On a Diophantine equation involving powers of Fibonacci numbers

Gueth, Krisztián és Florian, Luca és Szalay, László (2020) On a Diophantine equation involving powers of Fibonacci numbers. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 96 (4). pp. 33-37. ISSN 0386-2194

[thumbnail of euclid.pja.1585728123.pdf]
Előnézet
Szöveg
euclid.pja.1585728123.pdf

Download (94kB) | Előnézet
Hivatalos webcím (URL): http://doi.org/10.3792/pjaa.96.007

Absztrakt (kivonat)

This paper deals with the diophantine equation F-1(p) + 2F(2)(p )+ . . . + kF(k)(p) = F-n(q), an equation on the weighted power terms of Fibonacci sequence. For the exponents p, q is an element of {1, 2} the problem has already been solved in ad hoc ways using the properties of the summatory identities appear on the left-hand side of the equation. Here we suggest a uniform treatment for arbitrary positive integers p and q which works, in practice, for small values. We obtained all the solutions for p, q <= 10 by testing the new approach.

Tudományterület / tudományág

természettudományok > matematika- és számítástudományok

Kar

Nem releváns

Intézmény

Soproni Egyetem

Mű tipusa: Cikk
További információ: Funding Agency and Grant Number: Number Theory Focus Area Grant of CoEMaSS at Wits (South Africa); Hungarian National Foundation for Scientific Research GrantOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [128088]; Max Planck Institute for Mathematics in Bonn, Germany Funding text: The work on this paper started when the last author visited School of Mathematics of the Wits University. He thanks this Institution for support, and also thanks Kruger Park for excellent working conditions. F. L. was supported in part by the Number Theory Focus Area Grant of CoEMaSS at Wits (South Africa). Part of this work was done when this author visited the Max Planck Institute for Mathematics in Bonn, Germany from September 2019 to February 2020. He thanks this Institution for hospitality and support. For L. Sz. the research was supported by Hungarian National Foundation for Scientific Research Grant No. 128088. This presentation has been made also in the frame of the "EFOP-3.6.1-16-2016-00018 -Improving the role of the research + development + innovation in the higher education through institutional developments assisting intelligent specialization in Sopron and Szombathely''.
SWORD Depositor: Teszt Sword
Felhasználó: Csaba Horváth
A mű MTMT azonosítója: MTMT:31293326
Dátum: 13 Aug 2020 10:57
Utolsó módosítás: 13 Aug 2020 10:57
URI: http://publicatio.uni-sopron.hu/id/eprint/1946

Actions (login required)

Tétel nézet Tétel nézet

Letöltések

Letöltések havi bontásban az elmúlt egy évben