—4
+Qa_4(n,a—1>([n_m+a_l] —(n+a_4)[n_m+a_1D_...

+(—1)°‘_2Qo(n,a—1)(&_;12_1} _n[n—mia—1]>

:Qa—z(n,a—l)[ n+a—2 }_Qa_3(n’a_1){ n+a—3 ]

n—-—m+aoa-—2 n—-—m+aoa-—2

n+oa—4

_ -1 .
*Qaa(na >[n—m+a—2}

n+1

n—m-+aoq—2 n—m-+aoa—2

+ (=) 3Q1(n, a0 — 1) [
= fla—1). O

|+ coauma-n|, "]

Proof of Theorem 4.  For simplicity, we write ), = Q(n, «) for fixed integers n and . By Lemma 1 and
the equalities [}'] =0 (n < k)and ] = 0 (n > 0) we have

a—1 a—1 n+p ndp—m
*) n+p](=1)"
Yadh-ya3 [ Ty
n=0 n=0 m=0
a—1 n+a—1 atn—1—m
e +p](=1)F
—_ —1)¥H 1 n
Sevre ¥ S

a—1 n+a—1 ¢ m
_ Z(_l)a_u_lQﬂ Z n+p ] (_1)

n+a—m—1](n—m+a)k

n=0 m=0

_ail(fl)#Q nJrZa:2 nta—p-1 (=™

N a—pl n+a—-m-—1[(n—-m+a)k
pn=0 m=0 =~
n—1 afl( 1)HQ |:n—}—Oé—,LL—1:| (_1)m

= - a—p—1 . . — L
Ko n+a—m-—1](n—m+a)
+n+a—2 a—l( 1)MQ nta—p—1 (_1)m

Hpta—m—1|(n—m+a)k
m=n_u=0

N [ n ] D™

- _ _ k - n7a.
= ln—m (n—m+ )

Hence, the proof is done. O
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174 T. Komatsu and L. Szalay

Remark. We can write as

=0
since
o= (N et 5 () e
R OV R HEC
Notice that
acul o ; T a— a—v—
2 et (O [ e P G

4 Poly-Cauchy numbers of the second kind

In [10], the concept of poly-Cauchy numbers of the second kind is also introduced. The poly-Cauchy numbers
1A (k)
of the second kind ¢, are defined by

1 1
A(k / / —r1x9 ... xp)(—x120 .. ) — 1) - (—x1m0 .. ) — 4 1) day dae ... day,
0 0

k

and the generating function is given by

[e.9] TL

Lify (~In => &

n=0

(k)

Then, the poly-Cauchy numbers of the second kind é,” can be also expressed in terms of the Stirling
numbers of the first kind (see [10, Thm. 4]).

Proposition 2.
IR o K S N
=02 e

m=

Let o be a positive real number. Similarly to the shifted poly-Cauchy numbers of the first kind c,({fz,, define
the shifted poly-Cauchy numbers of the second kind églk& (n>0,k>1)by

1 1
énkg‘: "‘1/ / =z1...op,— 1) (—x1...2 —n+1)dzy ... dzg.
o 0

k
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Then, similarly to Theorem 1, c( )
a generalization of Proposmon 2.

can be also expressed in terms of the Stirling numbers of the first kind as

Theorem 5.

I Sl M e R W !

m | (m+ a)k

Theorem 6. The generating function of the number ég% is given by

[oe)

. T

Llfk( In(l+2z);a) = Z C&Lma
m=0
where

o0 Zm

Lifi(z; ) = _—

ifi(z50) mz::[) m!(m + )k

Remark. When o = 1, Theorem 6 is reduced to [10, Thm. 5].

The generating function of the number ég’% can be written in the form of iterated integrals.

Corollary 2. Let « be a positive real number. For k = 1, we have

1 (In(1+2)* ! S~y 2"
(ln(l—i—w))o‘/ 1+ ) do = &y

For k > 1, we have

/ / /(ln Ltz dx dx
1D1+ 1—i—a;1n1+a: 1—|—azln1+:c) (1+2)2 ~—=——
0 0

o

k
o0
Z (k) T
n,a |
o n.

Remark. When o = 1 in the first identity, where £k = 1, we have the generating function of the classical
Cauchy numbers of the second kind:

x L
(1+2)In(1+2) nz%cnn!'

When « = 1, the second identity is reduced to that of Corollary 2 in [10].

The number éffé also has a relation with the Stirling numbers of the second kind.

Theorem 7. Let k be an integer, and o be a positive real number. Then
Xn: nlam (D"
mJ| ™" (n+a)k
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Remark. When o« = 1, Theorem 7 is reduced to [10, Thm. 6].
In addition, there are relations between both kinds of poly-Cauchy numbers.

Theorem 8. Let k be an integer, and o be a positive real number. For n > 1, we have

(k) n A(k) A(k) n (k)
nCna n—1\¢ma o n—1)\cma
(=1) n! _Z<m—1> m!’ (=1) n! _Z<m—1> m!

m=1 m=1

Remark. When o = 1, Theorem 8 is reduced to [10, Thm. 7].

Proof.  'We shall prove the first identity. The second one is proven similarly and omitted. Using the identity

(see, e.g., [7, Chap. 6])
(-1 [n] (=D (n—1\[m
n! [l]_z m! (ml)[l]

m=l

and Theorems 1 and 5, we have
n

w5l - S 2 G

m=1
l
_Z D _ips. o
l—l—a n' l

Finally, similarly to Theorem 4, the shifted poly-Cauchy numbers of the second kind can be expressed in
terms of the original poly-Cauchy numbers of the second kind.

Theorem 9. Let a be a positive integer. Then

alk

1
n,gz = a ZQM TL a n—l—u (TL

WV

0),

where Q,,(n, ) are the same as in Theorem 4.

S Some expressions of poly-Cauchy numbers with negative indices

It is known that the poly-Bernoulli numbers satisfy the duality theorem By, M~ p ,Efn) forn, k > 0 (see [9,
Thm. 2]) because of the symmetric formula

" k ety

[e.9] o0
Zkz n' k:'_e“/’%—ey—e”y'

However, the corresponding duality theorem does not hold for poly-Cauchy numbers for any real number c,
as the following results show.

Proposition 3. For nonnegative integers n and k and a real number o # 0, we have

DD SRCTE D

n=0 k=0 n=0

eV

—k) -
« (1 +fL’)ey

Mg

i&
n! k!

TL,

x~
Il

0
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Proof. 'We shall prove the first identity. The second identity is proven similarly. By Theorem 2 we have

oo 00 o%e) o0 n k o 0o i X
a” y* —pnr"\Yy (m+ a) my
ZZC,O?)”I k! _Z<ZC£L,0]?)R|>HZZ ZT(ID(1+$)) ﬁ
n=0 k=0 k=0 \ n=0 k=0 m=0
2 (In(1 4+ 2)™ <= ((m + a)y)*
N Z m! Z k!
m=0 k=0
_ 3 W00 sy _ o 3 (00 )
m=0 ' m!

=e™(14 ). O
By using Proposition 3 we have explicit expressions of the poly-Cauchy numbers with negative indices.

Theorem 10. For nonnegative integers n, k and a real number o # 0, we have

=y v ([f] - T
> (T O

Remark. If a = 1, by

.

Proof. By Proposition 3, together with

(see [7]), we have
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_ gﬂ (ey; 1)/ (1n(1;!r x))! (14 2)e
- g;(—l)fg'ewg "1 ”é e

Since

~E (R Ll (sl

SEO0)

and

(1 +x)n§ M (_j)n = g m (_;;)” - n;ﬂ [" ; 1] (1(1__1)1?1)'“
-2 (G- D
we obtain
R 2 G B > (F g I

Similarly, by

L o [n] 2" ¢ nln+1]a”
e[S e [0
we get
o0 o0 n k ay ay
- Y ¢ (e e
Z ZCn,a n! kl (1+$)ey eXp( (e 1) 1H(1+$))1+x

B S VL € E)
! J! 1+2x
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Con S
j+1]n!

I
hE
b—
WE
N
LM~
N
SR
——
< ~
——
“
~
=S,
hE

LRl 2

6 Poly-Cauchy numbers and poly-Bernoulli numbers

In this section, let k& be an integer, and « be a positive real number. An explicit form of a poly-Bernoulli
number B,(lk) is given by

R

(k) .

(see [9, Thm. 1]. In [10, Thm. 8], the following expression of B,(lk) in terms of poly-Cauchy numbers ¢, is

given.
Proposition 4.

k) R n m—1 (k)
Bg>_zzm!{m}{l_l}cl (n>1).

=1 m=1
On the contrary, in [12, Thm. 2.2], another expression of cﬁf) in terms of ng) is given.
Proposition 5.
n.n n—m
(k) _ D | fm) S
¢! _;n; BT =)

We generalize such results by introducing the shifted poly-Bernoulli numbers defined by

n
n ) (=1)""""m!
B¥) — —_ > 0).
G- {1 Wz
If a = 1, then our results are reduced to the previous ones.

Theorem 11. For n > 0, we have

B _ N\ nlfm-11 m k) _ NN~ DT[] [m] pm
=y Y m{ P A= S S ][]

=1 m=1

Proof.  For the first identity,

s =37 {0 v [

I=1 m=1 i=
S s e ]

Lith. Math. J., 54(2):166-181, 2014.
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-t 2o 2]
ez ()

3 ”z’!{?}:LHS.

For the second identity,

s = o323 ) [ o {1
~cr S B ST (s
-y ] 0 s [
- 3 A O
- [ o s

Note that ['] =0 (m > 1), [}'] =0( > m), and

Similarly, concerning
ek — (—1)" i nl_1 (n>0)
e = m] (m+ )k

as a generalization of the poly-Cauchy numbers of the second kind éq(lk), we have the following:

Theorem 12.
() _ (1) Zn Zn () k) _ 1\ Zn Zn A gim]oLw
Bn,a - L 1m'{ }{ }Cla’ Cn,a - ( 1) L m) |:m l Bl,a'

Remark. If o = 1, these results are reduced to the identities in Theorem 3.2 and Theorem 3.1 in [12], respec-
tively.
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