Shifted poly-Cauchy numbers*

Takao Komatsu ${ }^{\text {a }}$ and László Szalay ${ }^{\text {b }}$
${ }^{\text {a }}$ Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
${ }^{\text {b }}$ Institute of Mathematics, University of West Hungary, Ady E. str. 5, H-9400 Sopron, Hungary (e-mail: komatsu@cc.hirosaki-u.ac.jp; laszalay@emk.nyme.hu)

Received July 12, 2013; revised November 11, 2013

Abstract

Recently, the first author introduced the concept of poly-Cauchy numbers as a generalization of the classical Cauchy numbers and an analogue of poly-Bernoulli numbers. This concept has been generalized in various ways, including poly-Cauchy numbers with a q parameter. In this paper, we give a different kind of generalization called shifted poly-Cauchy numbers and investigate several arithmetical properties. Such numbers can be expressed in terms of original poly-Cauchy numbers. This concept is a kind of analogous ideas to that of Hurwitz zeta-functions compared to Riemann zeta-functions.

MSC: 05A15, 11B73, 11B75, 11B83
Keywords: poly-Cauchy numbers, polylogarithm factorial functions, Stirling numbers

1 Introduction

Recently, the first author (see [10]) introduced the poly-Cauchy numbers $c_{n}^{(k)}$ for a positive integer k and a nonnegative integer n, given by

$$
\begin{equation*}
\operatorname{Lif}_{k}(\ln (1+x))=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{x^{n}}{n!} \tag{1.1}
\end{equation*}
$$

where

$$
\operatorname{Lif}_{k}(z)=\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+1)^{k}}
$$

are the polylogarithm factorial functions. This concept is an analogue of poly-Bernoulli numbers $B_{n}^{(k)}$ introduced by Kaneko [9], where $B_{n}^{(k)}$ are defined by

$$
\frac{\operatorname{Li}_{k}\left(1-\mathrm{e}^{-x}\right)}{1-\mathrm{e}^{-x}}=\sum_{n=0}^{\infty} B_{n}^{(k)} \frac{x^{n}}{n!}
$$

[^0]where
$$
\operatorname{Li}_{k}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{k}}
$$
is the k th polylogarithm function. When $k=1, B_{n}^{(1)}=B_{n}$ is the classical Bernoulli number with $B_{1}^{(1)}=1 / 2$.
When $k=1, c_{n}^{(1)}=c_{n}$ are the Cauchy numbers (see [5]) defined by
$$
c_{n}=\int_{0}^{1} x(x-1) \cdots(x-n+1) \mathrm{d} x
$$

The numbers c_{n} / n ! are sometimes called the Bernoulli numbers of the second kind (see, e.g., [1, 17]). Such numbers have been studied by several authors (see $[4,14,15,16,18]$) because they are related to various special combinatorial numbers, including Stirling numbers of both kinds, Bernoulli numbers, and harmonic numbers. The poly-Cauchy numbers $c_{n}^{(k)}$ are also given by

$$
c_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(x_{1} x_{2} \ldots x_{k}\right)\left(x_{1} x_{2} \ldots x_{k}-1\right) \cdots\left(x_{1} x_{2} \ldots x_{k}-n+1\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{k}
$$

Denote by $\left[\begin{array}{c}n \\ m\end{array}\right]$ the (unsigned) Stirling numbers of the first kind $\left[\begin{array}{c}n \\ m\end{array}\right]$, arising as the coefficients of the rising factorial

$$
x(x+1) \cdots(x+n-1)=\sum_{m=0}^{n}\left[\begin{array}{l}
n \\
m
\end{array}\right] x^{m}
$$

(see, e.g., [7]). Then, as seen in [10, Thm. 1], the poly-Cauchy numbers $c_{n}^{(k)}$ can be expressed in terms of the (unsigned) Stirling numbers of the first kind $\left[\begin{array}{c}n \\ m\end{array}\right]$.

Proposition 1.

$$
c_{n}^{(k)}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{n-m}}{(m+1)^{k}} \quad(n \geqslant 0, k \geqslant 1)
$$

As one general case of the poly-Cauchy numbers, the poly-Cauchy numbers with a q parameter $c_{n, q}^{(k)}$ (see [11]) are defined by

$$
c_{n, q}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}\left(x_{1} x_{2} \ldots x_{k}\right)\left(x_{1} x_{2} \ldots x_{k}-q\right) \cdots\left(x_{1} x_{2} \ldots x_{k}-(n-1) q\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{k}}_{k}
$$

and expressed as

$$
c_{n, q}^{(k)}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-q)^{n-m}}{(m+1)^{k}} \quad(n \geqslant 0, k \geqslant 1)
$$

(see [11, Thm. 1]). In this paper, we give a different kind of generalization of poly-Cauchy numbers.

The Hurwitz zeta-function $\zeta(s, q)=\sum_{n=0}^{\infty} 1 /(q+n)^{s}$ is a generalization of the famous Riemann zetafunction $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$ since $\zeta(s)=\zeta(s, 1)$. A similar directed extension can be seen in the function in [6] as a natural extension of the Arakawa-Kaneko function, which is closely related to poly-Bernoulli numbers $B_{n}^{(k)}$ (see [2]). One strong motivation in [6] was to generalize the Arakawa-Kaneko function, which is related to poly-Bernoulli numbers and multiple zeta values (see [2]). Some functions like poly-Cauchy numbers and/or polynomials corresponding to the Arakawa-Kaneko function have been considered too. For instance, Shibukawa and the first author [13] consider the function

$$
\hat{\zeta}_{\alpha}^{k}(s, z):=\frac{1}{\Gamma(s-\alpha)} \int_{0}^{1} t^{-\alpha-1}(1-t)^{z-1}(-\log (1-t))^{s} \operatorname{Lif}_{k}(\ln (1-t)) \mathrm{d} t \quad(\mathfrak{R e}(s)>\mathfrak{R e}(\alpha))
$$

yielding $\zeta_{l+1}^{k}(1, z)=c_{l}^{(k)}(1-z)$. Kamano and the first author [8] consider the function

$$
Z_{k}(s):=\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \operatorname{Lif}_{k}(\ln (1-t)) \mathrm{d} t \quad(\mathfrak{R e}(s)>0)
$$

yielding $\hat{Z}_{k}(-n)=c_{n}^{(k)}(n \geqslant 0)$.
Hence, as a different direction of generalization of poly-Cauchy numbers $c_{n}^{(k)}$, consider the value

$$
c_{n, \alpha}^{(k)}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{n-m}}{(m+\alpha)^{k}}
$$

for a positive real number α. For example, if $n=5$ and $\alpha=3$, then

$$
c_{5}^{(k)}=\frac{24}{2^{k}}-\frac{50}{3^{k}}+\frac{35}{4^{k}}-\frac{10}{5^{k}}+\frac{1}{6^{k}}, \quad c_{5,3}^{(k)}=\frac{24}{4^{k}}-\frac{50}{5^{k}}+\frac{35}{6^{k}}-\frac{10}{7^{k}}+\frac{1}{8^{k}} .
$$

In this paper, we give a different kind of generalization called shifted poly-Cauchy numbers, using the generalized polylogarithm factorial function $\operatorname{Lif}_{k}(z ; \alpha)=\sum_{m=0}^{\infty} z^{m} / m!(m+\alpha)^{k}$, which is relevant to the Hurwitz zeta-function and a general Lerch zeta-function $\Phi(z, s, \alpha)=\sum_{n=0}^{\infty} z^{n} /(n+\alpha)^{s}$ (see [3]). We also investigate several arithmetical properties and formulae related with the Stirling numbers of the first and second kind and with some generalizations of Bernoulli numbers.

2 Definitions and basic properties

Let $n \geqslant 0$ and $k \geqslant 1$ be integers, and $\alpha \neq 0$ be a positive real number. Define $c_{n, \alpha}^{(k)}$ by

$$
c_{n, \alpha}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(x_{1} \ldots x_{k}\right)^{\alpha}\left(x_{1} \ldots x_{k}-1\right) \cdots\left(x_{1} \ldots x_{k}-n+1\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k}
$$

Then, $c_{n, \alpha}^{(k)}$ can be expressed in terms of the Stirling numbers of the first kind $\left[\begin{array}{l}n \\ m\end{array}\right]$.
Theorem 1. Let α be a positive real number. Then

$$
c_{n, \alpha}^{(k)}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{n-m}}{(m+\alpha)^{k}} \quad(n \geqslant 0, k \geqslant 1) .
$$

Remark. Without the definition of integrals, k may be any integer. When $\alpha=1$, Theorem 1 is reduced to Proposition 1.

Proof. By

$$
x(x-1) \cdots(x-n+1)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right](-1)^{n-m} x^{m}
$$

we have

For an integer k and a positive real number α, define the function $\operatorname{Lif}_{k}(z ; \alpha)$ by

$$
\operatorname{Lif}_{k}(z ; \alpha)=\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+\alpha)^{k}}
$$

When $\alpha=1, \operatorname{Lif}_{k}(z ; 1)=\operatorname{Lif}_{k}(z)$ is the polylogarithm factorial function (see [10]).
Theorem 2. The generating function of the number $c_{n, \alpha}^{(k)}$ is given by

$$
\operatorname{Lif}_{k}(\ln (1+x) ; \alpha)=\sum_{m=0}^{\infty} c_{n, \alpha}^{(k)} \frac{x^{n}}{n!}
$$

Remark. When $\alpha=1$, Theorem 2 is reduced to [10, Thm. 2].
Proof. Since

$$
\frac{(\ln (1+x))^{m}}{m!}=(-1)^{m} \sum_{n=m}^{\infty}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-x)^{n}}{n!}
$$

by Theorem 1 we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} c_{n, \alpha}^{(k)} \frac{x^{n}}{n!} & =\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{n-m}}{(m+\alpha)^{k}} \frac{x^{n}}{n!}=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m+\alpha)^{k}} \sum_{n=m}^{\infty}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-x)^{n}}{n!} \\
& =\sum_{m=0}^{\infty} \frac{(\ln (1+x))^{m}}{m!(m+\alpha)^{k}}=\operatorname{Lif}_{k}(\ln (1+x) ; \alpha)
\end{aligned}
$$

Remark. The value k is not necessarily positive as seen in the proof. Namely, according to the definition by the integrals, k should be a positive integer. But, after Theorem $1, k$ can be nonpositive.

The generating function of the number $c_{n, \alpha}^{(k)}$ can be written in the form of iterated integrals.
Corollary 1. Let α be a positive real number. For $k=1$, we have

$$
\frac{1}{(\ln (1+x))^{\alpha}} \int_{0}^{x}(\ln (1+x))^{\alpha-1} \mathrm{~d} x=\sum_{n=0}^{\infty} c_{n, \alpha}^{(1)} \frac{x^{n}}{n!}
$$

For $k>1$, we have

$$
\begin{aligned}
& \frac{1}{(\ln (1+x))^{\alpha}} \underbrace{\int_{0}^{x} \frac{1}{(1+x) \ln (1+x)} \int_{0}^{x} \cdots \frac{1}{(1+x) \ln (1+x)} \int_{0}^{x}(\ln (1+x))^{\alpha-1} \underbrace{\mathrm{~d} x \ldots \mathrm{~d} x}_{k}}_{k} \\
& \quad=\sum_{n=0}^{\infty} c_{n, \alpha}^{(k)} \frac{x^{n}}{n!}
\end{aligned}
$$

Remark. When $\alpha=1$, Corollary 1 is reduced to [10, Cor. 1].
Proof. For $k=1$,

$$
\begin{aligned}
\operatorname{Lif}_{1}(z ; \alpha) & =\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+\alpha)}=\frac{1}{z^{\alpha}} \sum_{m=0}^{\infty} \frac{z^{m+\alpha}}{m!(m+\alpha)} \\
& =\frac{1}{z^{\alpha}} \int_{0}^{z} \sum_{m=0}^{\infty} \frac{z^{m+\alpha-1}}{m!} \mathrm{d} z=\frac{1}{z^{\alpha}} \int_{0}^{z} z^{\alpha-1} \mathrm{e}^{z} \mathrm{~d} z \\
& =\frac{1}{z^{\alpha}}\left((-1)^{\alpha}(\alpha-1)!+\mathrm{e}^{z} \sum_{i=0}^{\alpha-1}(-1)^{i} \frac{(\alpha-1)!}{(\alpha-i-1)!} z^{\alpha-i-1}\right) \quad(\text { if } \alpha \text { is an integer })
\end{aligned}
$$

For $k>1$, we have

$$
\operatorname{Lif}_{k}(z ; \alpha)=\frac{1}{z^{\alpha}} \sum_{m=0}^{\infty} \frac{z^{m+\alpha}}{m!(m+\alpha)^{k}}=\frac{1}{z^{\alpha}} \int_{0}^{z} \sum_{m=0}^{\infty} \frac{z^{m+\alpha-1}}{m!(m+\alpha)^{k-1}} \mathrm{~d} z=\frac{1}{z^{\alpha}} \int_{0}^{z} z^{\alpha-1} \operatorname{Lif}_{k-1}(z ; \alpha) \mathrm{d} z
$$

Hence,

$$
\operatorname{Lif}_{k}(z ; \alpha)=\frac{1}{z^{\alpha}} \underbrace{\int_{0}^{z} \frac{1}{z} \int_{0}^{z} \cdots \frac{1}{z} \int_{0}^{z} \frac{1}{z} \int_{0}^{z}}_{k} z^{\alpha-1} \mathrm{e}^{z} \underbrace{\mathrm{~d} z \ldots \mathrm{~d} z}_{k} .
$$

Putting $z=\ln (1+x)$, we get the result.
The numbers $c_{n, \alpha}^{(k)}$ also have a relation with the Stirling numbers of the second kind $\left\{\begin{array}{c}n \\ m\end{array}\right\}$, determined by

$$
\left\{\begin{array}{c}
n \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j}(m-j)^{n}
$$

(see, e.g., [7]).
Theorem 3. Let k be an integer, and α be a positive real number. Then

$$
\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} c_{n, \alpha}^{(k)}=\frac{1}{(n+\alpha)^{k}}
$$

Remark. When $\alpha=1$, Theorem 3 is reduced to [10, Thm. 3].
Proof. Using the inversion formula

$$
\sum_{m=0}^{\max \{l, n\}}(-1)^{m-n}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{c}
n \\
m
\end{array}\right\}= \begin{cases}1 & (l=n) \\
0 & (l \neq n)\end{cases}
$$

(see [7, Chap. 6]) and Theorem 1, we have

$$
\begin{aligned}
\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} c_{n, \alpha}^{(k)} & =\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(-1)^{m} \sum_{l=0}^{m}\left[\begin{array}{c}
m \\
l
\end{array}\right] \frac{(-1)^{l}}{(l+\alpha)^{k}}=\sum_{l=0}^{n} \frac{(-1)^{l}}{(l+\alpha)^{k}} \sum_{m=l}^{n}(-1)^{m}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \\
& =\frac{(-1)^{n}}{(n+\alpha)^{k}}(-1)^{n} \cdot 1=\frac{1}{(n+\alpha)^{k}}
\end{aligned}
$$

3 Shifted poly-Cauchy numbers in terms of original poly-Cauchy numbers

Shifted poly-Cauchy numbers can be expressed in terms of original poly-Cauchy numbers. For example, putting $\alpha=1,2, \ldots, 6$, we have

$$
\begin{aligned}
c_{n, 1}^{(k)}= & c_{n}^{(k)} \\
c_{n, 2}^{(k)}= & c_{n+1}^{(k)}+n c_{n}^{(k)} \\
c_{n, 3}^{(k)}= & c_{n+2}^{(k)}+(2 n+1) c_{n+1}^{(k)}+n^{2} c_{n}^{(k)} \\
c_{n, 4}^{(k)}= & c_{n+3}^{(k)}+3(n+1) c_{n+2}^{(k)}+\left(3 n^{2}+3 n+1\right) c_{n+1}^{(k)}+n^{3} c_{n}^{(k)} \\
c_{n, 5}^{(k)}= & c_{n+4}^{(k)}+(4 n+6) c_{n+3}^{(k)}+\left(6 n^{2}+12 n+7\right) c_{n+2}^{(k)}+\left(4 n^{3}+6 n^{2}+4 n+1\right) c_{n+1}^{(k)}+n^{4} c_{n}^{(k)} \\
c_{n, 6}^{(k)}= & c_{n+5}^{(k)}+5(n+2) c_{n+4}^{(k)}+5\left(2 n^{2}+6 n+5\right) c_{n+3}^{(k)}+5\left(2 n^{3}+6 n^{2}+7 n+3\right) c_{n+2}^{(k)} \\
& +\left(5 n^{4}+10 n^{3}+10 n^{2}+5 n+1\right) c_{n+1}^{(k)}+n^{5} c_{n}^{(k)}
\end{aligned}
$$

In general, we can state the following relation.
Theorem 4. For a positive integer α, we have

$$
c_{n, \alpha}^{(k)}=\sum_{\mu=0}^{\alpha-1} Q_{\mu}(n, \alpha) c_{n+\mu}^{(k)} \quad(n \geqslant 0)
$$

where

$$
Q_{\mu}(n, \alpha)=\sum_{i=0}^{\alpha-\mu-1}\binom{\alpha-1}{i}\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\} n^{i} \quad(0 \leqslant \mu \leqslant \alpha-1) .
$$

We need the following lemma in order to prove Theorem 4. Let α be a positive integer.

Lemma 1.

$$
\sum_{\mu=0}^{\alpha-1}(-1)^{\mu} Q_{\alpha-\mu-1}(n, \alpha)\left[\begin{array}{c}
n+\alpha-\mu-1 \\
n+\alpha-m-1
\end{array}\right]= \begin{cases}{\left[\begin{array}{c}
n \\
n-m
\end{array}\right]} & \text { if } m=0,1, \ldots, n-1 \\
0 & \text { if } m=n, n+1, \ldots, \alpha+n-2\end{cases}
$$

Proof. By the definition, if $m>n$ or $m=n \neq 0$, then

$$
\left[\begin{array}{c}
n \\
n-m
\end{array}\right]=0
$$

Put

$$
f(\alpha)=\sum_{\mu=0}^{\alpha-1}(-1)^{\mu} Q_{\alpha-\mu-1}(n, \alpha)\left[\begin{array}{c}
n+\alpha-\mu-1 \\
n+\alpha-m-1
\end{array}\right]
$$

Notice that $Q_{\alpha-1}(n, \alpha)=1$ and $Q_{0}(n, \alpha)=n^{\alpha-1}$. When $\alpha=1$,

$$
f(1)=Q_{0}(n, 1)\left[\begin{array}{c}
n \\
n-m
\end{array}\right]=\left[\begin{array}{c}
n \\
n-m
\end{array}\right]
$$

By

$$
\mu\left\{\begin{array}{c}
\alpha-i-2 \\
\mu
\end{array}\right\}+\left\{\begin{array}{c}
\alpha-i-2 \\
\mu-1
\end{array}\right\}=\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\}
$$

and

$$
\binom{\alpha-1}{i}=\binom{\alpha-2}{i}+\binom{\alpha-2}{i-1}
$$

we have

$$
\begin{aligned}
(n & +\mu) Q_{\mu}(n, \alpha-1)+Q_{\mu-1}(n, \alpha-1) \\
& =(n+\mu) \sum_{i=0}^{\alpha-\mu-2}\binom{\alpha-2}{i}\left\{\begin{array}{c}
\alpha-i-2 \\
\mu
\end{array}\right\} n^{i}+\sum_{i=0}^{\alpha-\mu-1}\binom{\alpha-2}{i}\left\{\begin{array}{c}
\alpha-i-2 \\
\mu-1
\end{array}\right\} n^{i} \\
& =\sum_{i=0}^{\alpha-\mu-2}\binom{\alpha-2}{i}\left\{\begin{array}{c}
\alpha-i-2 \\
\mu
\end{array}\right\} n^{i+1}+\sum_{i=0}^{\alpha-\mu-1}\binom{\alpha-2}{i}\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\} n^{i} \\
& =\sum_{i=1}^{\alpha-\mu-1}\binom{\alpha-2}{i-1}\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\} n^{i}+\sum_{i=0}^{\alpha-\mu-1}\binom{\alpha-2}{i}\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\} n^{i} \\
& =\sum_{i=0}^{\alpha-\mu-1}\binom{\alpha-1}{i}\left\{\begin{array}{c}
\alpha-i-1 \\
\mu
\end{array}\right\} n^{i}=Q_{\mu}(n, \alpha) .
\end{aligned}
$$

Therefore, putting $\mu=\alpha-2, \alpha-3, \ldots, 2,1$ in

$$
Q_{\mu}(n, \alpha)=(n+\mu) Q_{\mu}(n, \alpha-1)+Q_{\mu-1}(n, \alpha-1)
$$

for $\alpha>1$, we obtain

$$
\begin{aligned}
f(\alpha)= & Q_{\alpha-1}(n, \alpha)\left[\begin{array}{c}
n+\alpha-1 \\
n-m+\alpha-1
\end{array}\right]-Q_{\alpha-2}(n, \alpha)\left[\begin{array}{c}
n+\alpha-2 \\
n-m+\alpha-1
\end{array}\right] \\
& +Q_{\alpha-3}(n, \alpha)\left[\begin{array}{c}
n+\alpha-3 \\
n-m+\alpha-1
\end{array}\right]-\cdots
\end{aligned}
$$

$$
\begin{aligned}
&+(-1)^{\alpha-2} Q_{1}(n, \alpha)\left[\begin{array}{c}
n+1 \\
n-m+\alpha-1
\end{array}\right]+(-1)^{\alpha-1} Q_{0}(n, \alpha)\left[\begin{array}{c}
n \\
n-m+\alpha-1
\end{array}\right] \\
&= {\left[\begin{array}{c}
n+\alpha-1 \\
n-m+\alpha-1
\end{array}\right]-(n+\alpha-2)\left[\begin{array}{c}
n+\alpha-2 \\
n-m+\alpha-1
\end{array}\right] } \\
&-Q_{\alpha-3}(n, \alpha-1)\left(\left[\begin{array}{c}
n+\alpha-2 \\
n-m+\alpha-1
\end{array}\right]-(n+\alpha-3)\left[\begin{array}{c}
n+\alpha-3 \\
n-m+\alpha-1
\end{array}\right]\right) \\
&+Q_{\alpha-4}(n, \alpha-1)\left(\left[\begin{array}{c}
n+\alpha-3 \\
n-m+\alpha-1
\end{array}\right]-(n+\alpha-4)\left[\begin{array}{c}
n+\alpha-4 \\
n-m+\alpha-1
\end{array}\right]\right)-\cdots \\
&+(-1)^{\alpha-2} Q_{0}(n, \alpha-1)\left(\left[\begin{array}{c}
n+1 \\
n-m+\alpha-1
\end{array}\right]-n\left[\begin{array}{c}
n \\
n-m+\alpha-1
\end{array}\right]\right) \\
&= Q_{\alpha-2}(n, \alpha-1)\left[\begin{array}{c}
n+\alpha-2 \\
n-m+\alpha-2
\end{array}\right]-Q_{\alpha-3}(n, \alpha-1)\left[\begin{array}{c}
n+\alpha-3 \\
n-m+\alpha-2
\end{array}\right] \\
&+Q_{\alpha-4}(n, \alpha-1)\left[\begin{array}{c}
n+\alpha-4 \\
n-m+\alpha-2
\end{array}\right]-\cdots \\
&+(-1)^{\alpha-3} Q_{1}(n, \alpha-1)\left[\begin{array}{c}
n+1 \\
n-m+\alpha-2
\end{array}\right]+(-1)^{\alpha-2} Q_{0}(n, \alpha-1)\left[\begin{array}{c}
n \\
n-m+\alpha-2
\end{array}\right] \\
&= f(\alpha-1) . \\
& \square
\end{aligned}
$$

Proof of Theorem 4. For simplicity, we write $Q_{\mu}=Q_{\mu}(n, \alpha)$ for fixed integers n and α. By Lemma 1 and the equalities $\left[\begin{array}{l}n \\ k\end{array}\right]=0(n<k)$ and $\left[\begin{array}{l}n \\ 0\end{array}\right]=0(n>0)$ we have

$$
\begin{aligned}
\sum_{\mu=0}^{\alpha-1} Q_{\mu} c_{n+\mu}^{(k)}= & \sum_{\mu=0}^{\alpha-1} Q_{\mu} \sum_{m=0}^{n+\mu}\left[\begin{array}{c}
n+\mu \\
m
\end{array}\right] \frac{(-1)^{n+\mu-m}}{(m+1)^{k}} \\
= & \sum_{\mu=0}^{\alpha-1}(-1)^{\alpha-\mu-1} Q_{\mu} \sum_{m=0}^{n+\alpha-1}\left[\begin{array}{c}
n+\mu \\
m
\end{array}\right] \frac{(-1)^{\alpha+n-1-m}}{(m+1)^{k}} \\
= & \sum_{\mu=0}^{\alpha-1}(-1)^{\alpha-\mu-1} Q_{\mu} \sum_{m=0}^{n+\alpha-1}\left[\begin{array}{c}
n+\mu \\
n+\alpha-m-1
\end{array}\right] \frac{(-1)^{m}}{(n-m+\alpha)^{k}} \\
= & \sum_{\mu=0}^{\alpha-1}(-1)^{\mu} Q_{\alpha-\mu-1} \sum_{m=0}^{n+\alpha-2}\left[\begin{array}{c}
n+\alpha-\mu-1 \\
n+\alpha-m-1
\end{array}\right] \frac{(-1)^{m}}{(n-m+\alpha)^{k}} \\
= & \sum_{m=0}^{n-1} \sum_{\mu=0}^{\alpha-1}(-1)^{\mu} Q_{\alpha-\mu-1}\left[\begin{array}{c}
n+\alpha-\mu-1 \\
n+\alpha-m-1
\end{array}\right] \frac{(-1)^{m}}{(n-m+\alpha)^{k}} \\
& +\sum_{m=n}^{n+\alpha-2} \sum_{\mu=0}^{\alpha-1}(-1)^{\mu} Q_{\alpha-\mu-1}\left[\begin{array}{c}
n+\alpha-\mu-1 \\
n+\alpha-m-1
\end{array}\right] \frac{(-1)^{m}}{(n-m+\alpha)^{k}} \\
= & \sum_{m=0}^{n}[n-m] \frac{(-1)^{m}}{n-m+\alpha)^{k}}=c_{n, \alpha}^{(k)} .
\end{aligned}
$$

Hence, the proof is done.

Remark. We can write as

$$
Q_{\mu}(n, \alpha)=\sum_{i=0}^{\alpha-\mu-1}\left\{\begin{array}{l}
\alpha-1 \\
\mu+i
\end{array}\right\}\binom{\mu+i}{\mu} \frac{n!}{(n-i)!}
$$

since

$$
\begin{aligned}
Q_{\mu}(n, \alpha) & =\sum_{i=0}^{\alpha-\mu-1}\left\{\begin{array}{c}
\alpha-1 \\
\mu+i
\end{array}\right\}\binom{\mu+i}{\mu} \frac{n!}{(n-i)!}=\sum_{i=0}^{\alpha-\mu-1}\left\{\begin{array}{c}
\alpha-1 \\
\mu+i
\end{array}\right\}\binom{\mu+i}{\mu} \sum_{\nu=0}^{i}(-1)^{i-\nu}\left[\begin{array}{l}
i \\
\nu
\end{array}\right] n^{\nu} \\
& =\sum_{\nu=0}^{\alpha-\mu-1} n^{\nu} \sum_{i=\nu}^{\alpha-\mu-1}\left\{\begin{array}{c}
\alpha-1 \\
\mu+i
\end{array}\right\}\binom{\mu+i}{\mu}(-1)^{i-\nu}\left[\begin{array}{l}
i \\
\nu
\end{array}\right]=\sum_{\nu=0}^{\alpha-\mu-1} n^{\nu}\binom{\alpha-1}{\nu}\left\{\begin{array}{c}
\alpha-\nu-1 \\
\mu
\end{array}\right\} .
\end{aligned}
$$

Notice that

$$
\sum_{i=\nu}^{\alpha-\mu-1}\left\{\begin{array}{l}
\alpha-1 \\
\mu+i
\end{array}\right\}\binom{\mu+i}{\mu}(-1)^{i-\nu}\left[\begin{array}{l}
i \\
\nu
\end{array}\right]=\binom{\alpha-1}{\nu}\left\{\begin{array}{c}
\alpha-\nu-1 \\
\mu
\end{array}\right\} .
$$

4 Poly-Cauchy numbers of the second kind

In [10], the concept of poly-Cauchy numbers of the second kind is also introduced. The poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$ are defined by

$$
\hat{c}_{n}^{(k)}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(-x_{1} x_{2} \ldots x_{k}\right)\left(-x_{1} x_{2} \ldots x_{k}-1\right) \cdots\left(-x_{1} x_{2} \ldots x_{k}-n+1\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{k},
$$

and the generating function is given by

$$
\operatorname{Lif}_{k}(-\ln (1+x))=\sum_{n=0}^{\infty} \hat{c}_{n}^{(k)} \frac{x^{n}}{n!}
$$

Then, the poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$ can be also expressed in terms of the Stirling numbers of the first kind (see [10, Thm. 4]).

Proposition 2.

$$
\hat{c}_{n}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{1}{(m+1)^{k}}
$$

Let α be a positive real number. Similarly to the shifted poly-Cauchy numbers of the first kind $c_{n, \alpha}^{(k)}$, define the shifted poly-Cauchy numbers of the second kind $\hat{c}_{n, \alpha}^{(k)}(n \geqslant 0, k \geqslant 1)$ by

$$
\hat{c}_{n, \alpha}^{(k)}=(-1)^{\alpha-1} \underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{k}\left(-x_{1} \ldots x_{k}\right)^{\alpha}\left(-x_{1} \ldots x_{k}-1\right) \cdots\left(-x_{1} \ldots x_{k}-n+1\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k} .
$$

Then, similarly to Theorem $1, \hat{c}_{n, \alpha}^{(k)}$ can be also expressed in terms of the Stirling numbers of the first kind as a generalization of Proposition 2.

Theorem 5.

$$
\hat{c}_{n, \alpha}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{1}{(m+\alpha)^{k}} \quad(n \geqslant 0, k \geqslant 1) .
$$

Theorem 6. The generating function of the number $\hat{c}_{n, \alpha}^{(k)}$ is given by

$$
\operatorname{Lif}_{k}(-\ln (1+x) ; \alpha)=\sum_{m=0}^{\infty} \hat{c}_{n, \alpha}^{(k)} \frac{x^{n}}{n!},
$$

where

$$
\operatorname{Lif}_{k}(z ; \alpha)=\sum_{m=0}^{\infty} \frac{z^{m}}{m!(m+\alpha)^{k}}
$$

Remark. When $\alpha=1$, Theorem 6 is reduced to [10, Thm. 5].
The generating function of the number $\hat{c}_{n, \alpha}^{(k)}$ can be written in the form of iterated integrals.
Corollary 2. Let α be a positive real number. For $k=1$, we have

$$
\frac{1}{(\ln (1+x))^{\alpha}} \int_{0}^{x} \frac{(\ln (1+x))^{\alpha-1}}{(1+x)^{2}} \mathrm{~d} x=\sum_{n=0}^{\infty} \hat{c}_{n, \alpha}^{(1)} \frac{x^{n}}{n!} .
$$

For $k>1$, we have

$$
\begin{aligned}
& \frac{1}{(\ln (1+x))^{\alpha}} \underbrace{\int_{0}^{x} \frac{1}{(1+x) \ln (1+x)} \int_{0}^{x} \cdots \frac{1}{(1+x) \ln (1+x)} \int_{0}^{x} \frac{(\ln (1+x))^{\alpha-1}}{(1+x)^{2}} \underbrace{\mathrm{~d} x \ldots \mathrm{~d} x}_{k}}_{k} \\
& \quad=\sum_{n=0}^{\infty} \hat{c}_{n, \alpha}^{(k)} \frac{x^{n}}{n!} .
\end{aligned}
$$

Remark. When $\alpha=1$ in the first identity, where $k=1$, we have the generating function of the classical Cauchy numbers of the second kind:

$$
\frac{x}{(1+x) \ln (1+x)}=\sum_{n=0}^{\infty} \hat{c}_{n} \frac{x^{n}}{n!} .
$$

When $\alpha=1$, the second identity is reduced to that of Corollary 2 in [10].
The number $\hat{c}_{n, \alpha}^{(k)}$ also has a relation with the Stirling numbers of the second kind.
Theorem 7. Let k be an integer, and α be a positive real number. Then

$$
\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \hat{c}_{n, \alpha}^{(k)}=\frac{(-1)^{n}}{(n+\alpha)^{k}}
$$

Remark. When $\alpha=1$, Theorem 7 is reduced to [10, Thm. 6].
In addition, there are relations between both kinds of poly-Cauchy numbers.
Theorem 8. Let k be an integer, and α be a positive real number. For $n \geqslant 1$, we have

$$
(-1)^{n} \frac{c_{n, \alpha}^{(k)}}{n!}=\sum_{m=1}^{n}\binom{n-1}{m-1} \frac{\hat{c}_{m, \alpha}^{(k)}}{m!}, \quad(-1)^{n} \frac{\hat{c}_{n, \alpha}^{(k)}}{n!}=\sum_{m=1}^{n}\binom{n-1}{m-1} \frac{c_{m, \alpha}^{(k)}}{m!} .
$$

Remark. When $\alpha=1$, Theorem 8 is reduced to [10, Thm. 7].
Proof. We shall prove the first identity. The second one is proven similarly and omitted. Using the identity (see, e.g., [7, Chap. 6])

$$
\frac{(-1)^{l}}{n!}\left[\begin{array}{l}
n \\
l
\end{array}\right]=\sum_{m=l}^{n} \frac{(-1)^{m}}{m!}\binom{n-1}{m-1}\left[\begin{array}{c}
m \\
l
\end{array}\right]
$$

and Theorems 1 and 5, we have

$$
\begin{aligned}
\text { RHS } & =\sum_{m=1}^{n}\binom{n-1}{m-1} \frac{(-1)^{m}}{m!} \sum_{l=1}^{m}\left[\begin{array}{c}
m \\
l
\end{array}\right] \frac{1}{(l+\alpha)^{k}}=\sum_{l=1}^{n} \frac{1}{(l+\alpha)^{k}} \sum_{m=l}^{n} \frac{(-1)^{m}}{m!}\binom{n-1}{m-1}\left[\begin{array}{c}
m \\
l
\end{array}\right] \\
& =\sum_{l=1}^{n} \frac{1}{(l+\alpha)^{k}} \frac{(-1)^{l}}{n!}\left[\begin{array}{c}
n \\
l
\end{array}\right]=\text { LHS. }
\end{aligned}
$$

Finally, similarly to Theorem 4, the shifted poly-Cauchy numbers of the second kind can be expressed in terms of the original poly-Cauchy numbers of the second kind.
Theorem 9. Let α be a positive integer. Then

$$
\hat{c}_{n, \alpha}^{(k)}=(-1)^{\alpha-1} \sum_{\mu=0}^{\alpha-1} Q_{\mu}(n, \alpha) \hat{c}_{n+\mu}^{(k)} \quad(n \geqslant 0)
$$

where $Q_{\mu}(n, \alpha)$ are the same as in Theorem 4.

5 Some expressions of poly-Cauchy numbers with negative indices

It is known that the poly-Bernoulli numbers satisfy the duality theorem $B_{n}^{(-k)}=B_{k}^{(-n)}$ for $n, k \geqslant 0$ (see [9, Thm. 2]) because of the symmetric formula

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} B_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{\mathrm{e}^{x+y}}{\mathrm{e}^{x}+\mathrm{e}^{y}-\mathrm{e}^{x+y}}
$$

However, the corresponding duality theorem does not hold for poly-Cauchy numbers for any real number α, as the following results show.
Proposition 3. For nonnegative integers n and k and a real number $\alpha \neq 0$, we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\mathrm{e}^{\alpha y}(1+x)^{\mathrm{e}^{y}}, \quad \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \hat{c}_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{\mathrm{e}^{\alpha y}}{(1+x)^{\mathrm{e}^{y}}}
$$

Proof. We shall prove the first identity. The second identity is proven similarly. By Theorem 2 we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!} & =\sum_{k=0}^{\infty}\left(\sum_{n=0}^{\infty} c_{n, \alpha}^{(-k)} \frac{x^{n}}{n!}\right) \frac{y^{k}}{k!}=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{(m+\alpha)^{k}}{m!}(\ln (1+x))^{m} \frac{y^{k}}{k!} \\
& =\sum_{m=0}^{\infty} \frac{(\ln (1+x))^{m}}{m!} \sum_{k=0}^{\infty} \frac{((m+\alpha) y)^{k}}{k!} \\
& =\sum_{m=0}^{\infty} \frac{(\ln (1+x))^{m}}{m!} \mathrm{e}^{(m+\alpha) y}=\mathrm{e}^{\alpha y} \sum_{m=0}^{\infty} \frac{\left(\mathrm{e}^{y} \ln (1+x)\right)^{m}}{m!} \\
& =\mathrm{e}^{\alpha y}(1+x)^{\mathrm{e}^{y}} .
\end{aligned}
$$

By using Proposition 3 we have explicit expressions of the poly-Cauchy numbers with negative indices.
Theorem 10. For nonnegative integers n, k and a real number $\alpha \neq 0$, we have

$$
\begin{aligned}
& c_{n, \alpha}^{(-k)}=\sum_{i=0}^{k} \sum_{j=0}^{i}(-1)^{n+j} j!\left(\left[\begin{array}{c}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i}, \\
& \hat{c}_{n, \alpha}^{(-k)}=\sum_{i=0}^{k} \sum_{j=0}^{i}(-1)^{n} j!\left[\begin{array}{c}
n+1 \\
j+1
\end{array}\right]\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i} .
\end{aligned}
$$

Remark. If $\alpha=1$, by

$$
\sum_{i=0}^{k}\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\}=\left\{\begin{array}{l}
k+1 \\
j+1
\end{array}\right\}
$$

(see [7]) the above identities become

$$
\begin{aligned}
& c_{n}^{(-k)}=\sum_{j=0}^{k}(-1)^{n+j} j!\left(\left[\begin{array}{c}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)\left\{\begin{array}{c}
k+1 \\
j+1
\end{array}\right\}, \\
& \hat{c}_{n}^{(-k)}=\sum_{j=0}^{k}(-1)^{n} j!\left[\begin{array}{c}
n+1 \\
j+1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
j+1
\end{array}\right\} .
\end{aligned}
$$

Proof. By Proposition 3, together with

$$
\frac{\left(\mathrm{e}^{y}-1\right)^{j}}{j!}=\sum_{k=j}^{\infty}\left\{\begin{array}{l}
k \\
j
\end{array}\right\} \frac{y^{k}}{k!} \quad \text { and } \quad \frac{(-\ln (1+x))^{j}}{j!}=\sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!}
$$

(see [7]), we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=(1+x)^{\mathrm{e}^{y}-1}(1+x) \mathrm{e}^{\alpha y}=\exp \left(\left(\mathrm{e}^{y}-1\right) \ln (1+x)\right)(1+x) \mathrm{e}^{\alpha y}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{\infty} j!\frac{\left(\mathrm{e}^{y}-1\right)^{j}}{j!} \frac{(\ln (1+x))^{j}}{j!}(1+x) \mathrm{e}^{\alpha y} \\
& =\sum_{j=0}^{\infty}(-1)^{j} j!\mathrm{e}^{\alpha y} \sum_{k=j}^{\infty}\left\{\begin{array}{l}
k \\
j
\end{array}\right\} \frac{y^{k}}{k!}(1+x) \sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\mathrm{e}^{\alpha y} \sum_{k=j}^{\infty}\left\{\begin{array}{c}
k \\
j
\end{array}\right\} \frac{y^{k}}{k!} & =\sum_{l=0}^{\infty} \frac{(\alpha y)^{l}}{l!} \sum_{k=j}^{\infty}\left\{\begin{array}{l}
k \\
j
\end{array}\right\} \frac{y^{k}}{k!}=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} \frac{\alpha^{k-i}}{(k-i)!}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \frac{1}{i!}\right) y^{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k}\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i}\right) \frac{y^{k}}{k!}
\end{aligned}
$$

and

$$
\begin{aligned}
(1+x) \sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!} & =\sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!}-\sum_{n=j+1}^{\infty}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right] \frac{(-1)^{n}}{(n-1)!} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\left[\begin{array}{c}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)(-1)^{n} \frac{x^{n}}{n!}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} c_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!} & =\sum_{j=0}^{\infty}(-1)^{j} j!\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k}\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i}\right) \frac{y^{k}}{k!} \sum_{n=0}^{\infty}\left(\left[\begin{array}{c}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)(-1)^{n} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{k} \sum_{j=0}^{i}(-1)^{n+j} j!\left(\left[\begin{array}{c}
n \\
j
\end{array}\right]-n\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]\right)\binom{k}{i}\left\{\begin{array}{c}
i \\
j
\end{array}\right\} \alpha^{k-i} \frac{x^{n}}{n!} \frac{y^{k}}{k!}
\end{aligned}
$$

Similarly, by

$$
\frac{1}{1+x} \sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n}\left[\begin{array}{l}
n+1 \\
j+1
\end{array}\right] \frac{x^{n}}{n!}
$$

we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \hat{c}_{n, \alpha}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!} & =\frac{\mathrm{e}^{\alpha y}}{(1+x)^{\mathrm{e}^{y}}}=\exp \left(-\left(\mathrm{e}^{y}-1\right) \ln (1+x)\right) \frac{\mathrm{e}^{\alpha y}}{1+x} \\
& =\sum_{j=0}^{\infty} j!\frac{\left(\mathrm{e}^{y}-1\right)^{j}}{j!} \frac{(-\ln (1+x))^{j}}{j!} \frac{\mathrm{e}^{\alpha y}}{1+x} \\
& =\sum_{j=0}^{\infty} j!\mathrm{e}^{\alpha y} \sum_{k=j}^{\infty}\left\{\begin{array}{c}
k \\
j
\end{array}\right\} \frac{y^{k}}{k!} \frac{1}{1+x} \sum_{n=j}^{\infty}\left[\begin{array}{c}
n \\
j
\end{array}\right] \frac{(-x)^{n}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{\infty} j!\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k}\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i}\right) \frac{y^{k}}{k!} \sum_{n=0}^{\infty}(-1)^{n}\left[\begin{array}{c}
n+1 \\
j+1
\end{array}\right] \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{k} \sum_{j=0}^{i}(-1)^{n} j!\left[\begin{array}{c}
n+1 \\
j+1
\end{array}\right]\binom{k}{i}\left\{\begin{array}{l}
i \\
j
\end{array}\right\} \alpha^{k-i} \frac{x^{n}}{n!} \frac{y^{k}}{k!} .
\end{aligned}
$$

6 Poly-Cauchy numbers and poly-Bernoulli numbers

In this section, let k be an integer, and α be a positive real number. An explicit form of a poly-Bernoulli number $B_{n}^{(k)}$ is given by

$$
B_{n}^{(k)}=\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \frac{(-1)^{n-m} m!}{(m+1)^{k}}
$$

(see [9, Thm. 1]. In [10, Thm. 8], the following expression of $B_{n}^{(k)}$ in terms of poly-Cauchy numbers $c_{n}^{(k)}$ is given.

Proposition 4.

$$
B_{n}^{(k)}=\sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\} c_{l}^{(k)} \quad(n \geqslant 1)
$$

On the contrary, in [12, Thm. 2.2], another expression of $c_{n}^{(k)}$ in terms of $B_{n}^{(k)}$ is given.

Proposition 5.

$$
c_{n}^{(k)}=\sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l}^{(k)} \quad(n \geqslant 1) .
$$

We generalize such results by introducing the shifted poly-Bernoulli numbers defined by

$$
B_{n, \alpha}^{(k)}=\sum_{m=0}^{n}\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \frac{(-1)^{n-m} m!}{(m+\alpha)^{k}} \quad(n \geqslant 0) .
$$

If $\alpha=1$, then our results are reduced to the previous ones.
Theorem 11. For $n \geqslant 0$, we have

$$
B_{n, \alpha}^{(k)}=\sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\} c_{l, \alpha}^{(k)}, \quad c_{n, \alpha}^{(k)}=\sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l, \alpha}^{(k)} .
$$

Proof. For the first identity,

$$
\begin{aligned}
\text { RHS } & =\sum_{l=1}^{n} \sum_{m=l}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\}(-1)^{l} \sum_{i=0}^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right] \frac{(-1)^{i}}{(i+\alpha)^{k}} \\
& =\sum_{i=1}^{n} \frac{(-1)^{i}}{(i+\alpha)^{k}} \sum_{l=i}^{n} \sum_{m=l}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\}(-1)^{l}\left[\begin{array}{l}
l \\
i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{(-1)^{i}}{(i+\alpha)^{k}} \sum_{m=i}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \sum_{l=i}^{m}(-1)^{l}\left\{\begin{array}{c}
m-1 \\
l-1
\end{array}\right\}\left[\begin{array}{l}
l \\
i
\end{array}\right] \\
& =\sum_{i=1}^{n} \frac{(-1)^{i}}{(i+\alpha)^{k}} \sum_{m=i}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}(-1)^{m}\binom{m-1}{i-1} \\
& =\sum_{i=1}^{n} \frac{(-1)^{i}}{(i+\alpha)^{k}}(-1)^{n} i!\left\{\begin{array}{c}
n \\
i
\end{array}\right\}=\text { LHS } .
\end{aligned}
$$

For the second identity,

$$
\begin{aligned}
\text { RHS } & =(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right](-1)^{l} \sum_{i=0}^{l}\left\{\begin{array}{l}
l \\
i
\end{array}\right\} \frac{(-1)^{i} i!}{(i+\alpha)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \sum_{l=0}^{n}\left[\begin{array}{c}
m \\
l
\end{array}\right](-1)^{l} \sum_{i=0}^{l}\left\{\begin{array}{l}
l \\
i
\end{array}\right\} \frac{(-1)^{i} i!}{(i+\alpha)^{k}} \\
& =(-1)^{n} \sum_{m=1}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \sum_{i=0}^{n} \frac{(-1)^{i} i!}{(i+\alpha)^{k}} \sum_{l=i}^{n}(-1)^{l}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{c}
l \\
i
\end{array}\right\} \\
& =(-1)^{n} \sum_{m=0}^{n} \frac{(-1)^{m}}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{m} m!}{(m+\alpha)^{k}}(-1)^{m} \\
& =(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{(-1)^{m}}{(m+\alpha)^{k}}=\text { LHS. }
\end{aligned}
$$

Note that $\left[\begin{array}{c}m \\ 0\end{array}\right]=0(m \geqslant 1),\left[\begin{array}{c}m \\ l\end{array}\right]=0(l>m)$, and

$$
\sum_{l=i}^{m}(-1)^{m-l}\left[\begin{array}{c}
m \\
l
\end{array}\right]\left\{\begin{array}{l}
l \\
i
\end{array}\right\}= \begin{cases}1 & (i=m) \\
0 & (i \neq m)\end{cases}
$$

Similarly, concerning

$$
\hat{c}_{n, \alpha}^{(k)}=(-1)^{n} \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right] \frac{1}{(m+\alpha)^{k}} \quad(n \geqslant 0)
$$

as a generalization of the poly-Cauchy numbers of the second kind $\hat{c}_{n}^{(k)}$, we have the following:
Theorem 12.

$$
B_{n, \alpha}^{(k)}=(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} m!\left\{\begin{array}{c}
n \\
m
\end{array}\right\}\left\{\begin{array}{c}
m \\
l
\end{array}\right\} \hat{c}_{l, \alpha}^{(k)}, \quad \hat{c}_{n, \alpha}^{(k)}=(-1)^{n} \sum_{l=1}^{n} \sum_{m=1}^{n} \frac{1}{m!}\left[\begin{array}{c}
n \\
m
\end{array}\right]\left[\begin{array}{c}
m \\
l
\end{array}\right] B_{l, \alpha}^{(k)} .
$$

Remark. If $\alpha=1$, these results are reduced to the identities in Theorem 3.2 and Theorem 3.1 in [12], respectively.

References

1. T. Agoh and K. Dilcher, Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind, Fibonacci Q., 48:4-12, 2010.
2. T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers and related zeta functions, Nagoya Math. J., 153:189-209, 1999.
3. K.N. Boyadzhiev, Polyexponentials, available from: http://arxiv.org/pdf/0710.1332v1.pdf.
4. G.-S. Cheon, S.-G. Hwang, and S.-G. Lee, Several polynomials associated with the harmonic numbers, Discrete Appl. Math., 155:2573-2584, 2007.
5. L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
6. M.-A. Coppo and B. Candelpergher, The Arakawa-Kaneko zeta function, Ramanujan J., 22:153-162, 2010.
7. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, 1994.
8. K. Kamano and T. Komatsu, Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory, 3:183-209, 2013.
9. M. Kaneko, Poly-Bernoulli numbers, J. Théor. Nombres Bordx., 9:221-228, 1997.
10. T. Komatsu, Poly-Cauchy numbers, Kyushu J. Math., 67:143-153, 2013.
11. T. Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J., 31:353-371, 2013.
12. T. Komatsu and F. Luca, Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers, Ann. Math. Inform., 41:99-105, 2013.
13. T. Komatsu and G. Shibukawa, Poly-Cauchy polynomials and multiple Bernoulli polynomials, Acta Sci. Math., 80, 2014 (forthcomming).
14. H.-M. Liu, S.-H. Qi, and S.-Y Ding, Some recurrence relations for Cauchy numbers of the first kind, J. Integer Seq., 13, Article 10.3.8, 7 pp., 2010.
15. D. Merlini, R. Sprugnoli, and M.C. Verri, The Cauchy numbers, Discrete Math., 306:1906-1920, 2006.
16. W. Wang, Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl., 364:255-274, 2010.
17. P.T. Young, A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers, J. Number Theory, 128:2951-2962, 2008.
18. F.-Z. Zhao, Sums of products of Cauchy numbers, Discrete Math., 309:3830-3842, 2009.

[^0]: ${ }^{*}$ This work was supported in part by the Grant-in-Aid for Scientific research (C) (No. 22540005), the Japan Society for the Promotion of Science.

