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Shifted poly-Cauchy numbers∗
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Abstract. Recently, the first author introduced the concept of poly-Cauchy numbers as a generalization of the classical
Cauchy numbers and an analogue of poly-Bernoulli numbers. This concept has been generalized in various ways, in-
cluding poly-Cauchy numbers with a q parameter. In this paper, we give a different kind of generalization called shifted
poly-Cauchy numbers and investigate several arithmetical properties. Such numbers can be expressed in terms of original
poly-Cauchy numbers. This concept is a kind of analogous ideas to that of Hurwitz zeta-functions compared to Riemann
zeta-functions.
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1 Introduction

Recently, the first author (see [10]) introduced the poly-Cauchy numbers c
(k)
n for a positive integer k and

a nonnegative integer n, given by

Lifk
(
ln(1 + x)

)
=

∞∑
n=0

c(k)n

xn

n!
, (1.1)

where

Lifk(z) =

∞∑
m=0

zm

m! (m+ 1)k

are the polylogarithm factorial functions. This concept is an analogue of poly-Bernoulli numbers B(k)
n intro-

duced by Kaneko [9], where B(k)
n are defined by

Lik(1− e−x)

1− e−x
=

∞∑
n=0

B(k)
n

xn

n!
,
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Shifted poly-Cauchy numbers 167

where

Lik(z) =

∞∑
m=1

zm

mk

is the kth polylogarithm function. When k = 1,B(1)
n = Bn is the classical Bernoulli number withB(1)

1 = 1/2.
When k = 1, c(1)n = cn are the Cauchy numbers (see [5]) defined by

cn =

1∫
0

x(x− 1) · · · (x− n+ 1) dx.

The numbers cn/n! are sometimes called the Bernoulli numbers of the second kind (see, e.g., [1, 17]). Such
numbers have been studied by several authors (see [4,14,15,16,18]) because they are related to various special
combinatorial numbers, including Stirling numbers of both kinds, Bernoulli numbers, and harmonic numbers.
The poly-Cauchy numbers c(k)n are also given by

c(k)n =

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

(x1x2 . . . xk)(x1x2 . . . xk − 1) · · · (x1x2 . . . xk − n+ 1) dx1 dx2 . . . dxk.

Denote by
[
n
m

]
the (unsigned) Stirling numbers of the first kind

[
n
m

]
, arising as the coefficients of the rising

factorial

x(x+ 1) · · · (x+ n− 1) =

n∑
m=0

[
n

m

]
xm

(see, e.g., [7]). Then, as seen in [10, Thm. 1], the poly-Cauchy numbers c(k)n can be expressed in terms of the
(unsigned) Stirling numbers of the first kind

[
n
m

]
.

Proposition 1.

c(k)n =

n∑
m=0

[
n

m

]
(−1)n−m

(m+ 1)k
(n � 0, k � 1).

As one general case of the poly-Cauchy numbers, the poly-Cauchy numbers with a q parameter c
(k)
n,q

(see [11]) are defined by

c(k)n,q =

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

(x1x2 . . . xk)(x1x2 . . . xk − q) · · · (x1x2 . . . xk − (n− 1)q
)
dx1 dx2 . . . dxk

and expressed as

c(k)n,q =

n∑
m=0

[
n

m

]
(−q)n−m

(m+ 1)k
(n � 0, k � 1)

(see [11, Thm. 1]). In this paper, we give a different kind of generalization of poly-Cauchy numbers.
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The Hurwitz zeta-function ζ(s, q) =
∑∞

n=0 1/(q + n)s is a generalization of the famous Riemann zeta-
function ζ(s) =

∑∞
n=1 1/n

s since ζ(s) = ζ(s, 1). A similar directed extension can be seen in the function
in [6] as a natural extension of the Arakawa–Kaneko function, which is closely related to poly-Bernoulli
numbers B(k)

n (see [2]). One strong motivation in [6] was to generalize the Arakawa–Kaneko function, which
is related to poly-Bernoulli numbers and multiple zeta values (see [2]). Some functions like poly-Cauchy
numbers and/or polynomials corresponding to the Arakawa–Kaneko function have been considered too. For
instance, Shibukawa and the first author [13] consider the function

ζ̂kα(s, z) :=
1

Γ(s− α)

1∫
0

t−α−1(1− t)z−1
(−log(1− t)

)s
Lifk

(
ln(1− t)

)
dt

(
Re(s) > Re(α)

)
,

yielding ζkl+1(1, z) = c
(k)
l (1− z). Kamano and the first author [8] consider the function

Zk(s) :=
1

Γ(s)

1∫
0

ts−1 Lifk
(
ln(1− t)

)
dt

(
Re(s) > 0

)
,

yielding Ẑk(−n) = c
(k)
n (n � 0).

Hence, as a different direction of generalization of poly-Cauchy numbers c(k)n , consider the value

c(k)n,α =

n∑
m=0

[
n

m

]
(−1)n−m

(m+ α)k

for a positive real number α. For example, if n = 5 and α = 3, then

c
(k)
5 =

24

2k
− 50

3k
+

35

4k
− 10

5k
+

1

6k
, c

(k)
5,3 =

24

4k
− 50

5k
+

35

6k
− 10

7k
+

1

8k
.

In this paper, we give a different kind of generalization called shifted poly-Cauchy numbers, using the general-
ized polylogarithm factorial function Lifk(z;α) =

∑∞
m=0 z

m/m! (m+ α)k, which is relevant to the Hurwitz
zeta-function and a general Lerch zeta-function Φ(z, s, α) =

∑∞
n=0 z

n/(n+α)s (see [3]). We also investigate
several arithmetical properties and formulae related with the Stirling numbers of the first and second kind and
with some generalizations of Bernoulli numbers.

2 Definitions and basic properties

Let n � 0 and k � 1 be integers, and α �= 0 be a positive real number. Define c(k)n,α by

c(k)n,α =

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

(x1 . . . xk)
α(x1 . . . xk − 1) · · · (x1 . . . xk − n+ 1) dx1 . . . dxk.

Then, c(k)n,α can be expressed in terms of the Stirling numbers of the first kind
[
n
m

]
.

Theorem 1. Let α be a positive real number. Then

c(k)n,α =

n∑
m=0

[
n

m

]
(−1)n−m

(m+ α)k
(n � 0, k � 1).
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Remark. Without the definition of integrals, k may be any integer. When α = 1, Theorem 1 is reduced to
Proposition 1.

Proof. By

x(x− 1) · · · (x− n+ 1) =

n∑
m=0

[
n

m

]
(−1)n−mxm

we have

c(k)n,α =

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

n∑
m=0

[
n

m

]
(−1)n−m(x1 . . . xk)

m+α−1 dx1 . . . dxk =

n∑
m=0

[
n

m

]
(−1)n−m

(m+ α)k
. ��

For an integer k and a positive real number α, define the function Lifk(z;α) by

Lifk(z;α) =

∞∑
m=0

zm

m! (m+ α)k
.

When α = 1, Lifk(z; 1) = Lifk(z) is the polylogarithm factorial function (see [10]).

Theorem 2. The generating function of the number c(k)n,α is given by

Lifk
(
ln(1 + x);α

)
=

∞∑
m=0

c(k)n,α

xn

n!
.

Remark. When α = 1, Theorem 2 is reduced to [10, Thm. 2].

Proof. Since

(ln(1 + x))m

m!
= (−1)m

∞∑
n=m

[
n

m

]
(−x)n

n!
,

by Theorem 1 we have

∞∑
n=0

c(k)n,α

xn

n!
=

∞∑
n=0

n∑
m=0

[
n

m

]
(−1)n−m

(m+ α)k
xn

n!
=

∞∑
m=0

(−1)m

(m+ α)k

∞∑
n=m

[
n

m

]
(−x)n

n!

=

∞∑
m=0

(ln(1 + x))m

m! (m+ α)k
= Lifk

(
ln(1 + x);α

)
. ��

Remark. The value k is not necessarily positive as seen in the proof. Namely, according to the definition by
the integrals, k should be a positive integer. But, after Theorem 1, k can be nonpositive.

The generating function of the number c(k)n,α can be written in the form of iterated integrals.

Corollary 1. Let α be a positive real number. For k = 1, we have

1

(ln(1 + x))α

x∫
0

(
ln(1 + x)

)α−1
dx =

∞∑
n=0

c(1)n,α

xn

n!
.
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For k > 1, we have

1

(ln(1 + x))α

x∫
0

1

(1 + x) ln(1 + x)

x∫
0

· · · 1

(1 + x) ln(1 + x)

x∫
0︸ ︷︷ ︸

k

(
ln(1 + x)

)α−1
dx . . . dx︸ ︷︷ ︸

k

=

∞∑
n=0

c(k)n,α

xn

n!
.

Remark. When α = 1, Corollary 1 is reduced to [10, Cor. 1].

Proof. For k = 1,

Lif1(z;α) =

∞∑
m=0

zm

m! (m+ α)
=

1

zα

∞∑
m=0

zm+α

m! (m+ α)

=
1

zα

z∫
0

∞∑
m=0

zm+α−1

m!
dz =

1

zα

z∫
0

zα−1ez dz

=
1

zα

(
(−1)α(α− 1)! + ez

α−1∑
i=0

(−1)i
(α− 1)!

(α− i− 1)!
zα−i−1

)
(if α is an integer).

For k > 1, we have

Lifk(z;α) =
1

zα

∞∑
m=0

zm+α

m! (m+ α)k
=

1

zα

z∫
0

∞∑
m=0

zm+α−1

m! (m+ α)k−1
dz =

1

zα

z∫
0

zα−1 Lifk−1(z;α) dz.

Hence,

Lifk(z;α) =
1

zα

z∫
0

1

z

z∫
0

· · · 1
z

z∫
0

1

z

z∫
0︸ ︷︷ ︸

k

zα−1ez dz . . . dz︸ ︷︷ ︸
k

.

Putting z = ln(1 + x), we get the result. ��
The numbers c(k)n,α also have a relation with the Stirling numbers of the second kind

{
n
m

}
, determined by

{
n

m

}
=

1

m!

m∑
j=0

(−1)j
(
m

j

)
(m− j)n

(see, e.g., [7]).

Theorem 3. Let k be an integer, and α be a positive real number. Then

n∑
m=0

{
n

m

}
c(k)n,α =

1

(n+ α)k
.
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Remark. When α = 1, Theorem 3 is reduced to [10, Thm. 3].

Proof. Using the inversion formula

max{l,n}∑
m=0

(−1)m−n

[
m

l

]{
n

m

}
=

{
1 (l = n),

0 (l �= n)

(see [7, Chap. 6]) and Theorem 1, we have

n∑
m=0

{
n

m

}
c(k)n,α =

n∑
m=0

{
n

m

}
(−1)m

m∑
l=0

[
m

l

]
(−1)l

(l + α)k
=

n∑
l=0

(−1)l

(l + α)k

n∑
m=l

(−1)m
[
m

l

]{
n

m

}

=
(−1)n

(n+ α)k
(−1)n · 1 =

1

(n+ α)k
. ��

3 Shifted poly-Cauchy numbers in terms of original poly-Cauchy numbers

Shifted poly-Cauchy numbers can be expressed in terms of original poly-Cauchy numbers. For example,
putting α = 1, 2, . . . , 6, we have

c
(k)
n,1 = c(k)n ,

c
(k)
n,2 = c

(k)
n+1 + nc(k)n ,

c
(k)
n,3 = c

(k)
n+2 + (2n+ 1)c

(k)
n+1 + n2c(k)n ,

c
(k)
n,4 = c

(k)
n+3 + 3(n+ 1)c

(k)
n+2 +

(
3n2 + 3n+ 1

)
c
(k)
n+1 + n3c(k)n ,

c
(k)
n,5 = c

(k)
n+4 + (4n+ 6)c

(k)
n+3 +

(
6n2 + 12n+ 7

)
c
(k)
n+2 +

(
4n3 + 6n2 + 4n+ 1

)
c
(k)
n+1 + n4c(k)n ,

c
(k)
n,6 = c

(k)
n+5 + 5(n+ 2)c

(k)
n+4 + 5

(
2n2 + 6n+ 5

)
c
(k)
n+3 + 5

(
2n3 + 6n2 + 7n+ 3

)
c
(k)
n+2

+
(
5n4 + 10n3 + 10n2 + 5n+ 1

)
c
(k)
n+1 + n5c(k)n .

In general, we can state the following relation.

Theorem 4. For a positive integer α, we have

c(k)n,α =

α−1∑
μ=0

Qμ(n, α)c
(k)
n+μ (n � 0),

where

Qμ(n, α) =

α−μ−1∑
i=0

(
α− 1

i

){
α− i− 1

μ

}
ni (0 � μ � α− 1).

We need the following lemma in order to prove Theorem 4. Let α be a positive integer.

Lemma 1.

α−1∑
μ=0

(−1)μQα−μ−1(n, α)

[
n+ α− μ− 1

n+ α−m− 1

]
=

{[
n

n−m

]
if m = 0, 1, . . . , n− 1,

0 if m = n, n+ 1, . . . , α+ n− 2.
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Proof. By the definition, if m > n or m = n �= 0, then[
n

n−m

]
= 0.

Put

f(α) =

α−1∑
μ=0

(−1)μQα−μ−1(n, α)

[
n+ α− μ− 1

n+ α−m− 1

]
.

Notice that Qα−1(n, α) = 1 and Q0(n, α) = nα−1. When α = 1,

f(1) = Q0(n, 1)

[
n

n−m

]
=

[
n

n−m

]
.

By

μ

{
α− i− 2

μ

}
+

{
α− i− 2

μ− 1

}
=

{
α− i− 1

μ

}
and (

α− 1

i

)
=

(
α− 2

i

)
+

(
α− 2

i− 1

)
we have

(n+ μ)Qμ(n, α− 1) +Qμ−1(n, α− 1)

= (n+ μ)

α−μ−2∑
i=0

(
α− 2

i

){
α− i− 2

μ

}
ni +

α−μ−1∑
i=0

(
α− 2

i

){
α− i− 2

μ− 1

}
ni

=

α−μ−2∑
i=0

(
α− 2

i

){
α− i− 2

μ

}
ni+1 +

α−μ−1∑
i=0

(
α− 2

i

){
α− i− 1

μ

}
ni

=

α−μ−1∑
i=1

(
α− 2

i− 1

){
α− i− 1

μ

}
ni +

α−μ−1∑
i=0

(
α− 2

i

){
α− i− 1

μ

}
ni

=

α−μ−1∑
i=0

(
α− 1

i

){
α− i− 1

μ

}
ni = Qμ(n, α).

Therefore, putting μ = α− 2, α− 3, . . . , 2, 1 in

Qμ(n, α) = (n+ μ)Qμ(n, α− 1) +Qμ−1(n, α− 1),

for α > 1, we obtain

f(α) = Qα−1(n, α)

[
n+ α− 1

n−m+ α− 1

]
−Qα−2(n, α)

[
n+ α− 2

n−m+ α− 1

]

+Qα−3(n, α)

[
n+ α− 3

n−m+ α− 1

]
− · · ·
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+ (−1)α−2Q1(n, α)

[
n+ 1

n−m+ α− 1

]
+ (−1)α−1Q0(n, α)

[
n

n−m+ α− 1

]

=

[
n+ α− 1

n−m+ α− 1

]
− (n+ α− 2)

[
n+ α− 2

n−m+ α− 1

]

−Qα−3(n, α− 1)

([
n+ α− 2

n−m+ α− 1

]
− (n+ α− 3)

[
n+ α− 3

n−m+ α− 1

])

+Qα−4(n, α− 1)

([
n+ α− 3

n−m+ α− 1

]
− (n+ α− 4)

[
n+ α− 4

n−m+ α− 1

])
− · · ·

+ (−1)α−2Q0(n, α− 1)

([
n+ 1

n−m+ α− 1

]
− n

[
n

n−m+ α− 1

])

= Qα−2(n, α− 1)

[
n+ α− 2

n−m+ α− 2

]
−Qα−3(n, α− 1)

[
n+ α− 3

n−m+ α− 2

]

+Qα−4(n, α− 1)

[
n+ α− 4

n−m+ α− 2

]
− · · ·

+ (−1)α−3Q1(n, α− 1)

[
n+ 1

n−m+ α− 2

]
+ (−1)α−2Q0(n, α− 1)

[
n

n−m+ α− 2

]
= f(α− 1). ��

Proof of Theorem 4. For simplicity, we write Qμ = Qμ(n, α) for fixed integers n and α. By Lemma 1 and
the equalities

[
n
k

]
= 0 (n < k) and

[
n
0

]
= 0 (n > 0) we have

α−1∑
μ=0

Qμc
(k)
n+μ =

α−1∑
μ=0

Qμ

n+μ∑
m=0

[
n+ μ

m

]
(−1)n+μ−m

(m+ 1)k

=

α−1∑
μ=0

(−1)α−μ−1Qμ

n+α−1∑
m=0

[
n+ μ

m

]
(−1)α+n−1−m

(m+ 1)k

=

α−1∑
μ=0

(−1)α−μ−1Qμ

n+α−1∑
m=0

[
n+ μ

n+ α−m− 1

]
(−1)m

(n−m+ α)k

=

α−1∑
μ=0

(−1)μQα−μ−1

n+α−2∑
m=0

[
n+ α− μ− 1

n+ α−m− 1

]
(−1)m

(n−m+ α)k

=

n−1∑
m=0

α−1∑
μ=0

(−1)μQα−μ−1

[
n+ α− μ− 1

n+ α−m− 1

]
(−1)m

(n−m+ α)k

+

n+α−2∑
m=n

α−1∑
μ=0

(−1)μQα−μ−1

[
n+ α− μ− 1

n+ α−m− 1

]
(−1)m

(n−m+ α)k

=

n∑
m=0

[
n

n−m

]
(−1)m

(n−m+ α)k
= c(k)n,α.

Hence, the proof is done. ��
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Remark. We can write as

Qμ(n, α) =

α−μ−1∑
i=0

{
α− 1

μ+ i

}(
μ+ i

μ

)
n!

(n− i)!

since

Qμ(n, α) =

α−μ−1∑
i=0

{
α− 1

μ+ i

}(
μ+ i

μ

)
n!

(n− i)!
=

α−μ−1∑
i=0

{
α− 1

μ+ i

}(
μ+ i

μ

) i∑
ν=0

(−1)i−ν

[
i

ν

]
nν

=

α−μ−1∑
ν=0

nν
α−μ−1∑
i=ν

{
α− 1

μ+ i

}(
μ+ i

μ

)
(−1)i−ν

[
i

ν

]
=

α−μ−1∑
ν=0

nν

(
α− 1

ν

){
α− ν − 1

μ

}
.

Notice that
α−μ−1∑
i=ν

{
α− 1

μ+ i

}(
μ+ i

μ

)
(−1)i−ν

[
i

ν

]
=

(
α− 1

ν

){
α− ν − 1

μ

}
.

4 Poly-Cauchy numbers of the second kind

In [10], the concept of poly-Cauchy numbers of the second kind is also introduced. The poly-Cauchy numbers
of the second kind ĉ

(k)
n are defined by

ĉ(k)n =

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

(−x1x2 . . . xk)(−x1x2 . . . xk − 1) · · · (−x1x2 . . . xk − n+ 1) dx1 dx2 . . . dxk,

and the generating function is given by

Lifk
(−ln(1 + x)

)
=

∞∑
n=0

ĉ(k)n

xn

n!
.

Then, the poly-Cauchy numbers of the second kind ĉ
(k)
n can be also expressed in terms of the Stirling

numbers of the first kind (see [10, Thm. 4]).

Proposition 2.

ĉ(k)n = (−1)n
n∑

m=0

[
n

m

]
1

(m+ 1)k
.

Let α be a positive real number. Similarly to the shifted poly-Cauchy numbers of the first kind c
(k)
n,α, define

the shifted poly-Cauchy numbers of the second kind ĉ
(k)
n,α (n � 0, k � 1) by

ĉ(k)n,α = (−1)α−1

1∫
0

. . .

1∫
0︸ ︷︷ ︸

k

(−x1 . . . xk)
α(−x1 . . . xk − 1) · · · (−x1 . . . xk − n+ 1) dx1 . . . dxk.
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Then, similarly to Theorem 1, ĉ(k)n,α can be also expressed in terms of the Stirling numbers of the first kind as
a generalization of Proposition 2.

Theorem 5.

ĉ(k)n,α = (−1)n
n∑

m=0

[
n

m

]
1

(m+ α)k
(n � 0, k � 1).

Theorem 6. The generating function of the number ĉ(k)n,α is given by

Lifk
(−ln(1 + x);α

)
=

∞∑
m=0

ĉ(k)n,α

xn

n!
,

where

Lifk(z;α) =

∞∑
m=0

zm

m! (m+ α)k
.

Remark. When α = 1, Theorem 6 is reduced to [10, Thm. 5].

The generating function of the number ĉ(k)n,α can be written in the form of iterated integrals.

Corollary 2. Let α be a positive real number. For k = 1, we have

1

(ln(1 + x))α

x∫
0

(ln(1 + x))α−1

(1 + x)2
dx =

∞∑
n=0

ĉ(1)n,α

xn

n!
.

For k > 1, we have

1

(ln(1 + x))α

x∫
0

1

(1 + x) ln(1 + x)

x∫
0

· · · 1

(1 + x) ln(1 + x)

x∫
0︸ ︷︷ ︸

k

(ln(1 + x))α−1

(1 + x)2
dx . . . dx︸ ︷︷ ︸

k

=

∞∑
n=0

ĉ(k)n,α

xn

n!
.

Remark. When α = 1 in the first identity, where k = 1, we have the generating function of the classical
Cauchy numbers of the second kind:

x

(1 + x) ln(1 + x)
=

∞∑
n=0

ĉn
xn

n!
.

When α = 1, the second identity is reduced to that of Corollary 2 in [10].

The number ĉ(k)n,α also has a relation with the Stirling numbers of the second kind.

Theorem 7. Let k be an integer, and α be a positive real number. Then

n∑
m=0

{
n

m

}
ĉ(k)n,α =

(−1)n

(n+ α)k
.
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Remark. When α = 1, Theorem 7 is reduced to [10, Thm. 6].

In addition, there are relations between both kinds of poly-Cauchy numbers.

Theorem 8. Let k be an integer, and α be a positive real number. For n � 1, we have

(−1)n
c
(k)
n,α

n!
=

n∑
m=1

(
n− 1

m− 1

)
ĉ
(k)
m,α

m!
, (−1)n

ĉ
(k)
n,α

n!
=

n∑
m=1

(
n− 1

m− 1

)
c
(k)
m,α

m!
.

Remark. When α = 1, Theorem 8 is reduced to [10, Thm. 7].

Proof. We shall prove the first identity. The second one is proven similarly and omitted. Using the identity
(see, e.g., [7, Chap. 6])

(−1)l

n!

[
n

l

]
=

n∑
m=l

(−1)m

m!

(
n− 1

m− 1

)[
m

l

]
and Theorems 1 and 5, we have

RHS =

n∑
m=1

(
n− 1

m− 1

)
(−1)m

m!

m∑
l=1

[
m

l

]
1

(l + α)k
=

n∑
l=1

1

(l + α)k

n∑
m=l

(−1)m

m!

(
n− 1

m− 1

)[
m

l

]

=

n∑
l=1

1

(l + α)k
(−1)l

n!

[
n

l

]
= LHS. ��

Finally, similarly to Theorem 4, the shifted poly-Cauchy numbers of the second kind can be expressed in
terms of the original poly-Cauchy numbers of the second kind.

Theorem 9. Let α be a positive integer. Then

ĉ(k)n,α = (−1)α−1
α−1∑
μ=0

Qμ(n, α)ĉ
(k)
n+μ (n � 0),

where Qμ(n, α) are the same as in Theorem 4.

5 Some expressions of poly-Cauchy numbers with negative indices

It is known that the poly-Bernoulli numbers satisfy the duality theorem B
(−k)
n = B

(−n)
k for n, k � 0 (see [9,

Thm. 2]) because of the symmetric formula

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!

yk

k!
=

ex+y

ex + ey − ex+y
.

However, the corresponding duality theorem does not hold for poly-Cauchy numbers for any real number α,
as the following results show.

Proposition 3. For nonnegative integers n and k and a real number α �= 0, we have

∞∑
n=0

∞∑
k=0

c(−k)
n,α

xn

n!

yk

k!
= eαy(1 + x)e

y

,

∞∑
n=0

∞∑
k=0

ĉ(−k)
n,α

xn

n!

yk

k!
=

eαy

(1 + x)ey
.
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Proof. We shall prove the first identity. The second identity is proven similarly. By Theorem 2 we have

∞∑
n=0

∞∑
k=0

c(−k)
n,α

xn

n!

yk

k!
=

∞∑
k=0

( ∞∑
n=0

c(−k)
n,α

xn

n!

)
yk

k!
=

∞∑
k=0

∞∑
m=0

(m+ α)k

m!

(
ln(1 + x)

)m yk

k!

=

∞∑
m=0

(ln(1 + x))m

m!

∞∑
k=0

((m+ α)y)k

k!

=

∞∑
m=0

(ln(1 + x))m

m!
e(m+α)y = eαy

∞∑
m=0

(ey ln(1 + x))m

m!

= eαy(1 + x)e
y

. ��

By using Proposition 3 we have explicit expressions of the poly-Cauchy numbers with negative indices.

Theorem 10. For nonnegative integers n, k and a real number α �= 0, we have

c(−k)
n,α =

k∑
i=0

i∑
j=0

(−1)n+jj!

([
n

j

]
− n

[
n− 1

j

])(
k

i

){
i

j

}
αk−i,

ĉ(−k)
n,α =

k∑
i=0

i∑
j=0

(−1)nj!

[
n+ 1

j + 1

](
k

i

){
i

j

}
αk−i.

Remark. If α = 1, by

k∑
i=0

(
k

i

){
i

j

}
=

{
k + 1

j + 1

}
(see [7]) the above identities become

c(−k)
n =

k∑
j=0

(−1)n+jj!

([
n

j

]
− n

[
n− 1

j

]){
k + 1

j + 1

}
,

ĉ(−k)
n =

k∑
j=0

(−1)nj!

[
n+ 1

j + 1

]{
k + 1

j + 1

}
.

Proof. By Proposition 3, together with

(ey − 1)j

j!
=

∞∑
k=j

{
k

j

}
yk

k!
and

(−ln(1 + x))j

j!
=

∞∑
n=j

[
n

j

]
(−x)n

n!

(see [7]), we have

∞∑
n=0

∞∑
k=0

c(−k)
n,α

xn

n!

yk

k!
= (1 + x)e

y−1(1 + x)eαy = exp
((
ey − 1

)
ln(1 + x)

)
(1 + x)eαy
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=

∞∑
j=0

j!
(ey − 1)j

j!

(ln(1 + x))j

j!
(1 + x)eαy

=

∞∑
j=0

(−1)jj! eαy
∞∑
k=j

{
k

j

}
yk

k!
(1 + x)

∞∑
n=j

[
n

j

]
(−x)n

n!
.

Since

eαy
∞∑
k=j

{
k

j

}
yk

k!
=

∞∑
l=0

(αy)l

l!

∞∑
k=j

{
k

j

}
yk

k!
=

∞∑
k=0

(
k∑

i=0

αk−i

(k − i)!

{
i

j

}
1

i!

)
yk

=

∞∑
k=0

(
k∑

i=0

(
k

i

){
i

j

}
αk−i

)
yk

k!

and

(1 + x)

∞∑
n=j

[
n

j

]
(−x)n

n!
=

∞∑
n=j

[
n

j

]
(−x)n

n!
−

∞∑
n=j+1

[
n− 1

j

]
(−1)n

(n− 1)!
xn

=

∞∑
n=0

([
n

j

]
− n

[
n− 1

j

])
(−1)n

xn

n!
,

we obtain

∞∑
n=0

∞∑
k=0

c(−k)
n,α

xn

n!

yk

k!
=

∞∑
j=0

(−1)jj!

∞∑
k=0

(
k∑

i=0

(
k

i

){
i

j

}
αk−i

)
yk

k!

∞∑
n=0

([
n

j

]
− n

[
n− 1

j

])
(−1)n

xn

n!

=

∞∑
n=0

∞∑
k=0

k∑
i=0

i∑
j=0

(−1)n+jj!

([
n

j

]
− n

[
n− 1

j

])(
k

i

){
i

j

}
αk−ix

n

n!

yk

k!
.

Similarly, by

1

1 + x

∞∑
n=j

[
n

j

]
(−x)n

n!
=

∞∑
n=0

(−1)n
[
n+ 1

j + 1

]
xn

n!

we get

∞∑
n=0

∞∑
k=0

ĉ(−k)
n,α

xn

n!

yk

k!
=

eαy

(1 + x)ey
= exp

(−(
ey − 1

)
ln(1 + x)

) eαy

1 + x

=

∞∑
j=0

j!
(ey − 1)j

j!

(−ln(1 + x))j

j!

eαy

1 + x

=

∞∑
j=0

j! eαy
∞∑
k=j

{
k

j

}
yk

k!

1

1 + x

∞∑
n=j

[
n

j

]
(−x)n

n!
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=

∞∑
j=0

j!

∞∑
k=0

(
k∑

i=0

(
k

i

){
i

j

}
αk−i

)
yk

k!

∞∑
n=0

(−1)n
[
n+ 1

j + 1

]
xn

n!

=

∞∑
n=0

∞∑
k=0

k∑
i=0

i∑
j=0

(−1)nj!

[
n+ 1

j + 1

](
k

i

){
i

j

}
αk−ix

n

n!

yk

k!
. ��

6 Poly-Cauchy numbers and poly-Bernoulli numbers

In this section, let k be an integer, and α be a positive real number. An explicit form of a poly-Bernoulli
number B(k)

n is given by

B(k)
n =

n∑
m=0

{
n

m

}
(−1)n−mm!

(m+ 1)k

(see [9, Thm. 1]. In [10, Thm. 8], the following expression of B(k)
n in terms of poly-Cauchy numbers c(k)n is

given.

Proposition 4.

B(k)
n =

n∑
l=1

n∑
m=1

m!

{
n

m

}{
m− 1

l − 1

}
c
(k)
l (n � 1).

On the contrary, in [12, Thm. 2.2], another expression of c(k)n in terms of B(k)
n is given.

Proposition 5.

c(k)n =

n∑
l=1

n∑
m=1

(−1)n−m

m!

[
n

m

][
m

l

]
B

(k)
l (n � 1).

We generalize such results by introducing the shifted poly-Bernoulli numbers defined by

B(k)
n,α =

n∑
m=0

{
n

m

}
(−1)n−mm!

(m+ α)k
(n � 0).

If α = 1, then our results are reduced to the previous ones.

Theorem 11. For n � 0, we have

B(k)
n,α =

n∑
l=1

n∑
m=1

m!

{
n

m

}{
m− 1

l − 1

}
c
(k)
l,α , c(k)n,α =

n∑
l=1

n∑
m=1

(−1)n−m

m!

[
n

m

][
m

l

]
B

(k)
l,α .

Proof. For the first identity,

RHS =

n∑
l=1

n∑
m=l

m!

{
n

m

}{
m− 1

l − 1

}
(−1)l

l∑
i=0

[
l

i

]
(−1)i

(i+ α)k

=

n∑
i=1

(−1)i

(i+ α)k

n∑
l=i

n∑
m=l

m!

{
n

m

}{
m− 1

l − 1

}
(−1)l

[
l

i

]
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=

n∑
i=1

(−1)i

(i+ α)k

n∑
m=i

m!

{
n

m

} m∑
l=i

(−1)l
{
m− 1

l − 1

}[
l

i

]

=

n∑
i=1

(−1)i

(i+ α)k

n∑
m=i

m!

{
n

m

}
(−1)m

(
m− 1

i− 1

)

=

n∑
i=1

(−1)i

(i+ α)k
(−1)ni!

{
n

i

}
= LHS.

For the second identity,

RHS = (−1)n
n∑

l=1

n∑
m=1

(−1)m

m!

[
n

m

][
m

l

]
(−1)l

l∑
i=0

{
l

i

}
(−1)ii!

(i+ α)k

= (−1)n
n∑

m=1

(−1)m

m!

[
n

m

] n∑
l=0

[
m

l

]
(−1)l

l∑
i=0

{
l

i

}
(−1)ii!

(i+ α)k

= (−1)n
n∑

m=1

(−1)m

m!

[
n

m

] n∑
i=0

(−1)ii!

(i+ α)k

n∑
l=i

(−1)l
[
m

l

]{
l

i

}

= (−1)n
n∑

m=0

(−1)m

m!

[
n

m

]
(−1)mm!

(m+ α)k
(−1)m

= (−1)n
n∑

m=0

[
n

m

]
(−1)m

(m+ α)k
= LHS.

Note that
[
m
0

]
= 0 (m � 1),

[
m
l

]
= 0 (l > m), and

m∑
l=i

(−1)m−l

[
m

l

]{
l

i

}
=

{
1 (i = m),

0 (i �= m).
��

Similarly, concerning

ĉ(k)n,α = (−1)n
n∑

m=0

[
n

m

]
1

(m+ α)k
(n � 0)

as a generalization of the poly-Cauchy numbers of the second kind ĉ
(k)
n , we have the following:

Theorem 12.

B(k)
n,α = (−1)n

n∑
l=1

n∑
m=1

m!

{
n

m

}{
m

l

}
ĉ
(k)
l,α , ĉ(k)n,α = (−1)n

n∑
l=1

n∑
m=1

1

m!

[
n

m

][
m

l

]
B

(k)
l,α .

Remark. If α = 1, these results are reduced to the identities in Theorem 3.2 and Theorem 3.1 in [12], respec-
tively.
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