AI in Finance: Innovative Approaches for Sustainable Business Models

Bartelt, Cedric és Röser, Alexander Maximilian (2024) AI in Finance: Innovative Approaches for Sustainable Business Models. E-CONOM, 13 (2). pp. 98-118. ISSN 2063-644X

[thumbnail of Econom-13evf-2sz-2024-098-118.pdf] Szöveg
Econom-13evf-2sz-2024-098-118.pdf

Download (834kB)
Hivatalos webcím (URL): https://doi.org/10.17836/EC.2024.2.007

Absztrakt (kivonat)

Artificial Intelligence (AI) is increasingly recognized as a transformative force driving sus-tainable business innovation in the financial sector. This study conducts a methodological meta-analysis of existing research to examine AI’s role in advan-cing sustainable finance. By systematically reviewing and synthesizing literature from peer-reviewed journals, industry reports, and academic sources, this study focuses on AI applications such as machine learn-ing and neural networks that support environmental, social, and governance (ESG) objec-tives. Key applications include AI-driven financial forecasting, risk management, and auto-mated reporting systems that enhance transparency and facilitate green finance initiatives. Each selected study was rigorously evaluated for methodological quality and relevance to ensure robust findings. The analysis identifies recurring themes, challenges, and gaps in the current literature, with an emphasis on ethical considerations and regula-tory compliance. The study provides insights into how AI can improve decision-making processes by integrat-ing sustainability indicators, thus fostering long-term value creation in finance. The findings underscore AI’s strategic importance in achieving sustainability goals and offer a foundation for future research and inno-vation in sustainable finance. JEL-codes: O33, C18, G21, Q01, D83

Tudományterület / tudományág

társadalomtudományok > közgazdaságtudományok

Kar

Nem releváns

Intézmény

Soproni Egyetem

Mű tipusa: Cikk
SWORD Depositor: Teszt Sword
Felhasználó: Csaba Horváth
A mű MTMT azonosítója: MTMT:36069648
Dátum: 01 Ápr 2025 11:55
Utolsó módosítás: 01 Ápr 2025 11:55
URI: http://publicatio.uni-sopron.hu/id/eprint/3575

Actions (login required)

Tétel nézet Tétel nézet

Letöltések

Letöltések havi bontásban az elmúlt egy évben