Luca, Florian és Pethő, Attila és Szalay, László (2021) Duplications in the k-generalized Fibonacci sequences. NEW YORK JOURNAL OF MATHEMATICS, 27. pp. 1115-1133. ISSN 1076-9803
Előnézet |
Szöveg
27-44v.pdf Download (820kB) | Előnézet |
Absztrakt (kivonat)
Let k >= 3 be an odd integer. Consider the k-generalized Fibonacci sequence backward. The characteristic polynomial of this sequence has no dominating zero, therefore the application of Baker's method becomes more difficult. In this paper, we investigate the coincidence of the absolute values of two terms. The principal theorem gives a lower bound for the difference of two terms (in absolute value) if the larger subscript of the two terms is large enough. A corollary of this theorem makes possible to bound the coincidences in the sequence. The proof essentially depends on the structure of the zeros of the characteristic polynomial, and on the application of linear forms in the logarithms of algebraic numbers. Then we reduced the theoretical bound in practice for 3 <= k <= 99, and determined all the coincidences in the corresponding sequences. Finally, we explain certain patterns of pairwise occurrences in each sequence depending on k if k exceeds a suitable entry value associated to the pair.
Tudományterület / tudományág
természettudományok > matematika- és számítástudományok
Kar
Nem releváns
Intézmény
Soproni Egyetem
Mű tipusa: | Cikk |
---|---|
További információ: | Funding Agency and Grant Number: Hungarian National Foundation for Scientific Research GrantOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [128088, 130909]; Slovak Scientific Grant AgencyVedecka grantova agentura MSVVaS SR a SAV (VEGA) [VEGA 1/0776/21]; Max Planck Institute for Software Systems in Saarbrucken, Germany Funding text: The authors are grateful A. Mehdaoui, Sz. Tengely, T. Wurth, T. Bartalos, and Gy. Bugar for their kind help in carrying out the computations. F. Luca worked on this paper while he visited Max Planck Institute for Software Systems in Saarbrucken, Germany in the Fall of 2020. He thanks this Institution for hospitality and support. For L. Szalay the research and this work was supported by Hungarian National Foundation for Scientific Research Grant No. 128088, and No. 130909, and by the Slovak Scientific Grant Agency VEGA 1/0776/21. |
SWORD Depositor: | Teszt Sword |
Felhasználó: | Csaba Horváth |
A mű MTMT azonosítója: | MTMT:32123661 |
Dátum: | 05 Aug 2021 13:48 |
Utolsó módosítás: | 05 Aug 2021 13:48 |
URI: | http://publicatio.uni-sopron.hu/id/eprint/2206 |
Actions (login required)
Tétel nézet |