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Abstract – The forest area in Hungary has increased during the last century from 1.1 to 2.0 million ha. 

The European Union supports further afforestation so roughly 15 –18 000 hectares might be planted 

each year, mostly on the Hungarian Great Plain. Water uptake of forests from groundwater can be 

significant in shallow groundwater areas of the Hungarian Great Plain especially in drought periods. 

Therefore forests can induce water table depression and subsurface salt accumulation above saline 

water table in areas with a negative water balance.  

The impact of forests was examined by a systematic study on the Hungarian Great Plain. An oak 

forest and a pasture groundwater uptake and salt accumulation effect were compared at the stand scale. 

Under the forest the water table levels were roughly 0.5 m lower than under the pasture, and the 

groundwater uptake of the oak plot was more than twice as great. Larger forest groundwater use is not 

followed by a higher salt uptake. Therefore slight salt accumulation was measured both in the soil and 

also in the groundwater. Higher groundwater uptake may cause more significant salt accumulation 

under pronounced drought conditions of a warmer climate. 

evapotranspiration / shallow groundwater / diurnal fluctuation / salt accumulation / forest 
 
 
Kivonat – Egy alföldi kocsányos tölgyes és egy szomszédos gyepterület talajvízfelvételének és 

sódinamikájának összehasonlítása. Magyarország erdősültsége a 20. század folyamán 1.1 millió ha-

ról 2.0 millió hektárra nőtt. Az Európai Unió támogatja az erdősítést, így évente megközelítőleg 15–18 

000 hektár nagyrészt mezőgazdasági területet erdősítenek be az Alföldön. A felszínközeli 

talajvízszinttel rendelkező területeken, így a Nagyalföld jelentős részén is, az erdők talajvízfelvétele, 

főként a száraz periódusokban, igen nagymértékű lehet. Előbbiek miatt az erdők a talajvízszint 

süllyedését és egyes helyeken esetlegesen só akkumulációt idézhetnek elő a talajvízben és a 

talajvízszint fölötti talajrétegekben az erősen negatív vízmérlegű területeken.  

Egy nagyalföldi mintavételi pontokat tartalmazó szisztematikus vizsgálat keretében kezdtük el 

keresni a fenti kérdésekre a választ. Jelen cikkben egy kocsányos tölgyes és egy szomszédos legelő 

talajvíz-felhasználását és só-felhalmozódásra gyakorolt hatását hasonlítjuk össze. A vizsgálatok szerint 

az erdő durván fél méterrel csökkenti a talajvízszintet és több, mint kétszeres a talajvízből történő 

vízfelvétele, mint a gyepvegetációnak. Az erdő nagyobb talajvíz-felhasználása viszont nincs arányban 

a sófelvételével, így mind a talajban, mind a talajvízben kismértékű só-akkumuláció tapasztalható. A 
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klímaváltozás kapcsán a hosszabb száraz periódusokban előálló nagyobb párolgási kényszer (és 

nagyobb talajvízfelvétel) a mértnél sokkal jelentősebb sófelhalmozódást okozhat. 

evapotranszspiráció / sekély talajvíz / napi ingadozás / só akkumuláció / erdők 

 

 

1 INTRODUCTION 

 

Significant afforestration is planned in Hungary (700 000 ha), and this plan is also supported 

by the EU (Andrasevits et al., 2005). The areas available for afforestration are generally less 

profitable for field crop production. Based on the analysis of the soil types of the formerly 

forested areas, Führer and Járó (2005) stated that the Hungarian Great Plain can be the most 

important region for afforestration. However the hydrological and climatic role of the forest is 

most critical in the Hungarian Great Plain. From a hydrological viewpoint, two basic 

situations are encountered:  

 When the water table is deeper than the root zone (these are very critical sites for 

afforestration), and  

 when groundwater can be a source of transpiration. In the later situation groundwater 

uptake of a forest is the most frequent theme of this research. 

In the shallow water table areas, forest vegetation can change the water and salt balance 

of the soil (Nosetto et al., 2007) and these effects are manifested in the lowering of the water 

table (Major, 2002) and increase of salt concentration  in certain soil and subsoil layers 

(Jobbágy and Jackson, 2004; Nosetto et al., 2007; Nosetto et al., 2008). In a shallow 

groundwater environment, the impact of a forest on groundwater and salt dynamics are 

reviewed by Szabó et al. (2012) specially focusing on the processes going on in the Hungarian 

Great Plain (Figure 1).  

Forest evapotranspiration (sum of transpiration and interception) is generally higher than 

the evapotranspiration of neighbouring grasslands, because of the increased LAI (leaf area 

index) and root depth of the woody vegetation (Calder, 1998; Nosetto et al., 2005). These 

properties of a forest are especially true in the Great Plain with a subhumid climate, where the 

precipitation is less than the water demand of woody vegetation, so trees can survive arid 

periods if they can use groundwater resources as well (Ijjász, 1939; Magyar, 1961). 

Móricz et al. (2012) compared the water balance of different land uses in Nyírség 

(Northeast part of the Hungarian Great Plain), and found that a common oak forest has 

approximately 30% more evapotranspiration (758 mm a
–1

) than a neighbouring fallow land 

(623 mm a
–1

). The difference is more significant (3 fold) in groundwater use of different 

vegetation types (oak: 243 mm a
–1

, fallow: 85 mm a
–1

). The groundwater consumption was 

close to 60% of the total transpiration in the oak forest and approximately 30% on the fallow 

plot. Groundwater consumption was approximately 40% less in the wetter vegetation period 

of 2008 than in the drier growing season of 2007, despite the fact that the groundwater level 

was deeper during the drier summer. Thus, during the drier period both vegetation covers 

relied considerably on the available groundwater resources. 

Magyar (1961) analyzed the root growth of seedlings in a saline environment and found 

that in a moderately saline soil environment, roots of seedlings can reach 3.5 m down to the 

water table in three years, but roots of elms can be detected 5.15 m deep two years after 

planting. 

Under a forest, the water table can be detected deeper than under grassland if the trees are 

able to reach it. The difference of the water table level is larger in the growing season (Ijjász, 

1939). Jobbágy and Jackson (2004) stated that the groundwater level can be 75 cm deeper 

under a forest. On the basis of their measurements in shallow groundwater areas of 

Kiskunság, the researchers Szodfridt and Faragó (1968) found that forest vegetation generally 
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lowers a water table 50–60 cm compared to herbaceous vegetation. But they also stated that 

on the sites where groundwater levels (in April) are found deeper than 2.5 m, only sparse 

herbaceous vegetation can survive under natural conditions. Major (2002) observed that under 

a coniferous forest compartment in Kiskunság, the water table can be 0.8–1.1 m deeper than 

under the neighbouring non-forested areas. 

Szilágyi et al. (2012) analysed the evapotranspiration (determined by linear 

transformation of the MODIS daytime land surface temperature) in the Danube-Tisza Sand 

Plateau of the Hungarian Great Plain. According to land cover, the largest ET (about 505 mm a
–1

) 

was found over deciduous forests where the regional annual precipitation was 550 mm. On 

some locations ET is estimated to be larger than precipitation. These groundwater discharge 

areas in many locations overlap with forest cover. Often the dense and deep root system of 

forests can tap the shallow groundwater level (if it exists), thus leading to a high ET rate, 

frequently exceeding the rate of precipitation which the area receives. In the groundwater 

discharge areas, the average annual ET for the forests is 620 mm a
–1

, which is about 70–80 

mm more than the mean annual precipitation rate of the region. This negative water balance 

can be maintained if forests create a local depression in the water table so as to induce 

groundwater flow directed toward them (Figure 1). 

Detailed investigation of the afforestation in the Hungarian Great Plain is being carried 

out through the systematic study of all affecting factors, like climatic water balance, water 

table depth and salinity, tree species, subsoil layering and stand age (in the frame of the 

OTKA NN 79835 project). The aim of this paper is to describe the complex interrelation of 

these factors in such a way that the effect of planned new afforestations could be predicted.  

 
Figure 1. Impact of forest vegetation on water and salt balance of a shallow groundwater site 

(hypothetical model). ET evapotranspiration, P precipitation, EC (electrical conductivity),  

GW groundwater. 

 

 

2 MATERIALS AND METHODS 

 

2.1 Site description 

Altogether 108 plots of forested and nearby non-forested land were sampled in the above 

mentioned project. At the stand scale, 18 representative forested and accompanied non-

forested stands (from the 108) are monitored intensively. In this paper the dataset of two 
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neighbouring plots (a common oak forest [60 years old, 22 m high closed forest] and a grass 

stand [without shrubs])  were compared next to Jászfelsőszentgyörgy (47 29’ N, 19 46’ E) in 

the very dry summer of 2012 (Figure 2). These vegetation types are very typical in the 

Hungarian Great Plain. 

 On historical land use maps,  no forest cover could be found in the area between 1780 

and 1914. Afforestation started after 1914 on the oak plot, but the pasture site was never 

forested. The area has a flat topography. The geological basis of the research area is fluvial 

sediments, mostly sand and silt.  

 

 
Figure 2. Geomorphological map with land use and location of monitoring plots with GW wells. 

Oak plot well is indicated by F13 and pasture plot well by F14. 

 

2.2 Data collection 

GW wells are installed in the common oak forest (F13) and in the grass covered pasture (F14) 

7 and 6 m deep in the neighbourhood of Jászfelsőszentgyörgy (located in northern part of 
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Great Plain). The geological layers of the plots can be seen in Figure 2. GW wells were 

instrumented with vented pressure transducers (www. dataqua.hu) and a meteorological 

station was placed in the neighbourhood on a pasture in the first days of July, 2012. Pressure 

transducers  take readings at 15 minute intervals (for calculation of ET from groundwater) and 

the meteorological station collects standard meteorological parameters (temperature, relative 

humidity, net radiation, wind speed and precipitation) every 5 minutes (for calculation of 

reference ET). Only the first month of dataset is adequate for further analysis because of an 

error in the data collectors. 

Water table levels from the surface and precipitation can be seen in Figure 4 as a 

representation of the collected dataset. 

At both sites a mineral soil was sampled at depths of 10, 30, 50, 70, 90 cm (20 cm 

intervals) and at 50 cm intervals down to the depth of the GW wells. Electrical Conductivity 

was determined in a 1:2.5 soil-water extract (for calculation of salt content). Soil texture was 

specified according to particle size distribution determined by the pipette method. 

Groundwater was also sampled for electrical conductivity, measured by a conductivity meter. 

 

2.3 Evapotranspiration calculation method  

In shallow groundwater areas, vegetation can take up water both from unsaturated or saturated 

zones. If groundwater was used by vegetation, a diurnal signal can be detected in the water 

table hydrograph (White 1932, Gribovszki et al. 2010). The amplitude of the signal depends 

on the soil texture and magnitude of groundwater uptake (Figure 5). The riparian-zone 

groundwater ET estimation technique of Gribovszki et al. (2008), based on the diurnal 

fluctuations of the groundwater levels (by further developing of the original White (1932) 

method), were used.  

The ET-estimation method employs the water balance equations (written for the 

saturated zone) 

 gwnetgwoiy ETQ=ETQQ=
t

WT
h)(t,S=

t

S









   (1) 

where dS / dt [L
3
T

–1
] is the time-rate of change in groundwater storage (S), h [L] the average 

groundwater level (above reference), Sy the specific yield, Qi, the incoming discharge [L
3
T

–1
] 

to the unit land area, and Qo, the outgoing discharge from the unit land area [L
3
T

–1
].  

The net supply/replenishment rate is the difference of the incoming and outgoing 

discharges to and from, Qnet = Qi – Qo, [L
3
T

–1
]. ETgw, is evapotranspiration (directly or 

indirectly) from the groundwater. 

In order to obtain the net supply rate (Qnet), an empirical method (using characteristic 

points) was employed (Figure 3): 

 The maximum of Qnet for each day was calculated by selecting the largest positive 

time-rate of change value in the groundwater level readings, such as Qnet = Sy Δh/Δt. 

 The minimum of Qnet was obtained by calculating the mean of the smallest time-rate 

of change in h taken in the predawn/dawn hours. The averaging is necessary in order 

to minimize the relatively large measurement error when the changes are small.  

 The resulting values of the Qnet extrema then were assigned to those temporal loca-

tions where the groundwater level extrema took place. 

 It was followed by a spline interpolation of the Qnet values to derive intermediate val-

ues between the specified extrema (Gribovszki et al. 2008).   
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Figure 3. Graphic representation of the empirical method, 

Qnet is replenishment rate, dWT/dt is the time rate of change of water table,  

Char. Points is the characteristic points of replenishment rate 

 

Finally, after calculating the Qnet values, the ETgw rates can be obtained by rearranging 

the former water balance equation as 

 









dt

dh
QS=ET netygw  (2) 

Sy values (as readily available specific yield) were estimated on the basis of the texture 

class of soil layers in the depth interval of diurnal fluctuations according to Loheide et al. 

(2005). The soil texture class (similar for both stands) was loam and sandy loam in the depth 

of the water table. Therefore Sy is between 0.045–0.055 roughly 0.05. 

ET values Penman-Monteith ET (PM_ET) rates (for a grass reference surface) were 

calculated from the meteorological dataset as a comparative reference (Allen et al., 1998). 

 

 

3 RESULTS AND DISCUSSION 

 

3.1 Water table levels and fluctuation 

Water table depression in the forest  next to an adjacent pasture together with a significant 

difference in the amplitude of diurnal fluctuations suggested an increased groundwater use of 

the forest (Figure 4). 

Differences in water table levels from the surface were 0.44 m on average during July 

2012 (Figure 4). In contrast when groundwater levels are expressed in absolute values (a.s.l) 

the difference became 0.9 m (because of the lower elevation of the oak stand). Both of the 

differences mean a depression in water table under the forest. The magnitude of the 

depression was similar to the water table drop determined by Nosetto et al. (2007) on a 

planted oak forest and adjacent grassland in the Hortobágy region (0.26–0.60 m) and those 

determined by Móricz et al. (2012) by comparing a common oak stand and a neighboring 

fallow plot in Nyírség (in a dry period of the growing season 0.5–0.6 m). 

The sinking of the water table was similar during the sampled period (0.37 m/month for 

oak and 0.35 m/month for pasture). It should be noted that the period analyzed was after a dry 
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spring. Therefore the water table was almost in its lowest position. (Therefore we are close to 

the very end of the general groundwater recession curve, where further decay is very slow). 

Rainfall interrupted the fluctuations  at both places (e.g. July 11) but this is probably not 

the effect of a surplus recharge to the groundwater (because the water table was relatively 

deep) nor a cessation of groundwater use of vegetation (Figure 4). 

 
Figure 4. Water table from the surface under the oak (forest) and grass (pasture)  

sites (07. 07. 2012. – 05/ 08/ 2012.) 

 

The amplitude of groundwater fluctuation for a forest is more than twice as large 

(16/2 cm) than for a pasture (7.2/2 cm) (Figure 5). The appearance of a diurnal signal under a 

pasture shows us the groundwater uptake of grass vegetation. The magnitude of the 

fluctuation has a strong connection to groundwater use (Soylu et al. 2012) so it shows us the 

more significant groundwater use of a forest (because the soil textures of the two plots are 

similar: sandy-loam, loam). The magnitude of the fluctuation was higher than calculated by 

Nosetto et al. (2007) (5.5 cm on average for oak forest), but similar to that determined by 

Móricz et al. (2012) (14 cm for an oak forest and 2 cm for the fallow plot in dry periods) for 

similar soil types. 

 The time of the maximum and minimum groundwater levels were the same for both land 

covers (9h for max. and 20h for min.) validating that the inducing effect is the same (Figure 5). 

 

Figure 5. Diurnal fluctuations in water table levels  

comparing an oak (forest) and a grass (pasture) site 



Gribovszki, Z. et al. 
 

 

Acta Silv. Lign. Hung. 10 (1), 2014 

110 

3.2 ETgw values for an oak and a pasture site 

Using the empirical ET estimation technique of Gribovszki et al. (2008), the groundwater 

uptake of different vegetation types, were calculated in a very dry period of summer 2012.   

Figure 6 shows ET rates with 30-min frequency and in Figure 7 ET rates with daily 

frequency are shown.  

 
Figure 6. Calculated ET rates with 30-min frequency 

 

 
Figure 7. ET rates aggregated to a daily scale  

 

ET rates  have the following characteristics: 

Groundwater uptake of an oak stand (mean: 7.5 mm/day) is a bit higher than PM_ET, (mean: 

6.6 mm/day). Pasture (grass) ETgw (mean: 3.5 mm/day) is less than half of the oak. 

A rate higher than the potential rate values for oak can be found because the potential ET 

value was calculated for a grass reference surface. If calculation of potential ET had been 

conducted for rougher surface conditions and for higher LAI of the forest, the ET values 

would have been higher because of the greater atmospheric and canopy conductance of the 

forest canopy. 

The daily groundwater uptake seems to be great, but the data seem to be acceptable 

taking into account that the period of analyses was very hot and till July of 2012 soil profile 
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had already lost almost all of the moisture stored in preceding periods and all around there is a 

dry and warm environment. (Therefore the oasis effect can enhance ET).  

As a comparison, ET values of Nosetto et al. (2007) in Hortobágy determined a 1.9 mm/day 

(up to 3.2 mm/day) groundwater ET for an oak forest on the basis of diurnal fluctuation of the 

water table. In that study the groundwater levels were significantly lower (on average 5 m) 

and the measurement period was in autumn. Therefore the higher values are possible in our 

case. In contrast using a diurnal method Butler et al. (2007) obtained groundwater ET rates of 

2.9–9.3 mm/day for mixed vegetation types based on continuous groundwater level readings 

at groundwater depths between 0.3 and 3.4 m from the surface. Therefore calculated 

groundwater ET rates were close to total ET as in our case. 

It must be noted that determination of readily available Sy is a weak point in all diurnal 

signal based ET estimation methods. Therefore the above determined ET values are not abso-

lutely accurate, but the ratio of ET for different land covers is more accurate. 
The correlation values between PM_ET and estimated groundwater ET rates are the 

following (Table 1).  
 
Table 1. Correlation coefficients (r) between reference PM_ET and estimated ETgw values  

Stand 30-min scale Daily scale 

Oak-PM 0.938*** 0.853*** 

Pasture-PM 0.816*** 0.743*** 

Oak-PM means correlation between ETgw of Oak site and reference ET (PM_ET) 

Pasture-PM means correlation between ETgw of Pasture site and reference ET (PM_ET) 

*** Signif. code, p-value is less than 0.001 

 

The stronger correlations (also for 30-min and daily scales) between Oak_ET and PM_ET 

showed that during the analyzed period these parameters are very similar. It means that 

Oak_ET reached the magnitude of potential ET and the water used for ET was mostly 

consumed from groundwater according to the meteorological constraint because there is no 

usable soil moisture in the soil column in this very dry period. The better correlation of 

pasture at a 30-min scale means that the diurnal shape of the two curves is similar, but the 

lower correlation for the daily scale shows a lower correspondence of Pasture_ET to 

meteorological factors. (Probably the root system of grass is not as adequate for as much 

groundwater uptake as that of the forest). 

 

3.3 Salt Dynamics 

Specific electric conductivity, which is strongly correlated with salt content, was 

measured to evaluate salt accumulation (Figure 8). The greatest difference in soil salt 

content between two land use types was detected in the upper part of the soil and at a 

depth of 350 cm. The specific conductivity values were 127 and 70 μS/cm higher in the 

soil of an oak forest at that depth. As a comparison, conductivity values measured by 

Nosetto (2007) in a similar oak and grassland comparison in Hortobágy) were generally 

2–5 times higher than in this study. The vertical profile distribution was different in 

Hortobágy (Nosetto 2007) showing significantly higher conductivity values for grass in 

upper soil layers, which cannot be detected in Jászfelsőszentgyörgy. The higher 

conductivities of lower soil layers (above the groundwater) for oak forests showed a 

similar tendency at Jászfelsőszentgyörgy and Hortobágy. 

The salt content of the groundwater was also slightly greater under the oak plot. (The 

conductivities of groundwater are: oak-1023, pasture-960 μS/cm). The differences do not 

mean any problem for forest vegetation productivity and vitality, but  salt accumulation 
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induced by climate change can be a long term effect of afforestration in these kinds of 

soils and hydrological combinations. Nosetto et al. (2007) also detected a higher conduc-

tivity of groundwater under an oak forest than under grassland in Hortobágy, but the abso-

lute magnitudes were significantly higher at 4900 μS/cm and 2000 μS/cm under an oak 

forest and grassland. 

 

Figure 8. Electrical conductivity (EC) profile under the pasture and oak forest 

 

 

4 CONCLUSIONS 

 

Hydrological characteristics of earlier land uses during the last century (grassland and arable 

land) in the Great Plain are significantly different from those of the forest. A larger biomass 

needs a higher amount of transpiration which can be taken up from the groundwater by the 

deeper root system of the forest if precipitation is insufficient. Increased groundwater uptake 

results in a depression of the water table under forest covered sites in areas with a shallow 

groundwater table. 

The larger amount of forest groundwater use is not parallel with salt uptake. Therefore 

salts can accumulate in both the soil and groundwater. The measured differences in salt con-

tent are small compared to similar research results for clayey soils (Nosetto et al. 2007). 

However in the long run, and taking into account longer dry periods induced in the future by 

climate change, this process can result in the decline of biological production of a forest.  

Table 1 summarizes the results of these processes comparing an oak forest and neighbor-

ing pasture on the basis of the dataset of this study. 
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Table 1. Summary of impacts of an oak forest on water and salt dynamics  

(EC=electric conductivity; GW=groundwater) 

Parameter Oak Pasture Process 

EC GW (μS/cm) 1023 960 Salt cc. of GW increases 

EC soil 0–20 cm (μS/cm) 272 145 Salt accumulation in upper soil layer 

EC soil 300–350 cm (μS/cm) 204 134.9 Salt accumulation in lower soil layer 

GW level (asl [mBf]) 101.5 102.4 Water table depression (0.9 m) 

Water table depth (m from suface) 3.26 2.82 Water table difference from surface 

(0.44 m) 

Diurnal signal amplitude (cm) 16 7.2 Stronger diurnal signal of oak  

(ratio 2.2) 

ET from GW (mm/day) 7.6 3.3 Greater GW uptake of oak (ratio 2.3) 
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