Kiss, L. Márton és Pintér, Judit Mária és Kósa, Balázs és Markó, Balázs és Veres, Laura (2024) Calibration of particle sensor with neural network algorithm. POLLACK PERIODICA: AN INTERNATIONAL JOURNAL FOR ENGINEERING AND INFORMATION SCIENCES, August 2024. pp. 1-8. ISSN 1788-1994
Szöveg
606-article-10.1556-606.2024.00951.pdf Download (1MB) |
Absztrakt (kivonat)
Based on air quality index data for the period 2018–2022, Hungary ranks as the 80th most polluted country in the world. Given the air pollution data measured in Hungary and the health impact of air pollution, it is of utmost importance to measure air quality in Hungary focusing on PM10 and PM2.5 pollutants. One possible solution for high-density measurement is to utilize low-cost sensors at the population level. The calibration procedure has to be carried out in a way that does not incur extra costs and maintenance at the physical level. A potential solution is the development of an algorithm to perform the calibration with remote access. This publication presents a fragment of this development, where we attempted to implement the procedure using a neural network and performed a comparative analysis with official data.
Tudományterület / tudományág
műszaki tudományok
műszaki tudományok > anyagtudományok és technológiák
Kar
Nem releváns
Intézmény
Soproni Egyetem
Mű tipusa: | Cikk |
---|---|
SWORD Depositor: | Teszt Sword |
Felhasználó: | Csaba Horváth |
A mű MTMT azonosítója: | MTMT:35192956 |
Dátum: | 30 Szep 2024 07:56 |
Utolsó módosítás: | 30 Szep 2024 07:56 |
URI: | http://publicatio.uni-sopron.hu/id/eprint/3279 |
Actions (login required)
Tétel nézet |